异丙苯氧化系统的动态模拟以及氧化反应器的稳态模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的工作之一是对异丙苯氧化系统进行了动态模拟。异丙苯氧化系统主要包括氧化塔、提浓塔、分解反应器、中和反应器以及其它一些简单的单元设备,本论文分别对氧化、提浓、分解、中和过程进行了研究,建立起了系统模型并选择了适宜的解法。最终形成的动态模拟系统应用于实际生产装置的实时模拟,取得了良好的结果。
    模型建立之后,对模拟结果进行了讨论,模型的计算结果与装置的设计数据比较接近,基本反映了异丙苯氧化系统整个过程的规律,可用于对异丙苯氧化工艺过程进行模拟。从整体工艺的模拟情况看,整个模拟过程能够很好地反映出装置实际运行情况,具有较好的动态特性,不仅可以用来进行仿真培训,还可用于技术人员对工艺过程的技术改造以及控制系统的研究。此研究成果已成功地应用于中国石化北京燕化石油化工股份有限公司化学品事业部苯酚丙酮车间生产的职工操作培训。
    本论文的工作之二是对四塔串联鼓泡塔氧化反应器进行了稳态模拟。在这一部分工作中研究了带有退化支化反应的异丙苯氧化反应机理,得到了氧化反应和主要副反应的反应动力学方程,并通过假设简化,建立了异丙苯氧化反应器的数学模型,编制了模拟程序。采用四塔串联氧化反应器为研究对象,进行了稳态模拟,将模拟结果与生产数据进行了比较,并对动力学方程进行了修正。修正结果能正确地描述反应器内的操作状况。反应器数学模型可用于优化操作,指导反应器的设计和放大。
    利用已得到的异丙苯氧化反应的动力学模型和反应器的数学模型,分别对不同
    
    
    循环量、不同循环位置等操作形式和非等体积氧化塔以及槽式反应器两种不同的反应器型式进行了模拟,并分析了不同操作方式和反应器型式的优劣,得到了以下结论:
    (1)将上部循环位置移至塔顶、三个循环回路中的循环量一样有利于提高产物CHP的收率。
    (2)在进料中加入适量的CHP可以加快反应的进行,提高反应产物的收率。
    (3)对非等体积四塔串联鼓泡塔氧化反应器,体积大的反应器放置在前面的排列顺序有利于得到高的出口CHP浓度。因此对多塔串联的反应器,应进行体积优化计算。
    (4)通过等体积的槽式反应器与鼓泡塔反应器的模拟结果比较可知,采用槽式反应器可得到更高的产物CHP浓度。可见,在相同产量的情况下,采用槽式反应器可适当降低反应温度,减小副反应的发生,这对异丙苯氧化反应器型式的选择具有指导意义。
    以上结论可用来指导反应器的改造和优化。
The first topic of this paper is the dynamic simulation of cumene oxidation system. The cumene oxidation system mainly consists of oxidation reactors, concentration towers, decomposition reactors, neutralization reactor and some other simple units. The process of oxidation, concentration, decomposition and neutralization separately investigated. After that, system model are established and the suitable solution way is selected. Dynamic simulation system finally formed is used to the real time simulation and practical process, which obtain the good effect.
    After establishment of the above-mentioned model, we have discussed the results of stable simulation. The results of the model have approached the practical data, reflected the basic principles of cumene oxidation system and can be applied to the simulation of the technical process. As a whole process of technology simulation, The whole simulation process is good to reflect the running conditions of equipment. The simulation results can be used not only for the simulating training but also for the technology upgrade and control system study. This research has successfully applied in the systemic analysis on the chemical division of Yanshan Petrochemical Corporation.
    The second topic is the steady-state simulation of four-serial bubble reactors of the oxidation process. The reaction mechanism of cumene
    
