基于参数估计的车辆稳定性控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆的稳定性控制(Vehicle Stability Control,简称VSC)主要是为了防止车辆在弯道行驶或制动时出现失稳的现象。近年来,尽管在VSC的研究上取得了长足的进步,但是它的进一步推广和应用却受到了两方面的制约:一方面,随着控制系统的不断复杂化,控制精度越来越高,所需要的传感器数量也越来越多,这使得设计成本不断加大;另一方面,控制器很难实时获得轮-地交互作用信息,这使得控制策略不能根据不同的路面附着条件和轮-地接触状况进行实时调整。
     基于模型的估计方法能充分利用现有的传感器信息,估计出一些不易测量的车辆状态或轮-地交互作用参数,是减少设计和生产成本的有效方法。但是这种估计算法的复杂程度和计算精度在很大程度上取决于所使用的车辆模型。所以,本文首先建立了一个完整的整车动力学模型,包括:轮胎模型、转向系统模型、制动系统模型和单轮模型。其中,为了更好地描述轮-地交互作用,本文基于车轮侧偏特性建立了三种不同精度的轮胎模型,以期为不同的估计算法提供更合理的选择。
     其次,使用线性轮胎模型,利用Kalman滤波算法和制动防抱死系统(Anti-lock Braking System,简称ABS)轮速传感器的信号,估计出了四个车辆状态参数。另外,使用Fiala轮胎模型,推导出了转向系总回正力矩的峰值和轮-地摩擦系数间的线性关系,进而利用递推最小二乘估计算法和电动助力转向(Electric Power Steering,简称EPS)系统自带的传感器信号设计了MAMM (Maximum Aligning Moment Method)算法,估计出了轮-地摩擦系数。仿真和试验结果证明,Kalman滤波算法和MAMM算法在小转角、纯侧滑情况下具有很好的估计精度,但在侧偏角或纵向力大幅增大时,估计精度显著下降。
     为了改进线性算法的估计精度,使用精度更高的"Brush轮胎模型”,针对不同的传感器配置,设计了两种非线性观测器。其中,高精度方案的非线性观测器,在加入横摆角速度和侧向加速度传感器后,具有很高的估计精度,可为高端车的控制器提供必要的参数支持;而低成本方案的非线性观测器仅需要ABS和EPS提供的传感器信号就可以估计出车辆状态和轮-地摩擦系数,且相对于线性算法,估计精度大大提高。另外,结合MAMM算法和非线性观测器各自的优点,设计了一种联合估计算法,有效改进了对轮-地摩擦系数的估计精度。
     最后,借鉴飞行器包络线控制和现有的车辆稳定性控制策略,设计了一种改进的车辆侧向稳定性控制策略(Enhanced Stability Control System,简称ESCS)。ESCS利用非线性观测器的估计结果,实时计算轮-地间的接触状况,使控制器能针对当前的轮-地交互作用情况选择到最佳的切入时机。同时,ESCS充分利用了现有的车载传感器和ABS的滑移率控制逻辑,有效扩展了ABS在车辆侧向稳定性方面的功能,并基于ESCS的控制逻辑,设计了一种最佳滑移率搜索算法,进一步提高了控制策略的控制效果。
VSC (Vehicle Stability Control) is designed to prevent vehicle lossof stability during traction or braking at corners. Recently, significantprogress has been made in VSC, however, its further extension andapplication are limited by two major respects: on one hand, more sensorsare required to improve the precision of the controller, which increasesthe cost of the control system; on the other hand, it’s hard for thecontroller to obtain the information of tire-road interaction, as a result ofwhich the control strategy can’t be adjusted when the road conditionvaries suddenly.
     Model based estimation is a solution for the design of a low costcontroller. Utilizing the existing measurement signals, this method is ableto obtain vehicle states and parameters which are currently hard tomeasure. However, the complexity and the accuracy of the estimationalgorithm depend on those of the vehicle model. Therefore, a full vehiclemodel is established which includes: the tire model, the steering systemmodel, the braking system model and the single wheel model. Moreover,in order to provide the estimation algorithm with a wide choice, threedifferent kinds of tire models are proposed based on the analysis of tirelateral characteristics.
     Based on the linear tire model, the Kalman filter algorithm is used toestimate four important vehicle states with the help of the measurementsignals of ABS (Anti-lock Braking System) wheel-speed sensors.Meanwhile, the linear relationship between the maximum total aligningmoment of the steering system and tire-road friction coefficient is derivedbased on Fiala tire model. A MAMM (Maximum Aligning MomentMethod) is developed for the estimation of tire-road friction coefficientutilizing only the measurement signals of EPS (Electric Power Steering).Furthermore, a RLS (Recursive Least Squares) algorithm is designed to identify the parameter online. Simulation and experimental results showthat the accuracies of Kalman filter algorithm and MAMM aresatisfactory under the condition of small steering angle and pure side slip;however the results become unsatisfactory with the increase of tire sideslip angles or tire longitudinal forces.
