卤、硫、氮族化合物分子间相互作用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:近年来,尽管分子间相互作用的研究已经取得了突飞猛进的发展,但是不同分子间二体和三体相互作用的氢键和卤键研究依然存在空白,而且卤键与氢键之间的协同性研究也还不够深入。因此,本文采用二阶微扰理论(MP2)从头算法对卤、硫、氮族化合物分子间相互作用的二体和三体的几何构型、相互作用能、卤键与氢键之间以及氢键之间的协同性进行了理论研究,并通过静电势分析和分子中的原子(AIM)分析对这些分子间相互作用的本质进行了探讨。本文得到的结论不仅可以丰富分子间相互作用卤键和氢键的理论知识,而且可以为这些分子间相互作用的实验研究和在相关领域的应用起到推动作用。具体研究内容如下:
     1.在aug-cc-pVDZ水平对(HCl/HBr)n和BrX(X=F,Cl,Br;n:1;2)分子间相互作用进行了理论计算,并得到以下结论:在HCl/HBr…BrX二体中存在氢键,卤键,非正常氢键和非正常卤键四种稳定的几何构型。对于正常键,其相互作用能随着X原子电负性的增加而增加;而对于非正常键,其相互作用能随着X原子电负性的增加而下降。HCl/HBr和BrX分子表面的静电势分析可以很好地解释这些相互作用特征。三体化合物(HCl/HBr)2…BrX的几何构型和相互作用能计算结果表明:分子结构的稳定性取决于三体结构的类型、形成的氢键和卤键的相对强度以及非正常键的数量;协同能和协同贡献(协同能占总能量的百分比)的大小均说明协同性在这些三体化合物的形成过程中起着非常重要的作用;AIM分析结果表明所有三体化合物的分子间相互作用均属于静电(闭壳型)相互作用。
     2.在aug-cc-pVTZ水平对HX…(BrCl)n(X=F,Cl,Br;n=1;2)体系进行了理论研究。计算结果表明:二体HX…BrCl的几何构型、相互作用能和分子表面的静电势分析结果表明HBr作为卤键供体可以形成最强的卤键作用,而HF作为氢键供体可以形成最强的氢键作用。三体化合物的研究结果表明:卤原子的电负性越强,三体化合物的相互作用能越大,相应的几何结构越稳定;影响不同构型稳定性的主要因素有卤键和氢键的强度以及HX和两个BrCl分子间的相互作用方式;三体结构协同贡献的绝对值在0.86~15.31%的范围内;AIM分析结果表明这些分子间相互作用都是静电相互作用。
     3.在aug-cc-pVTZ水平对HX和H2Y的单体、二体HX…H2Y,三体H2Y…HX…H2Y和HX…H2Y…HX(X=F,C1,Br;Y=O,S,Se)进行了理论计算。计算结果表明:复合物的稳定性与X和Y原子的电负性直接相关——电负性越强,相应的复合物越稳定;三体复合物中所有不同氢键之间存在正协同性,协同贡献在14.59~21.26%的范围内,可见协同性在这些三体相互作用中发挥着至关重要的作用;AIM分析结果表明绝大部分相互作用是典型的闭壳型作用;而H2O…HF…H20,H2O…HBr…H20和HF…H2O…HF中的H…O键是介于开壳型和闭壳型之间的靠局域电荷浓度稳定的相互作用。
     4.在aug-cc-pVTZ水平研究了F/C1取代对HX和H2Y(X=.F,Cl,Br; Y=O,S,Se)之间相互作用的几何构型、相互作用能和协同性的影响。结果表明复合物的结构参数和相互作用能与X原子的电负性直接相关;由于F/C1取代改变了H2Y分子的静电势分布,进而引起了三体分子间相互作用方式的改变,在两种类型的三体中均存在(a)、(b)两种结构;三体化合物的相互作用之间存在正协同性,HX…HFY…HX和HX…HClY…HX的协同贡献的值分别在18.19~23.45%和11.27~22.03%的范围内,而HFY…HX…HFY/HClY…HX…HClY的协同贡献分别在12.87~20.17%和12.09~21.33%的范围内;AIM分析结果表明所有三体中的分子间相互作用都是闭壳型作用。
     5.结合近年来由C02引起的气候变暖已成为全球最关注的环境问题,选取氯阴离子(C1-)、胍盐阳离子((NH2)3C+)和CO2气体分子体系进行了量子化学计算及分子动力学模拟,以期为设计开发新型高吸收性能的胍盐离子液体提供理论依据。通过对胍盐离子液体的结构特征及胍盐离子液体捕获C02分子的机理进行探讨,结果发现胍阳离子与氯负离子之间的存在较强的相互作用,相互作用能为100kcal/mol左右;它们之间的几何构型以Middle作用模式为主;CO2气体溶解在胍盐离子液体的空隙中,不会对离子对的结构产生明显的影响。图35幅,表37个,参考文献252篇。
Abstract:Although the research on the intermolecular interaction has been developed by leaps and bounds in recent years, there is still a blank in the investigation on hydrogen bond and haogen bond in the dimer and trimer between different molecules, and the study on the cooperativity of halogen bond and hydrogen bond is not deep enough, too. Consequently, the theoretical investigations on geometric configuration, interaction energy and the cooperativity in hydrogen bonds or between hydrogen bond and halogen bond in halogen, chalcogen and nitrogen complexes have been carried out with the second order perturbation theory (MP2) method in this paper. The natures of the intermolecular interaction are discussed through the electrostatic analysis and "atoms in molecules"(AIM) analysis. The conclusions in this paper can not only enrich the theoretical knowledge of halogen bond and hydrogen bond, but can promot the experiment researches and applications in related fields of them. The concrete research contents are as follows:
     1. The theoretical computations are carried out on the intermolecular interactions between (HCl/HBr)n and BrX (X=F, Cl, Br; n=1,2) with aug-cc-pVDZ basis set. The following conclusions are obtained. There are four types of interactions between HC1and BrX which are hydrogen bond, halogen bond, unusual hydrogen bond and unusual halogen bond, respectively. The interaction energies of usual bonds increase with the increase of the electronegativity of X atoms. The interaction energies of unusual bonds decline with the increase of the electronegativity of X atoms. These characteristics can be explained by the electrostatic distribution on the surface of HCl/HBr and BrX molecules. The computational conclusions of geometric structures and interaction energies of the trimers show that the stability of molecular structure depends on the type of trimer's structure, the relative strength of the hydrogen bond and hydrogen bond, and the number of the unusual bonds. The values of the cooperative energies and the synergetic contributions all demonstrate that the cooperativity plays an important role in the formation process of these three-body compounds. The absolute values of cooperative contribution are in the range of0.80%to21.59%. The conclusions of AIM analysis indicate that the electrostatic (closed-shell) interactions occupy a dominant position in these compounds.
     2. The theoretical investigations are carried out on the HX--(BrCl)n (X=F, Cl, Br; n=1;2) system with aug-cc-pVTZ basis set. The results of the structural parameters, interaction energies and electrostatic potentials on the molecular surfaces of HX and BrCl suggest that HBr can form the strongest halogen bond acting as donor of halogen bond, while HF can form the strongest hydrogen bond acting as donor of hydrogen bond. The research results of the trimers showed that the stronger the electronegativity of halogen atom is, the more stable the trimer is. The factors of affecting the stability of different configurations are the strength of the halogen and hydrogen bond and the mode of intermolecular interactions between HX and two BrCl. The absolute values of cooperative contributions in trimers are in the range of0.86%~15.31%. The AIM analysis demonstrates that these intermolecule interactions are electrostatic interaction in essential.