    
    oxidation is analyzed, the kinetic equations of cumene oxidation and its primary assistant reactions are educed. In the condition of reasonable suppose, a mathematic model of reactors for cumene oxidation is set up at the same time. On this condition, the steady-state simulation of four-serial bubble reactors of the oxidation process is made, and the kinetic model is corrected. The corrected result can describe accurately the operation status in the reactors. The mathematic model of the reactors can be used to optimize the operation and guidance the design and magnifying of the reactors.
    At the basis of the corrected kinetic model of cumene oxidation and the mathematic model of bubble reactors which have been set up, the simulation of the reactors for oxidation of cumene by gas-liquid two phase reaction with different operating conditions of different recycling quantity and different place recycling and with different reactors of non-equal volume four-serial bubble reactors and ideal stirred tank reactor is made. The advantages and the disadvantages of different operating conditions and different reactors have been analyzed. The following results have been gained:
    (1) Moving the uppermost recycling place to the top of the oxidation towers and averaging the three recycling quantity are in favor of improve the yield of CHP.
    (2) The appropriate quantity of CHP in the raw material is able to quicken the reaction velocity and improve the yield of CHP.
    (3) Aiming at the four-serial non-equal volume bubble reactors, that the bigger reactors are front is better than that the lesser reactors are font, which can improve the product of CHP. Therefore, the account of volume optimization should be made for several-series reactors.
    (4) The result comparison of simulation for ideal stirred tank reactor and bubble reactor with equal volume shows that the former is better than
    
    
    the latter for the yield of CHP. As a result, on condition that the product is same, the ideal stirred tank reactor can reduce the temperature of reaction and cut down the happen of the assistant reactions. The result is significant for the choice of different kinds of reactors.
    The above conclusion can be used to guide the reconstruction and optimization of the reactors of cumeme oxidation.
引文
[1]
    彭秉璞.化工系统分析与模拟[M].北京,化学工业出版社,1990
    
    [2]
    张瑞生,王弘轼,宋宏宇等.过程系统工程[M].北京,科学出版社,2001
    
    [3]
    杨冀宏,麻德贤.过程系统工程导论[M].北京,烃加工出版社,1989
    
    [4]
    房德中,朱建业.化工过程分析与模拟[M].北京,化学工业出版社,1991
    
    [5]
    杨友麒.实用化工系统工程[M].北京,化学工业出版社,1989
    
    [6]
    高松武一郎等编,张能力,沈静珠译.化工过程系统工程[M].北京,化学工业出版社,1981
    
    [7]
    朱开宏.化工流程模拟[M]. 北京,中国石化出版社,1993
    
    [8]
    郑春瑞.系统工程学概述[M].北京,科学技术出版社,1984
    
    [9]
    胡克林,罗金生.化工过程模拟技术进展与趋势[J].新疆工学院学报,1997,18(4):254-261
    
    [10]
    魏寿彭.石油化工生产过程最优化[M].北京,中国石化出版社,1994
    
    [11]
    George Stephanopoulos,Matthew Dyer and Orhan Karsligil.Multi-Scale Modeling,Estimation and Control of Processing Systems[J].Computers Chem. Engng,1997,21(s1):797-803
    
    [12]
    W. Marquardt. Trends in Computer -Aided Process modeling[J]. Computers Chem. Engng, 1996,20(6/7):591-609
    
    [13]
    杨友麒.过程流程模拟.计算机与应用化学[J],1995,12(1):1-6
    
    [14]
    钱宇.过程系统工程研究进展[J].化工进展,1997,(1):20-25
    
    [15]
    杨友麒.化工过程模拟[J].化工进展,1996,(3):1-8
    
    [16]
    周章玉,杨少华,成思危,华贲.发展过程工业CIPS的策略探讨[J].现代化工1999年增刊,99过程系统工程年会论文集,北京,1999,202-208
    
    
    
    
    [17]
    杨友麒.从CIMS走向供应链的动态优化[J].化工进展1999年增刊,第七届计算机化工应用学术年会论文集,北京,1999,10,24-34
    
    [18]
    成思危.综合集成整体优化—论我国过程系统工程的发展方向[J].现代化工1999年增刊,99过程系统工程年会论文集,北京,1999,1-3
    
    [19]
    冯权莉.通用化工流程模拟技术进展与应用[J].云南工业大学学报,1996,12(1):52-57
    
    [20]
    雷行之,陆恩锡,吴伯良.乙烯分离装置通用流程模拟系统(Ⅰ)[J].石油化工,1980,9(1):1-5
    
    [21]
    Motard R. L.,Shachem M.,Rosen E. M.,Steady State Chemical Process Simulation[J].AICHE,1975,21(3):417-436
    