     Based on the Brush tire model, two nonlinear observers are designedto improve the accuracy of the linear algorithm under two differentarrangements of sensors. The high accuracy nonlinear observer performsvery well but requires two additional sensors to measure yaw rate andlateral acceleration of the vehicle. Therefore, it can be an option for thecontroller equipped in luxury cars. On the contrary, the low cost nonlinearobserver, which performs much better than linear algorithm, only requiresthe measurement signals of ABS and EPS. Furthermore, a combinedmethod (CM) is proposed to improve the accuracy of tire-road frictioncoefficient by taking advantages of both the algorithm of MAMM andnonlinear observer.
     Finally, an Enhanced Stability Control System (ESCS) is introduced,which borrows the algorithm of envelope control system applied inaircrafts and the current stability control system in production vehicles.With the help of the estimated parameters of the nonlinear observer, thecontroller of ESCS is able to obtain the real-time information of tire-roadinteraction and intervene at a better time. As a low cost and effectivesolution to extend the function of ABS to lateral dynamics in stability, theESCS control strategy is proposed based on only the existing EPS andABS sensors and the similar slip control algorithm in ABS. Meanwhile,utilizing the estimated tire-road friction coefficient and theone-dimensional search-gradient method, the so called “optimal slipratio” is calculated to make the performance of ESCS even better.
引文
[1]D. Ascone, T. Lindsey and C. Varghese. Traffic safety facts research note [R]. Washington, D.C.:NHSTA's National Center for Statistics and Analysis,2009.
    [2]M. Peden, K. McGee, and E. Krug. Injury:A leading cause of the global burden of disease [R]. Geneva:World Health Organization,2002.
    [3]Margie Peden, et al. World report on road traffic injury prevention [R]. Geneva:World Health Organization,2004.
    [4]Bosch. Bosch Automotive Handbook(中文第3版)[M].北京:北京理工大学出版社,2009.
    [5]E. K. Liebemann, K.Meder, J. Schuh, and G Nenninger. Safety and performance enhancement:The bosch electronic stability control (ESP)[C]. In Proceedings of International Technical Conference on the Enhanced Safety of Vehicles (ESV), Washington, D.C.,2005:1-9.
    [6]Bosch. Electronic stability control coalition fact sheet [EB/OL]:ESC Coalition and DEKRA Automotive Research,2003.
    [7]M. Aga and A. Okada. Analysis of vehicle stability control (VSC)'s effectiveness from accident data [C]. In Proceedings of the18th International Technical Conference on the Enhanced Safety of Vehicles, UK,2003.
    [8]Anton T. van Zanten. Evolution of electronic control systems for improving the vehicle dynamic behavior [C]. In Proceedings of the International Symposium on Advanced Vehicle Control (AVEC), Hiroshima,2002:7-15.
    [9]Li Li, Fei-Yue Wang, and Qunzhi Zhou. Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control [J]. IEEE Transactions on Intelligent Transportation Systems,2006,7(1),1-19.
    [10]W.J. Manning and D.A. Crolla. A review of yaw rate and sideslip controllers for passenger vehicles [J]. Transactions of the Institute of Measurement and Control,2007,29(2):117-135.
    [11]Best M, Gordon T. Real-time state estimation of vehicle handling dynamics using an adaptive kalman filter[C].5th International Symposium on Advanced Vehicle Control, Japan,1998:183-188.
    [12]Cherouat H, Braci M, Diop S. Vehicle velocity, side slip angles and yaw rate estimation[C]. IEEE International Symposium on Industrial Electronics, Dubrovnik,2005:349-355.
    [13]Ammon D. Model building and system development in the vehicle dynamics[M]. Stuttgart: B.GRuebner Verlag,1997.
    [14]Chee W Yaw rate estimation using two1-Axis accelerometers[C]. American Control Conference, SanDiego,2005:423-429.
    [15]Paul, Venhovensi, Naab K. Vehicle dynamics estimation using kalman filters[J]. Vehicle System Dynamics,1999,32(2):171-184.
    [16]Unger I, Isermann R. Fault tolerant sensors for vehicle dynamics control[C]. American Control Conference, Minneapolis,2006:3948-3953.
    [17]Paul, Venhovensi, Naab K. Vehicle dynamics estimation using kalman filters[C].5th International Symposium on Advanced Vehicle Control, Japan,1998:195-200.
    [18]Gustafsson F, Ahlqvist S, Forssell U. Sensor fusion for accurate computation of yaw rate and absolute velocity[C]. SAE2001World Congress, Detroit,2001:1-8.
    [19]Hac A, Simpson M. Estimation of vehicle side slip angle and yaw rate[C]. SAE2000World Congress, Detroit,2000.
    [20]Hideaki Sasaki, Takatoshi Nishimaki. A side-slip Angle Estimation Using Neural Network for a Wheeled Vehicle[C]. SAE2000World Congress, Detroit,2000.
    [21]施树明,Henk Lupker, Paul Bremmer, Joost Zuurbier.基于模糊逻辑的车辆侧偏角估计方法[J].汽车工程,2005,27(4):426-470.