     3. The theoretical computations have been carried out for the monomers, dimers (HX-H2Y) and trimers (H2Y…HX…H2Y, H2Y…HX…H2Y) between HX and H2Y with aug-cc-pVTZ basis. According to the calculation results, the stability of the compound has direct contact with the electronegativity of X and Y atom. The stronger the electronegativity of negatively charged atom is, the greater the stability of the corresponding compound is. The positive cooperativities are found between the different hydrogen bonds in all three-body complexes. Cooperative contributions are in the range of14.59-21.26%, indicating that the cooperativites in these complexes are highly significant. The conclusions of AIM analysis demonstrate most of the intermolecular interactions are typical closed-shell interactions. However, the H…O bonds in H2O…HF…H2O, H2O…HBr…H2O and HF…H2O…HF are stabilized by local charge concentration which is between the closed-shell and opened-shell interactions.
     4. Theoretical investigation about the influences of F/Cl substitution on the geometries, energies and cooperativites of intermolecular interactions between HX and H2Y are investigated with aug-cc-pVTZ basis set. The conclusions demonstrate that the structural parameters and stabilities of all complexes are directly related to the electronegativity of X atom. The favorable cooperativities are observed in diffeent intermolecular interaction of three-body complexes. The cooperative contributions of HX…FY…HX and HX…HClY…HX exist in the ranges of18.19~23.45%and11.27~22.03%respectively, while the cooperative contributions of HFY…FX…HFY and HCl1Y…HX…HClY are in the ranges of12.87~20.17%and12.09~21.33%. AIM analyses indicate that these compounds are closed-shell interactions.
     5. Aiming at the environmental issues on which world focus in recent years-the climate warming, the chlorine anion (Cl-), guanidine salt cations ((NH2)3C+) and CO2gas molecule system is selected on which the quantum chemical calculation and molecular dynamics simulation has been carried, providing theoretical foundations for designing and developing new guanidinium ionic liquids with high absorption performance. The structure characteristics of guanidinium ionic liquids and the mechanism of guanidinium ionic liquids capturing CO2molecular are discussed. The strong interactions are found between guanidine cation and chlorine anion, whose interaction energy is about100kcal/mol. The function model is given priority to Middle model. The CO2gases dissolve in the gaps of guanidinium ionic liquid, which doesn't obviously influence the structure of the ion pairs. There are35figures,37tables and252references.
引文
[1]Hobza P, Havlas Z. Blue-shifting hydrogen bonds[J]. Chemical Reviews 2000,100(11): 4253-4264
    [2]Chein J C W. Polyacetylene:Chemistry, Physics and Material Science[M]. Academic, New York:Chap.11,1984.
    [3]Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Chemical Reviews,1988,88(6):899-926.
    [4]Dougherty D A, Stauffer D A. Acetylcholine binding by a synthetic receptor: implications for biological recognition[J]. Science 1990,250(4987):1558-1560.
    [5]Lehn J M. Supramolecular chemistry [J]. Science,1993,260(5115):1762-1763.
    [6]Tomasi J, Persico M. Molecular Interactions in Solution:An Overview of Methods Based on Continuous Distributions of the Solvent [J]. Chemical Reviews,1994,94(7): 2027-2094.
    [7]Kirby A. Advances in physical organic chemistry[M]. Academic, New York,1994.
    [8]Philip D, Stoddart J F. Self-assembly in natural and unnatural systems[J]. Angew Chem Int Ed Engl,1996,35(11):1154-1196.
    [9]Kim K S, Lee S, Kim G. Molecular cluster bowl to enclose a single electron[J]. J Am Chem Soc,1997,119:9329-9330.
    [10]Muller-Dethlefs K, Hobza P. Noncovalent interactions:a challenge for experiment and theory[J]. Chem Rev,2000,100(1):143-168.
    [11]Cerny J, Hobza P. Non-covalent interactions in biomacromolecules [J]. Phys Chem Chem Phys,2007,9(39):5291-5303.
    [12]Geffrey G A, Hydrogen bonding in biological structures [M]. Springe-verlay berlin hoidel berg:New York,1995.
    [13]Desiraju G R, Steiner T. The Weak Hydrogen Bond in Structural Chemistry and Biology [M]. Oxford University Press:New York,1999.
    [14]Pimentel G C, McClellan AL. The Hydrogen Bond [M]. W. H. Freeman and Company: San Francisco and London,1960.
    [15]Jeffrey G A, Saenger W. Hydrogen bonding in biological structures [M]. Springer-Verlag:Berlin,1991.
    [16]Pauling L C. The Nature of the Chemical Bond and the Structure of Molecules and Crystals [M].2nd ed.; Cornell University Press:New York,1944.
    [17]Arunan E, Desiraju G R, Klein R A, et al. Defining the hydrogen bond:An account (IUPAC Technical Report) [J]. Pure Appl Chem,2011,183(8):1619-1636.
    [18]Su Z, Wen Q, Xu Y J. Conformational stability of the propylene oxide-water adduct: direct spectroscopic detection of O-H...O hydrogen bonded conformers[J]. J Am Chem Soc,2006,128:6755-6760.
    [19]van der Veken B J, Herrebout W A, Szostak R, et al. The nature of improper, blue-shifting hydrogen bonding verified experimentally [J]. J Am Chem Soc,2001, 123:12290-12293.
    [20]Cooke SA, Cotti G, Evans CM, et al. Rotational spectrum and properties of a gas-phase complex of molecular fluorine and hydrogen cyanide[J]. Chem Phys Lett, 1996,262:308-314.
    [21]Maes G, Smets J. Hydrogen bond cooperativity:A quantitative study using matrix-isolation FT-IR spectroscopy[J]. J Phys Chem,1993,97:1818-1825.
    [22]Gomez-Zavaglia A, Fausto R. Self-Aggregation in pyrrole:matrix isolation, solid state infrared spectroscopy, and DFT study[J]. J Phys Chem A,2004,108:6953-6967.
    [23]Bosma W B, Appell M, Willett JL, et al. Stepwise hydration of cellobiose by DFT methods:1. Conformational and structural changes brought about by the addition of one to four water molecules [J]. J Mol Struct (Theochem),2006,776:1-19.
    [24]Doering W E, Parra R D, Zeng X C. Cooperativity effects in cyclic trifluoromethanol trimer:an ab initio study [J]. J Mol Struct (Theochem),1998,431:119-126.
    [25]Gonzalez L, Mo O, Yanez M. High-level ab initio versus DFT calculations on (H2O2)2 and H2O2-H2O2 complexes as prototypes of multiple hydrogen bond systems [J]. J Comput Chem,1997,18:1124-1135.
    [26]Gonzalez L, M6 O, Yanez M. High level ab initio and density functional theory studies on methanol-water dimers and cyclic methanol (water) trimer [J]. J Chem Phys,1998, 109:139.
    [27]Mo O, Yanez M, Del Bene J E, et al. Cooperativity and Proton Transfer in Hydrogen-Bonded Triads [J]. Chem Phys Chem,2005,6:1411-1418.
    [28]Gonzalez L, Mo O, Yanez M, et al. Cooperative effects in water trimers. The performance of density functional approaches [J]. J Mol Struct (Theochem),1996, 371:1-10.
    [29]Mo O, Yanez M, Elguero J. Cooperative (nonpairwise) effects in water trimers:An ab initio molecular orbital study [J]. J Chem Phys,1992,97:6628.