    [22]
    经文魁.化工过程稳态模拟技术的现状和发展趋势[J].现代化工,1995,15(2):17-20
    
    [23]
    陆恩锡,张慧娟,尹清华.化工过程模拟及相关高新技术(Ⅰ)化工过程稳态模拟[J].现代化工,1999,14(4):63-64
    
    [24]
    雷行之,陆恩锡,吴伯良.乙烯分离装置通用流程模拟系统(Ⅱ)[J].石油化工,1980,(2):83-90,124
    
    [25]
    陆恩锡,张慧娟.化工过程模拟及相关高新技术(Ⅱ)化工过程动态模拟[J].化工进展,2000,19(1):76-78
    
    [26]
    Pertsinids A,Papadopoulos E,Kiparissides C.Computer aided design of polymer reactors[J].Computer Chem. Eng,1996,20(sl):449-454
    
    [27]
    李政,张巍.循环流化床锅炉动态仿真实验平台的研制[J].清华大学学报,1999,39(3):100-102
    
    [28]
    倪维斗,李政.220t/h循环流化床锅炉性能的仿真预测[J].动力工程,1996,16(1):22-25,32
    
    [29]
    陈晓春,饶国瑛,李成岳.合成甲醇基元过程瞬间态动力学的模型化[J].化工学报,1999,50(2):145-158
    
    
    
    
    [30]
    曾明,龚时雨,李希平.序贯模块法用于化工仿真培训[J].化工进展,1997,16(4):39-42
    
    [31]
    黄仲涛,顾雪辉,王乐夫.21世纪化工发展趋势[J].化工进展,2001,20(4):1-4
    
    [32]
    曾明.化工仿真培训系统算法预算法库的设计[M].长沙,国防科技大学,1996
    
    [33]
    陆恩锡,张国铭.ARS技术剖析[J].化学工程,1993,21(1):34-40
    
    [34]
    雷行之,陆恩锡.含氢烃类低温下气-液相平衡常数得计算[J].化学工程,1979,(1):30-35
    
    [35]
    李玉刚,周传光,郑世清,韩方煜.联立模块法在流程模拟中的应用[J].青岛化工学院学报,1997,18(1):17-20
    
    [36]
    许正宇.我国化工仿真培训器的发展历史与展望[J].化工进展,2001,(10):9-12
    
    [37]
    杨永杰.化工仿真培训系统技术进展[J].天津化工,2001,(6)15-16
    
    [38]
    张小军.化工仿真培训系统[J].化学工业与工程技术,1999,20(1):40-42
    
    [39]
    徐绍红,杨秀琴.化工仿真培训系统的建立与应用[J].平原大学学报,2001,18(2):1
    
    [40]
    项曙光,李成立,李玉刚,尚继良,刘军,韩方煜.乙烯厂裂解装置集成仿真培训系统.中国化工学会第九届全国化学工程科技报告会(四),青岛,1998.8,1060-1065
    
    [41]
    时钧,汪甲鼎,余国琮,陈敏恒.化学工程手册(第二版)[M].北京,化学工业出版社,1996
    
    [42]
    郑丹星.化工热力学[M].北京化工大学内部教材,1997
    
    [43]
    朱自强.化工热力学[M].北京,化学工业出版社,1982
    
    [44]
    Pho T. K. and Lapidus L.. Topics in Computer Aided Design: PartⅠ.An
    
    
    Optimum Tearing Algorithm for Recycle System[J]. AICHE, 1973,19(6): 1170-1181
    
    [45]
    Upadhye R. S. and Grens E. A.. Selection of Decomposition for Chemical Process Simulation”[J].AICHE,1975,21(1):136-142
    