    [30]Li Q Z, An X L, Gong B A, et al. Cooperativity between OH…O and CH…O Hydrogen Bonds Involving Dimethyl Sulfoxide-H2O-H2O Complex [J]. J Phys Chem A,2007, 111:10166-10169.
    [31]Li Q Z, An X L, Gong B A, et al. Spectroscopic and theoretical evidence for the cooperativity between red-shift hydrogen bond and blue-shift hydrogen bond in DMSO aqueous solutions [J]. Spectrochimica Acta A,2008,69:211-215.
    [32]Li Q Z, An X L, Luan F, et al. Cooperativity between two types of hydrogen bond in H3C-HCN-HCN and H3C-HNC-HNC complexes [J]. J Chem Phys,2008, 128:154102.
    [33]Li Q Z, Hu T, An X L, et al. Cooperativity between the Dihydrogen Bond and the N...HC Hydrogen Bond in LiH-(HCN)n Complexes [J]. Chem Phys Chem,2008, 9:1942-1946.
    [34]Kapes T, Scheiner S. Cooperativity of conventional and unconventional hydrogen bonds involving imidazole [J]. Int J Quantum Chem,2006,106:843-851.
    [35]Balci M, Boylu O, Uras-Aytemiza N. Nonadditive effects in the mixed trimers of HC1 and methanethiol [J]. J Chem Phys,2007,126:244308.
    [36]Vorobyov I, Yappert M C, DuPre D B. Energetic and Topological Analyses of Cooperative σ H-and π H-Bonding Interactions [J]. J Phys Chem A,2002, 106:10691-10699.
    [37]Nsangou M, Dhaouadi Z, Jandane N, et al. DFT study of proton transfer, cooperativity, and tautomerization in 2-pyridineselenol and 2-pyridinethiol ammonia and water clusters [J]. J Mol Struct (Theochem),2007,819:142-152.
    [38]Viswanathan R, Asensio A, Dannenberg J J. Cooperative Hydrogen-Bonding in Models of Antiparallel β-Sheets [J]. J Phys Chem A 2004,108:9205-9212.
    [39]Jeffrey G A, Saenger W. Hydrogen Bonding in Biological Structures [M]. Springer: Berlin, Germany,1991.
    [40]Jeffrey G A. An Introduction to Hydrogen Bonding [M]. Oxford University Press: New York,1997.
    [41]Ghanty T K, Staroverov V N, Koren P R, et al. Is the Hydrogen Bond in Water Dimer and Ice Covalent? [J]. J Am Chem Soc,2000,122:1210-1214.
    [42]Joshi R, Ghanty T K, Naumov S, et al. Ionized State of Hydroperoxy Radical-Water Hydrogen-Bonded Complex:(HO2-H2O)+[J]. J Phys Chem A,2007, 111:13590-13594.
    [43]Andrews L, Arlinghaus R T, Hunt R D. FTIR Spectra of Dialkyl Sulfide and Alkanethiol Complexes with Hydrogen-Fluoride in Solid Argon [J]. Inorg Chem, 1986,25:3205-3209.
    [44]Graindourze M, Maes G. Matrix-Isolation Vibrational-Spectra of Alkyl Chalcogenides Complexed with HCl-Matrix-Isolation IR Spectra as a Guide for the Analysis of Solution IR-Spectra of Alkyl Sulfide and Alkyl Selenide Complexes with HC1 [J]. J Mol Spectrosc,1985,114:97-104.
    [45]Maes G, Graindourze M. Conformational Isomerism of Ethyl Chalcogenides in Inert Matrices-Influence on the vs-Band Structure of H-Bonded Complexes with HC1 [J]. J Mol Spectrosc,1985,114:280-288.
    [46]Barnes A J, Wright M P. Molecular-Complexes of Hydrogen Halides with Ethers and Sulfides Studied by Matrix-Isolation Vibrational Spectroscopy [J]. J Mol Struct (Theochem) 1986,28:21-30.
    [47]Jeng M L H, Ault B S. Infrared Matrix-Isolation Studies of Hydrogen-Bonds Involving C-H Bonds-Alkenes with Selected Bases [J]. J Phys Chem,1990, 94:4851-4855.
    [48]Jeng M L H, Ault B S. Infrared Matrix-Isolation Study of Hydrogen-Bonds Involving C-H Bonds-Alkynes with Bases Containing 2nd-Row and 3rd-Row Donor Atoms [J]. J Phys Chem,1990,94:1323-1327.
    [49]Li S, Li Y S. FT-IR Spectra of Matrix-Isolated Complexes between Some Alkanethiols and Sulfur-Dioxide [J]. J Mol Struct,1991,248:79-88.
    [50]Li S, Li Y S. Ftir Spectra of Matrix-Isolated Complexes between Sulfur-Compounds [J]. Spectrochim Acta A.,1991,47:201-209.
    [51]Wierzejewska M. Infrared Matrix Isolation Studies of Complexes formed between Dimethylsulfide, Dimethyldisulfide and Nitrous acid [J]. J Mol Struct,2000, 520:199-214.
    [52]Wierzejewska M. FTIR matrix isolation studies of complexes of Dimethylsulfide, Dimethyldisulfide and Hydrogen Sulfide with Nitric Acid [J]. Vib Spectrosc 2000, 23:253-262.
    [53]Arunan E, Emilsson T, Gutowsky H S, et al. Rotational Spectrum of the Weakly Bonded C6H6-H2S Dimer and Comparisons to C6H6-H2O Dimer [J]. J Chem Phys, 2002,117:9766-9776.
    [54]Biswal H S, Shirhatti P R, Wategaonkar S. O-H…O versus O-H…S Hydrogen Bonding II:Alcohols and Thiols as Hydrogen Bond Acceptors [J]. J Phys Chem A, 2010,114:6944-6955.
    [55]Biswal H S, Shirhatti P R, Wategaonkar S. O-H…O versus O-H…S Hydrogen Bonding I:Experimental and Computational Studies on the p-Cresol…H2O and p-Cresol…H2S Complexes [J]. J Phys Chem A,2009,113:5633-5643.
    [56]Biswal H S, Wategaonkar S. OH…X (X=O, S) Hydrogen Bonding in Tetrahydro-furane and Tetrahydrothiophene [J]. J Chem Phys,2011,135:134306.
    [57]Biswal H S, Wategaonkar S. O-H…O versus O-H…S Hydrogen Bonding III:IR-UV Double Resonance Study of Hydrogen Bonded Complexes of p-Cresol with Diethyl Ether and Its Sulfur Analog [J]. J Phys Chem A,2010,114:5947-5957.
    [58]Biswal H S, Wategaonkar S. Nature of the N-H…S Hydrogen Bond [J]. J Phys Chem A,2009,113:12763-12773.
    [59]Fourmigue M. Halogen bonding:recent advances [J]. Curr Opin Solid State Mater Sci, 2009,13:36-45.
    [60]Legon A C. The halogen bond:an inerim perspective [J]. Phys. Chem. Phys. Chem. 2010,12:7746-7747
    [61]Metrangolo P, Neukirch H, Pilati T et al. Halogen bonding based recognition processes: a world parallel to hydrogen bonding [J]. Acc Chem Res,2005,38:386-395.
    [62]Aakeroy C B, Fasulo M, Schultheiss N, et al. Structural competition between hydrogen bonds and halogen bonds [J]. J Am Chem Soc,2007,129:13772-13773.
    [63]Fox D B, Liantonio R, Metrangolo P, et al. Perfluorocarbon-hydrocarbons self-assembly:halogen bonding mediated intermolecular recognition [J]. J Fluorine Chem,2004,125:271-281.
    [64]Metrangolo P, Resnati G, Pilati T, et al. Engineering functional materials by halogen bonding [J]. Polym Sci, Part A:Polym Chem,2007,45:1-15.
    [65]Cincic D, Friscic T and Jones W. A stepwise mechanism for the mechanochemical synthesis of halogen-bonded cocrystal architectures [J]. J. Am Chem Soc,2008, 130:7524-7525.
    [66]Metrangolo P, Meyer F, Pilati T, et al. Halogen bonding in supramolecular chemistry [J]. Angew Chem Int Ed,2008,47:6114-6127.
    [67]Derossi S, Brammer L, Hunter C A et al. Halogen bonded supramolecular assemblies of [Ru(bipy)(CN)4]2-anions and N-methyl-halopyridinium cations in the solid state and in solution [J]. Inorg Chem,2009,48:1666-1677.
    [68]Shirman T, Arad T, van der Boom ME. Halogen bonding:a supramolecular entry for assembling nanoparticles [J]. Angew Chem Int Ed,2010,49:926-929.
    [69]Auffinger P, Hays FA, Westhof E et al. Halogen bonds in biological molecules [J]. Proc Natl Acad Sci U S A,2004,101:16789-16794.
    [70]Voth A R, Hays F A and Ho P S. Directing macromolecular conformation by halogen bonds [J]. Proc Natl Acad Sci U S A,2007,104:6188-6193.
    [71]Politzer P, Lane P, Concha M C, et al. An overview of halogen bonding [J]. J Mol Model,2007,13:305-311.
    [72]Clark T, Hennemann M, Murray J S, et al. Halogen bonding:the σ-hole [J]. J Mol Model 2007,13:291-296.
    [73]Corradi E, Meille S V, Messina M T, et al. Halogen bonding versus hydrogen bonding in driving self-assembly processes [J]. Angew Chem,2000,112:1852-1856; Angew Chem, Int Ed,2000,39:1782-1786.
    [74]Bouchmella K, Boury B, Dutremez S G, et al. Molecular assemblies from imidazolyl-containing haloalkenes and haloalkynes:competition between halogen and hydrogen bonding [J]. Chem-Eur J,2007,13:6130-6138.
    [75]Alkorta I, Blanco F, Solimannejad M et al. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases [J]. J Phys Chem A,2008,112:10856-10863.
    [76]Li Q Z, Xu X S, Liu T, et al. Competition between hydrogen bond and halogen bond in complexes of formaldehyde with hypohalous acids [J]. Phys Chem Chem Phys,2010, 12:6837-6843.
    [77]朱维良,蒋华良,陈凯先,等.分子间相互作用的量子化学研究方法[J].化学进展,1999,11(03):247-253.
    [78]Foresman J B, Frisch M J, Exploring Chemistry with Electronic Structure Methods [M]. Gaussian, Pittsburgh,1993.
    [79]廖沐真,吴国是,刘洪霖.量子化学从头计算方法[M].北京,清华大学出版社,1984.
    [80]Popkie H, Kistenmacher H, Clementi E. Study of the structure of molecular complexes. IV. The Hartree-Fock potential for the water dimmer and its application to the liquid state [J]. J Chem Phys,1973,59:1325-1336.
    [81]Tennyson J, Van D A A. Quantum dynamics of the van der waals molecule(N2)2:an ab initio treatment[J]. J Chem Phys,1982,77:5664-5681.
    [82]Tennyson J, van der Avoird A. Quantum dynamics of the van der Waals molecule (N2)2:An ab initio treatment [J]. J Chem Phys,1982,77:5664-5681.
    [83]Georges, W. Computational approaches in supramolecular chemistry [M]. Kluwer Academic Publishers, Dordrecht, The Nertherlands,1994.
    [84]Moller C, Plesset M S. Note on an approximation treatment for many-electron systems [J]. Phys Rev,1934,46:618-622.
    [85]Pople J A, Binkley J S, Seeger R. Theoretical models incorporating electron correlation[J]. Int J Quant Chem Symp,1976,10:1-19.
    [86]Head-Gordon M, Pople J A, Frisch M J. A direct MP2 gradient method [J]. Chem Phys Lett,1988,153(6):503-506.
    [87]Raghavachari K, Pople J A, Replogle E S, et al. Fifth-order M(?)ller-Plesset perturbation theory:comparison of existing correlation methods and implementation of new methods correct to fifth-order [J]. J Phys Chem,1990,94:5579-5586.
    [88]Tao F M, Klempere W. The van der waals potential-energy surface and the structure of ArCIF and ArCl2 [J]. J Chem Phys,1992,97:440-451.
    [89]Tao F M, Klemperer W. Ab initio search for the equilibrium structure of the ammonia dimmer [J]. J Chem Phys,1993,99:5976-5982.
    [90]Scheiner S. Ab initio studies of hydrogen bonds:the water dimmer paradigm[J]. Annu Rev Phys Chem,1994,45:23-56.
    [91]Chakravorty S J. The water dimmer:Correlation energy calculations[J]. J Phys Chem, 1993,97:6373-6383.
    [92]Xanthess S S, Dunning T H. The structure of the water trimer from ab initio calculations [J]. J Chem Phys,1993,98:8037-8040.
    [93]Tai C J, Jordan K D. Theoretical study of the (H2O)6 cluster [J]. Chem Phys Lett,1993, 213:181-188.
    [94]Chalasinski G, Szczesnia K M M. Origins of structure and energies of van der waals clusters from ab initio calculations[J]. Chem Rev,1994,94:1723-1765.
    [95]Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys Rev B,1964, 136:864-871.
    [96]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys Rev A,1965,140:1133-1138.
    [97]Parr R G, Yang W. Density-functional theory of atoms and molecules [M]. New York: Oxford University Press,1989.
    [98]Labanowski J K, Andzelm J. Density functional methods in chemistry [M]. New York: Springer Verlag,1991.
    [99]Ziegler T. Approximate density functional theory as a practical tool in molecular energetics and dynamics[J]. Chem Rev,1991,91:651-667.
    [100]Johnson B G, Gill P M W, Pople J A. The Performance of a family of density-functional methods [J]. J Chem Phys,1993,98:5612-5626.
    [101]Siegbahn P E M. New methods in computational quantum mechanics[J]. Adv Chem Phys,1996,93:333-387.
    [102]Hohenberg P, Kohn W. Inhomogeneous Electron Gas [J]. Phys Rev,1964, 136:13864-13871.
    [103]Grimme S. Accurate Description of van der Waals Complexes by Density Functional Theory Including Empirical Corrections [J]. J Comput Chem 2004,25:1463-1473.
    [104]Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kineties, noncovalent interactions, excited states, and transition elements:two new functionals and systematic testing of four M06-class functional and 12 other functionals [J]. Theor Chem Ace,2008,120:215-241.
    [105]Thomas L H. The calculation of atomic fields [J]. Proc Camb Phil Soc,1927,23:542.
    [106]Fermi E. Un metodo statistico per la determinazione di alcune priorietA dell atome [J]. Rend Accad Naz Lincei,1927,6:602.
    [107]Parr R G, Yang W. Density-functional Theory of Atoms and Molecules [M]. oxford University Press, New York,1989.