    [46]
    Hattori K,etal..J Chem. Eng. Jap.,1970,3(1):72-78
    
    [47]
    北京大学化学系石油化学教研组[J].化工技术,1973,2:40
    
    [48]
    于学敏,李自明,王玉泉,巩玉珍,张秀岚.异丙苯液相氧化反应动力学研究[J].化工学报,1984,15(2):130-138
    
    [49]
    曹钢.异丙苯法生产苯酚丙酮[M].北京:化学工业出版社,1983
    
    [50]
    区灿棋,吕德伟.石油化工氧化反应工程与工艺[M].北京:中国石化出版社,1992
    
    [51]
    Ying Fang Hsu,Cheu Pyeng Cheng.Mechanistic investigation of the auto- oxidation of cumene catalyzed by transition metal salts supported on polymer[J].Journal of Molecular Catalysis A:Chemical,1998,136:1~11
    
    [52]
    Ying Fang Hsu,Mei Huei Yen,Cheu Pyeng Cheng.Autooxidation of cumene catalyzed by transition metal compounds on polymeric supports[J].Journal of Molecular Catalysis A:Chemical,1996,105:137~144
    
    [53]
    Ying Fang Hsu,Cheu Pyeng Cheng.Polymer supported catalyst for the effective autooxidation of cumene to cumene hydroperoxide[J].Journal of Molecular Catalysis A:Chemical,1997,120:109~116
    
    [54]
    M. V. Tsodikov, V. Ya. Kugel, E. V. Slivinskii, G. N. Bondarenko, Yu. V. Maksimov, M. A. Alvarez, M. C. Hidalgo, J. A. Navio.Selectivity and mechanism of cumene liquid-phase mixed iron-aluminum oxides prepared by alkoxy method[J].Applied Catalysis A:General.2000,193:237-242
    
    [55]
    V. Ya. Kugel, M. V. Tsodikov, G. N. Bondarenko, Ye. V. Slivinskii, D. I. Kochubey, M. C. Hidalgo, J. A. Navio.Study of the initiation route of cumene
    
    
    liquid-Phase oxidation over iron-Aluminum oxide catalysts obtained by the alkoxy method[J].Langmuir,1999,15:463-468
    
    [56]
    R. Wittenberg,M. A. Pradera,J. A. Navio.Cumene photo-oxidation over powder TiO2 catalyst[J].Langmuir,1997,13:2373-2379
    
    [57]
    Yu-Feng He,Rong-Min Wang,Yu-Yang Liu,Yue Chang,Yun-Pu Wang,Chun-gu Xia,Ji-Shuan Suo.Study on oxidation mechanism of cumene based on GC-MS analysis[J].Journal of Molecular Catalysis A:Chemical,2000,159:109-113
    
    [58]
    Yu. V. Maksimov,I. P. Suzdalev,M. V. Tsodikov,V. Ya. Kugel, O. V. Bukhtenko,E. V. Slivinsky,J. A. Navio.Study of cumene oxidation over zirconia-,titania- and alumina- based complex oxides obtained by sol-gel methods:activity- structure relationships[J].Journal of Molecular Catalysis A:Chemical,1996,105:167-173
    
    [59]
    J. H. R. Casemier,B. E. Nieuwenhuys,W. M. H. Sachtler.The oxidation of cumene an the decomposition on silver,copper,and platinum[J].Journal of Catalysis,1973,29:367-373
    
    [60]
    The oxidation of cumene on silver and silver-gold alloys[J].Jounal of Catalysis,1971,20:408-423
    
    [61]
    H.H.谢苗诺夫.论化学动力学和反应能力的几个问题(第一版)[M].北京:科学出版社,1962
    
    [62]
    张国英,罗国华,杨春育.气升式环流反应器用于异丙苯氧化反应的模型与模拟[J].北京石油化工学院学报,2002,10(3):35-38
    
    [63]
    张成芳.气液反应和反应器[M].化学工业出版社,1985
    
    [64]
    《化学工程手册》编辑委员会.化学工程手册(6) [M].北京:化学工业出版社,1989
    

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700