    [108]田国才,陶建民,李国宝.分子间相互作用的理论化学研究进展[J].云南师范大学学报(自然科学版),2002,22:30-33
    [109]Hehre W J, Radom L, Schleyer P V R, et al. Ab initio molecular orbital theory[M]. New York:John Wiley Sons Inc,1986.
    [110]唐放庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982.
    [111]林梦海.量子化学简明教程,化学工业出版社,2005.
    [112]Rappe A K, Bernstein E R. Ab initio calculation of nonbonded interactions:Are we there yet? [J]. J Phys Chem A,2000,104:6117.
    [113]Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors [J]. Mol Phys,1970,19:553.
    [114]Bader R F W. Atoms in Molecules:A Quantum Theory, Oxford University Press, New York,1990.
    [115]Bader R F W, Keith T A, Gough K M, et al. Properties of atoms in molecules: additivity and transferability of group polarizabilities [J]. Mol Phys,1992, 75:1167-1189
    [116]Koch U, Popelier P L A. Characterization of CHO hydrogen bonds on the basis of the charge density [J]. J Phys Chem,1995,99:9747-9754.
    [117]Popelier P L A. Characterization of a Dihydrogen Bond on the Basis of the Electron Density [J]. J Phys Chem A,1998,102:1873-1878.
    [118]Lipkowski P, Grabowski S J, Robinson T L, et al. Properties of the C-H…H Dihydrogen Bond:An ab Initio and Topological Analysis [J]. J Phys Chem A,2004, 108:10865-10872.
    [119]Lu Y X, Zou J W, Wang Y H, et al. Ab Initio Investigation of the Complexes between Bromobenzene and Several Electron Donors:Some Insights into the Magnitude and Nature of Halogen Bonding Interactions [J]. J Phys Chem A,2007, 111:10781-10788.
    [120]Cremer D, Kraka E. Chemical bonds without bonding electron density - does the difference electron-density analysis suffice for a description of the chemical bond? [J]. Angew Chem Int Ed Engl,1984,23:627-628.
    [121]Jenkins S, Morrison I. The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities [J]. Chem Phys Lett,2000,317:97-102.
    [122]Espinosa E, Alkorta I, Elguero J E. From weak to strong interactions:a comprehensive analysis of the topological and energetic properties of the electron density distribution involving systems [J]. J Chem Phys,2002,117:5529.
    [123]王伟周.几种典型体系分子间相互作用的理论研究[D].四川:四川大学,2004.
    [124]何文娣.五种生物碱基的氢键二聚体等体系的理论研究[D].四川:四川大学,2006
    [125]Lowdin P O. Quantum theory of many-particle systems. Ⅲ. Extension of the Hartree-Fock scheme to include degenerate systems and correlation effects [J]. Phys Rev,1955,97:1509-1520.
    [126]Weinhold F and Landis C R. Natural bond orbitals and extensions of localized bonding concepts [J]. Chem Educ Res Pract Eur,2001,2:91-104.
    [127]Foster J P, weinhold F. Natural hybrid orbitals [J]. J Am Chem Soc,1980,102: 7211-7218.
    [128]Reed A E, Weinhold F. Natural bond orbital analysis of near-Hartree-Fock water dimer [J]. J Chem Phys,1983,78:4066-4073.
    [129]Reed A E, Weinstock R B, Weinhold F. Natural population analysis [J]. J Chem Phys, 1985,83:735-746.
    [130]Reed A E, Weinhold F. Natural localized molecular orbitals [J]. J Chem Phys,1985, 83:1736-1740.
    [131]Carpenter J E, Weinhold F. Analysis of the geometry of the hydroxymethyl radical by the "different hybrids for different spins" natural bond orbital procedure [J]. J Mol Struct (THEOCHEM),1988,169:41-62.
    [132]Reed A E, Weinhold F. On the role of d orbitals in sulfur hexafluoride [J]. J Am Chem Soc,1986,108:3586-3593.
    [133]Luthi H P, Ammeter J H. Almof J, et al. How well does the Hartree-Fock model predict equilibrium geometries of transition metal complexes? Large-scale LCAO-SCF studies on ferrocene and decamethylferrocene [J]. J Chem Phys,1982, 77:2002.
    [134]Collins J B, Streitwieser Jr A. Integrated spatial electron populations in molecules: Application to simple molecules [J]. J Comput Chem,1980,1:81-87.
    [135]Guo H, Gresh N, Roques B P, et al. Many-Body Effects in Systems of Peptide Hydrogen-Bonded Networks and Their Contributions to Ligand Binding:? A Comparison of the Performances of DFT and Polarizable Molecular Mechanics [J]. J Phys Chem B,2000,104:9746-9754.
    [136]Zhao Y L, Wu Y D. A Theoretical Study of β-Sheet Models:Is the Formation of Hydrogen-Bond Networks Cooperative? [J]. J Am Chem Soc,2002,124(8): 1570-1571.
    [137]Wieczorek R, Dannenberg J J. H-Bonding Cooperativity and Energetics of a-Helix Formation of Five 17-Amino Acid Peptides [J]. J Am Chem Soc,2003,125: 8124-8129.
    [138]Li Q Z, Jiang L X, Wang X L, et al. Ab initio study of the structure, cooperativity, and vibrational properties in the mixed hydrogen-bonded trimers of hydrogen isocyanide and water [J]. International Journal of Quantum Chemistry,2011,111:1072-1080.
    [139]Li Q Z, Liu Z B, Cheng J B, et al. Theoretical study on the cooperativity of hydrogen bonds in (HNC)2-HF complexes [J]. Journal of Molecular Structure:THEOCHEM, 2009,896:112-115.
    [140]Li Q Z, Wang X L, Cheng J B, et al. Theoretical study on the interlay of hydrogen bonds in the trimers involving HCN and water [J]. International Journal of Quantum Chemistry,2009,109:1396-1402.
    [141]Li Q Z, Zhu H J, An X L, et al. Nonadditivity of methyl group in single-electron hydrogen bond of methyl radical-water complex [J]. International Journal of Quantum Chemistry,2009,109:605-611.
    [142]Li Q Z, An X L, Luan F, et al. The effect of methyl group on the cooperativity between three types of hydrogen bond:O-H…O, C-H…O, and O-H…π [J]. International Journal of Quantum Chemistry,2008,108:558-566.
    [143]Wang W Z, Hobza P. Origin of the X-Hal (Hal=Cl, Br) Bond-Length Change in the Halogen-Bonded Complexes [J]. J Phys Chem A,2008,112:4114-4119.
    [144]Murray J S, Concha M C, Lane P, et al. Blue shifts vs red shifts in σ-hole bonding [J]. J Mol Model,2008,14:699-704.
    [145]Metrangolo P, Resnati G. Chemistry. Halogen versus hydrogen [J]. Science,2008, 321:918-919.
    [146]Quinonero D, Frontera A, Garau C, et al. Interplay Between Cation-π, Anion-π and π-π Interactions [J]. Chem Phys Chem,2006,7(12):2487-2491.
    [147]Frontera A, Quinonero D, Costa A, et al. MP2 study of cooperative effects between cation-π, anion-π and π-π interactions [J]. New J Chem,2007,31:556-560.
    [148]Estarellas C, Frontera A, Quinonero D, et al. Interplay between cation-π and hydrogen bonding interactions:Are non-additivity effects additive? [J]. Chem Phys Lett,2009,479:316-320.
    [149]Escudero D, Frontera A, Quinonero D, et al. Interplay between cation-π and hydrogen bonding interactions [J]. Chem Phys Lett,2008,456:257-261.
    [150]Escudero D, Frontera A, Quinonero D, et al. Interplay between anion-π and hydrogen bonding interactions [J]. J Comput Chem,2009,30:75-82.
    [151]Alkorta I, Blanco F, Elguero J. Dihydrogen Bond Cooperativity in Aza-borane Derivatives [J]. J Phys Chem A,2010,114:8457-8462.
    [152]Alkorta I, Blanco F, Elguero J. Simultaneous Interaction of Tetrafluoroethene with Anions and Hydrogen-Bond Donors:A Cooperativity Study [J]. J Chem Theory Comput,2009,5:1186-1194.
    [153]Li Q Z, Li R, Liu X F, et al. Concerted Interaction between Pnicogen and Halogen Bonds in XCl-FH2P-NH3 (X=F, OH, CN, NC, and FCC) [J]. ChemPhysChem. 2012,13:1205-1212.
    [154]An X L, Li R, Li Q Z, et al. Substitution, cooperative, and solvent effects on π pnicogen bonds in the FH2P and FH2AS complexes [J]. J Mol Model,2012, 18:4325-4332.
    [155]Li Q Z, Hu T, An X L, et al. Theoretical Study of the Interplay between Lithium Bond and Hydrogen Bond in Complexes Involved with HLi and HCN [J]. ChemPhysChem, 2009,10:3310-3315.
    [156]Li Q Z, Li R, Liu Z B, et al. Interplay between halogen bond and lithium bond in MCN-LiCN-XCCH (M= H, Li, and Na; X= Cl, Br, and I) complex:The enhancement of halogen bond by a lithium bond [J]. J Comput Chem,2011,32: 3296-3303.
    [157]Li Q Z, Li R, Liu X F, et al. Ab initio study of synergetic effects of two strong interactions of cation-π interaction and lithium bond in M+…phenyl lithium…N (M=Li, Na, K; N=H2O and NH3) complex [J]. Molecular Physics,2012,110: 457-465.
    [158]Li Q Z, Li H, Li R, et al. Influence of Hybridization and Cooperativity on the Properties of Au-Bonding Interaction:Comparison with Hydrogen Bonds [J]. J Phys Chem A,2011,115:2853-2858.
    [159]Li R, Li Q Z, Cheng J B, et al. The Prominent Enhancing Effect of the Cation-π Interaction on the Halogen-Hydride Halogen Bond in M1...C6H5X...HM2 [J]. ChemPhysChem,2011,12:2289-2295.
    [160]Liu Y H, Zhou P W. Facilitated photolysis of 9-fluorenol in alcohols by excited-state hydrogen bond reorganization [J]. Journal of Theoretical and Computational Chemistry,2012,11:493.
    [161]Xiong Z C, Gao J, Zhang D J, et al. Hydrogen bond network of 1-Alky 1-3-Methylimidazolium ionic liquids:A network theory analysis [J]. Journal of Theoretical and Computational Chemistry,2012,11:587.
    [162]Zhang X Y, Zhang W P, Meng F K. Time-dependent density functional theory study on dynamics of hydrogen bonding in excited states of trans-acetanilide in methanol solvent [J]. Journal of Theoretical and Computational Chemistry,2012,11:421.
    [163]Raissi H, Yoosefian M, Mollania F, et al. The effect of substitution on structure, intramolecular hydrogen bonding strength, electron density and resonance in 3-amino 2-iminomethyl acryl aldehyde [J]. Journal of Theoretical and Computational Chemistry,2012,11:925.
    [164]Ellabaan M M H, Ong Y S, Nguyen Q C, et al. Evolutionary discovery of transition states in water clusters [J]. Journal of Theoretical and Computational Chemistry,2012, 11:965.
    [165]Alkorta I, Elguero J. Non-conventional hydrogen bonds [J]. Chem Soc Rev,1998,27: 163-170.
    [166]Wormer P E S, van der Avoird A. Intermolecular Potentials, Internal Motions, and Spectra of van der Waals and Hydrogen-Bonded Complexes [J]. Chem Rev,2000, 100:4109-4144.
    [167]Grabowski S, Leszczynski J. Hydrogen bonding:new insights [M]. Springer, Berlin, 2006.
    [168]Valerio G, Raos G, Meille S V, et al. Halogen Bonding in Fluoroalkylhalides:D A Quantum Chemical Study of Increasing Fluorine Substitution [J]. J Phys Chem A, 2000,104:1617-1620.
    [169]Romaniello P, Lelj F. Halogen Bond in (CH3)nX (X=N, P, n=3; X=S, n-2) and (CH3)nXO (X=N, P, n=3; X=S, n=2) Adducts with CF3I. Structural and Energy Analysis Including Relativistic Zero-Order Regular Approximation Approach in a Density Functional Theory Framework [J]. J Phys Chem A,2002,106:9114-9119.
    [170]Wang W Z, Wong N B, Zheng W X, et al. Theoretical Study on the Blueshifting Halogen Bond [J]. J Phys Chem A,2004,108:1799-1805.
    [171]Metrangolo P, Neukirch H, Pilati T, et al. Halogen Bonding Based Recognition Processes:A World Parallel to Hydrogen Bonding [J]. Acc Chem Res,2005,38: 386-395.
    [172]Metrangolo P, Resnati G. Halogen Bonding:Fundamentals and Applications [M]. Springer-Verlag, Berlin,2008.
    [173]Metrangolo P, Carcenac Y, Lahtinen M, et al. Nonporous Organic Solids Capable of Dynamically Resolving Mixtures of Diiodoperfluoroalkanes [J]. Science,2009,323: 1461-1464.
    [174]Wang W Z, Zhang Y, Ji B M, et al. On the Difference of the Properties between the Blue-Shifting Halogen Bond and the Blue-Shifting Hydrogen Bond [J]. Chem Commun,2010,114:7257-7260.
    [175]Bent H A. Structural chemistry of donor-acceptor interactions [J]. Chem Rev,1968, 68:587-648.
    [176]Hassel O. Structural Aspects of Interatomic Charge -Transfer Bonding [J]. Science, 1970,170:497-502.
    [177]Saha B K, Nangia A, Jaskolski M. Crystal engineering with hydrogen bonds and halogen bonds Cryst Eng Comm,2005,7:355-358.
    [178]Politzer P, Murray J S, Lane P. σ-Hole bonding and hydrogen bonding:competitive interactions [J]. Int J Quantum Chem,2007,107:3046-3052.
    [179]Lankau T, Wu Y C, Zou J W, et al. The cooperativity between hydrogen and halogen bonds [J]. J Theor Comp Chem,2008,7:13-35.
    [180]Politzer P, Murray J S, Concha M C. Halogen bonding and the design of new materials:organic bromides, chlorides and perhaps even fluorides as donors [J]. J Mol Model,2007,13:643-650.
    [181]Cabot R, Hunter C A, Non-covalent interactions between iodo-perfluorocarbons and hydrogen bond acceptors [J]. Chem Commun,2009,2005-2007.
    [182]Voth A R, Khuu P, Oishi K, et al. Halogen bonds as orthogonal molecular interactions to hydrogen bonds [J]. Nat Chem,2009,1:74-79.
    [183]Li Q Z, Lin Q Q, Li W Z, et al. Cooperativity between the Halogen Bond and the Hydrogen Bond in H3N...XY...HF Complexes (X, Y=F, Cl, Br) [J]. ChemPhysChem, 2008,9:2265-2269.
    [184]Jing B, Li Q Z, Li R, et al. Competition and cooperativity between hydrogen bond and halogen bond in HNC…(HOBr)n and (HNC)n…HOBr (n=l and 2) systems [J]. Computational and Theoretical Chemistry,2011,963:417-421.
    [185]Li Q Z, Ma S M, Liu X F, et al. Cooperative and substitution effects in enhancing strengths of halogen bonds in FCl…CNX complexes [J]. J Chem Phys,2012,137: 084314.
    [186]Solimannejad M, Malekani M, Alkorta I. Cooperativity between the hydrogen bonding and halogen bonding in F3CX…NCH (CNH)…CH (CNH) complexes (X= Cl, Br) [J]. Molecular Physics,2011,109:1641-1648.
    [187]Zhao Q, Feng D C, Hao J C. The cooperativity between hydrogen and halogen bond in the XY…HNC…XY (X, Y= F, Cl, Br) complexes [J]. J Mol Model,2011,17: 2817-2823.
    [188]McDowell S A C, Joseph J A. Cooperative effects of noncovalent bonds to the Br atom of halogen-bonded H3N...BrZ and HCN...BrZ (Z=F, Br) complexes [J]. J Chem Phys,2012,137:074310.
    [189]Zhou P P, Qiu W Y, Liu S B, et al. Halogen as halogen-bonding donor and hydrogen-bonding acceptor simultaneously in ring-shaped H3N-X(Y)-HF (X=Cl, Br and Y= F, Cl, Br) Complexes [J]. Phys Chem Chem Phys,2011,13:7408-7418.
    [190]Solimannejad M, Scheiner S, Complexes Pairing Hypohalous Acids with Nitrosyl Hydride. Blue Shift of a NH Bond That Is Uninvolved in a H-Bond [J]. J Phys Chem A,2008,112:4120-4124.
    [191]Alkorta I, Blanco F, Solimannejad M, et al. Competition of Hydrogen Bonds and Halogen Bonds in Complexes of Hypohalous Acids with Nitrogenated Bases [J]. J Phys Chem A,2008,112:10856-10863.
    [192]Turi L, Dannenberg J J. Correcting for basis set superposition error in aggregates containing more than two molecules:ambiguities in the calculation of the counterpoise correction [J]. J Phys Chem,1993,97:2488-2490.
    [193]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Rev. C.02. Gaussian Inc., Pittsburgh PA,2003.
    [194]Biegler-konig F W, Bader R F W, Tang T H. Calculation of the average properties of atoms in molecules. II [J]. J Comput Chem,1982,3:317-328.
    [195]Hu S Z, Zhou Z H, Cai Q R.70 years of crystallographic van der waals radii [J]. Acta Phys-Chim Sin,2010,26:1795-1800.
    [196]Wang F F, Hou J H, Li Z R, et al. Unusual halogen-bonded complex FBrδ+...δ+BrF and hydrogen-bonded complex FBrδ+...δ+HF formed by interactions between two positively charged atoms of different polar molecules [J]. J Chem Phys,2007,126, 144301.
    [197]Li Q Z, Li R, Zhou Z J, et al. S…X halogen bonds and H…X hydrogen bonds in H2CS-XY (XY=FF, ClF, ClC1, BrF, BrCl, and BrBr) complexes:cooperativity and solvent effect [J]. J Chem Phys,2012,136:014302.
    [198]Nakanishi W, Nakamoto T, Hayashi S, et al. Atoms-in-Molecules Analysis of Extended Hypervalent Five-Center, Six-Electron (5c-6e) C2Z2O Interactions at the 1,8,9-Positions of Anthraquinone and 9-Methoxyanthracene Systems [J]. Chem-Eur J,2007,13:255-268.
    [199]Aakeroy C B, Desper J, Helfrich B A, et al. Combining halogen bonds and hydrogen bonds in the modular assembly of heteromeric infinite 1-D chains [J]. Chem Commun,2007,4236-4238.
    [200]Alkorta I, Blanco F, Deya P M, et al. Cooperativity in multiple unusual weak bonds [J]. Theor Chem Acc,2010,126:1-14.
    [201]Dunning Jr T H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen [J]. J Chem Phys,1989,90:1007-1023.
    [202]Lide D R. CRC Handbook of Chemistry and Physics,73rd ed., CRC Press, Boca Raton, FL,1992.
    [203]Li Q Z, Jiang L X, Wang X L, et al. Ab initio study of the structure, cooperativity, and vibrational properties in the mixed hydrogen-bonded trimers of hydrogen isocyanide and water [J]. Int J of Quant Chem 2011,111:1072-1080.
    [204]Szczesniak M M, Scheiner S. Contribution of dispersion to the properties of H2S-HF and H2S-HCl [J]. J Chem Phys,1985,83:1778.
    [205]Sun G H, Yang X D, Zhu J, et al. The study of interaction potentials and differential cross sections for collisions between He atoms and hydrogen halide molecules [J]. Chin Phys,2002,11:910.
    [206]Ban Q F, Li R, Li Q Z, et al. symmetry-adapted perturbation theory interaction energy decomposition for H2CY-XF (Y=O, S, Se; X=H, Li, Cl) complex [J]. Comput Theor Chem,2012,991:88-92.
    [207]Riley K E, Murray J S, Fanfrlik J, et al. Halogen bond tunability I:the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine [J]. J Mol Model,2011,17:3309-3318.
    [208]Ebrahimi A, Khorassani S M H, Delarami H, et al. The effect of CH3, F and NO2 substituents on the individual hydrogen bond energies in the adenine-thymine and guanine-cytosine base pairs [J]. J Comput Aided Mol Des,2010,24:409-416.
    [209]Wheeler S E, Houk K N. Substituent Effects in Cation/π Interactions and Electrostatic Potentials above the Centers of Substituted Benzenes Are Due Primarily to Through-Space Effects of the Substituents [J]. J Am Chem Soc,2009, 131:3126-3127.
    [210]Bauza A, Quinonero D, Frontera A, et al. Substituent effects in halogen bonding complexes between aromatic donors and acceptors:a comprehensive ab initio study [J]. Phys Chem Chem Phys,2011,13:20371-20379.
    [211]Foxa D B, Liantonioa R, Metrangoloa P, et al. Perfluorocarbon-hydrocarbons self-assembly:halogen bonding mediated intermolecular recognition [J]. J Fluorine Chem, 2004,125:271-281.
    [212 Politzer P, Murray J S, Lane P, et al. Electrostatically driven complexes of SiF4 with amines [J]. International Journal of Quantum Chemistry,2009,109:3773-3780.
    [213]Cheng J B, Li R, Li Q Z, et al. Prominent Effect of Alkali Metals in Halogen-Bonded Complex of MCCBr-NCM'(M and M'=H, Li, Na, F, NH2, and CH3) [J]. J Phys Chem A,2010,114:10320-10325.
    [214]Li Q Z, Jing B, Liu Z B, et al. Comparative Study of XO...ClF andXS...ClF (X=H, CH3, and F) Halogen-Bonded Complexes [J]. International Journal of Quantum Chemistry,2011,111:3856-3863.
    [215]Solimannejad M, Malekani M, Alkorta I. Cooperative and Diminutive Unusual Weak Bonding In F3CX...HMgH...Y and F3CX...Y...HMgH(X=Cl,Br; Y=HCN, HNC) Trimers (X=Cl, Br; Y= HCN, and HNC) [J]. J Phys Chem A,2010,114: 12106-12111.
    [216]Del Bene J E, Alkorta I, Elguero J. Do Traditional, Chlorine-shared, and Ion-pair Halogen Bonds Exist? An ab Initio Investigation of FCl:CNX Complexes [J]. J Phys Chem A,2010,114:12958-12962.
    [217]Alkorta I, Sanchez-Sanz G, Elguero J. FCl:PCX Complexes:Old and New Types of Halogen Bonds [J]. J Phys Chem A,2012,116:2300-2308.
    [218]Metrangolo P, Neukirsch H, Pilati T, et al. Halogen Bonding Based Recognition Processes:A World Parallel to Hydrogen Bonding [J]. Acc Chem Res,2005,38: 386-395.
    [219]Bader R F W. Comment on the Comparative Use of the Electron Density and Its Laplacian [J]. Chem Eur J,2006,12:7769-7772.
    [220]Tang T H, Deretey E, Knak Jensen D J, et al. Hydrogen bonds:relation between lengths and electron densities at bond critical points [J]. Eur Phys J D,2006, 37:217-222.
    [221]Grabowski S J, Krygowski T M, Leszczynski J. An Analysis of Substituent Effects in Ethane Derivatives:The Quantum Theory of Atoms in Molecules Approach [J]. J Phys Chem A,2009,113:1105-1110.
    [222]Wang Y, Li H, Han S. A Theoretical Investigation of the Interactions between Water Molecules and Ionic Liquids[J]. Journal of Physical Chemistry B,2006,110(48): 24646-24651.
    [223]Yizhak M. The guanidinium ion[J]. The Journal of Chemical Thermodynamics 2012,48(0):70-74.
    [224]Xu Y, Yao J, Wang C, et al. Density, Viscosity, and Refractive Index Properties for the Binary Mixtures of n-Butylammonium Acetate Ionic Liquid+Alkanols at Several Temperatures[J]. Journal of Chemical & Engineering Data,2012,57(2):298-308.
    [225]Suvitha A, Murugakoothan P. Synthesis, growth, structural, spectroscopic and optical studies of a semiorganic NLO crystal:Zinc guanidinium phosphate[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2012,86(0): 266-270.
    [226]孙慧.若干离子液体结构与催化机理的理论研究[D].山东:山东大学,2010.
    [227]陈洪波,于静.二氧化碳市场及发展前景[J].化工技术经济,2003,21(5):11-14.
    [228]庞艳玲.功能化离子液体及其在食品工业中的应用[J].化工进展,2008,27(9);1363-1368.
    [229]姚淑梅,王晓刚,张辉,等.离子液体固定化利用C02研究进展[J].化工进展,2008,27(5):640-647.
    [230]Wang C, Cui G, Luo X, et al. Highly Efficient and Reversible SO2 Capture by Tunable Azole-Based Ionic Liquids through Multiple-Site Chemical Absorption[J]. Journal of the American Chemical Society,2011,133(31):11916-11919.
    [231]Ghobadi A F, Taghikhani V, Elliott J R. Investigation on the Solubility of SO2 and CO2 in Imidazolium-Based Ionic Liquids Using NPT Monte Carlo Simulation [J]. The Journal of Physical Chemistry B,2011,115(46):13599-13607.
    [232]李帅,李兆龙,胡玉琳,等.精氨酸酶I的手性选择性[J].高等学校化学学报,2011(6):1339-1342.
    [233]Rust H L, Zurita-Lopez C I, Clarke S, et al. Mechanistic Studies on Transcriptional Coactivator Protein Arginine Methyltransferase [J]. Biochemistry,2011,50(16): 3332-3345.
    [234]Choudhury A K, Golovine S Y, Dedkova L M, et al. Synthesis of Proteins Containing Modified Arginine Residues[J]. Biochemistry,2007,46(13):4066-4076.
    [235]Wang Y, Pan H H, Li H R, et al. Force Field of the TMGL Ionic Liquid and the Solubility of SO2 and CO2 in the TMGL from Molecular Dynamics Simulation[J]. J. Phys. Chem. B,2007,111:10461-10467.
    [236]Zhang X C, Liu X M, Yao X Q, et al. Microscopic Structure, Interaction, and Properties of a Guanidinium-Based Ionic Liquid and Its Mixture with CO2 [J]. Ind. Eng. Chem. Res.2011,50:8323-8332.
    [237]Zhang S J, Yuan X L, Chen Y H, et al. Solubilities of CO2 in 1-Butyl-3- methylimidazolium Hexafluorophosphate and 1,1,3,3-Tetramethyl-guanidium Lactate at Elevated Pressures[J]. J. Chem.& Eng. Data,2005,50:1582-1585.
    [238]Berendsen H J C, van der Spoel D, van Drunen R. GROMACS:A message-passing parallel molecular dynamics implementation[J]. Computer Physics Communications, 1995,91(1-3):43-56.
    [239]Lindahl E, Hess B, Van Der Spoel D. GROMACS 3.0:a package for molecular simulation and trajectory analysis[J]. Journal of Molecular Modeling,2001,7(8): 306-317.
    [240]Shi W; Maginn E J. Atomistic Simulation of the Absorption of Carbon Dioxide and Water in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium Bis(trifiuoromethyl-sulfonyl)-imide ([hmim][Tf2N][J]. The Journal of Physical Chemistry B,2008,112(7): 2045-2055.
    [241]Canongia Lopes J N, Deschamps J, Padua A A H. Modeling Ionic Liquids Using a Systematic All-Atom Force Field[J]. The Journal of Physical Chemistry B, 2004,108(30):11250-11250.
    [242]Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics,1984,81(8): 3684-3690.
    [243]Hess B, Bekker H, Berendsen H J C, et al. LINCS:A linear constraint solver for molecular simulations [J]. Journal of Computational Chemistry,1997,18(12): 1463-1472.
    [244]Levitt M, Hirshberg M, Sharon R, et al. Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution[J]. Computer Physics Communications,1995,91 (13):215-231.
    [245]Essmann U, Perera L, Berkowitz M L, et al. A smooth particle mesh Ewald method[J]. The Journal of Chemical Physics,1995,103(19):8577-8593.
    [246]Darden T, York D, Pedersen L. Particle mesh Ewald:An N-log(N) method for Ewald sums in large systems[J]. The Journal of Chemical Physics,1993,98(12): 10089-10092.
    [247]Hoover W G. Canonical dynamics:Equilibrium phase-space distributions[J]. Physical Review A,1985,31(3):1695-1697.
    [248]Parrinello M, Rahman A. Polymorphic transitions in single crystals:A new molecular dynamics method[J]. Journal of Applied Physics,1981,52(12):7182-7190.
    [249]Winter M, Webelements Periodic Table (http://www.webelements.com/), England: The University of Sheffield and WebElements Ltd.
    [250]Lindahl E, Edholm O. Molecular dynamics simulation of NMR relaxation rates and slow dynamics in lipid bilayers[J]. The Journal of Chemical Physics,2001,115(10): 4938-4950.
    [25l]Huang X, Margulis C J, Li Y, et al. Why Is the Partial Molar Volume of CO2 So Small When Dissolved in a Room Temperature Ionic Liquid? Structure and Dynamics of CO2 Dissolved in [Bmim+] [PF6-][J]. Journal of the American Chemical Society, 2005,127(50):17842-17851.
    [252]Cadena C, Anthony J L, Shah J K, et al. Why Is CO2 So Soluble in Imidazolium-Based Ionic Liquids?[J]. Journal of the American Chemical Society, 2004,126(16):5300-5308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700