    [22]A.T.van Zanten. Bosch ESP Systems:5Years of Experience[C]. SAE2000Automotive Dynamics&Stability Conference, Detroit,2000:1-9.
    [23]U. Kiencke and A. Daib. Observation of lateral vehicle dynamics [J]. Control Engineering Practice,1997,5(8):1145-1150.
    [24]Joanny Stephant, Ali Charara and Dominique Meizel. Virtual sensor:Application to vehicle sideslip angle and transversal forces [J]. IEEE Transactions on Industrial Electronics,2004,51(2):278-289.
    [25]P. J. T. Venhovens and K. Naab. Vehicle dynamics estimation using Kalman filters [J]. Vehicle System Dyanmics,1999,32(2):171-184.
    [26]Ilkay Yavrucuk, Suraj Unnikrishnan, and J.V.R. Prasad. Envelope protection in autonomous unmanned aerial vehicles[C]. In American Helicopter Society59th Annual Forum, Phoenix, Arizona,2003:1-11.
    [27]David M. Bevly, J. Christian Gerdes, Christopher Wilson, and Gengsheng Zhang. The use of GPS based velocity measurements for improved vehicle state estimation [C]. In Proceedings of the2000American Control Conference (ACC), Chicago, Illinois,2000:2538-2542.
    [28]David M. Bevly, Robert Sheridan, and J. Christian Gerdes. Integrating INS sensors with GPS velocity measurements for continuous estimation of vehicle sideslip and tire cornering stiffness [C]. In Proceedings of the2001American Control Conference (ACC), Arlington, Virginia,2001:25-30.
    [29]Jihan Ryu, Eric Rossetter, and J. Christian Gerdes. Vehicle sideslip and roll parameter estimation using GPS [C]. In Proceedings of the International Symposium on Advanced Vehicle Control (AVEC), Hiroshima,2002:373-380.
    [30]Liu Zhaodu. Mathematical models of tire-longitudinal road adhesion and their use in the study of road vehicle dynamics [J]. Journal of Beijing Institute of Technology.1997,5(2):193-204.
    [31]Todorovic J., Janicijevic N. and Danon G An investigation of dynamic versus steady-state tire adhesion during vehicle braking [C].17th FISITA Congress, Budapest, Hungary,1978.
    [32]吴献金.路面纵向附着系数参量仪[J].汽车技术,1985,(11):22-26.
    [33]吴献金.关于路面纵向附着系数的讨论[J].汽车技术,1987,(1):31-35.
    [34]柯玮,朱俊.道路附着系数的试验研究[J].内蒙古公路与运输,1996,(3):31-33.
    [35]Sasada, Yukihisa et al. Development of the road surface condition sensing system [C]. Proceedings of IEEE Conference on Intelligent Transportation Systems, Tokoy,1999:14-19.
    [36]Vagner E.A, Efremov A.V. Radiooptical technique for diagnostics of road surface condition [C]. Proceedings of SPIE-The International Society for Optical Engineering. Moscow,1999:463-468.
    [37]Mika Morii, Hiroyuki Yasuo et al. Road surface condition detector using high peak power fiber laser [J]. Transactions of the Institute of Electrical Engineers of Japan. D,2000,120-D (10):1198-1204.
    [38]Gustafsson Fredrik. Slip-based tire-road friction estimation [J]. Automatica.1997,33(6):1087-1099.
    [39]Rudolf H, Wanielik G, Sieber AJ. Road condition recognition using microwaves [C]. Proceedings of1997IEEE Conference on Intelligent Transportation Systems. Boston, Massachusetts,1997:996-999.
    [40]Shinmoto Y, Takagi J et al. Road surface recognition sensor using an optical spatial filter [C]. Proceedings of1997IEEE Conference on Intelligent Transportation Systems. Boston, Massachusetts,1997:1000-1004.
    [41]Fukui H, Takagi J et al. An image processing method to detect road surface condition using optical spatial frequency [C]. Proceedings of1997IEEE Conference on Intelligent Transportation Systems. Boston, Massachusetts,1997:1005-1009.
    [42]Muneo Yamada, Koji Ueda et al. Discrimination of road condition toward understanding of vehicle driving environments [J]. IEEE Transaction on Intelligent Transportation Systems.2001,2(1):26-31.
    [43]Kuehnle Andreas, Burghout Wilco. Image-based winter road condition recognition [C]. Proceedings of the5th International Conference on Applications of Advanced Technologies in Transportation Engineering, Newport Beach, California,1998:225-232.
    [44]Kuehnle Andreas, Burghout Wilco. Winter road condition recognition using video image classification [R]. Washington, D.C.:1998National Research Council,1998:29-33.
    [45]Tetsuya Kuno, Hiroaki Sugiura. Detection of road conditions with CCD cameras mounted on a vehicle [J]. Systems and Computers in Japan.1999,30(14):88-99.
    [46]EichhornU, Roth J. Prediction and Monitoring of Tyre/Road Friction[C].XXIV FISITA Congress,London,1992:67-74.
    [47]BreuerB, EichhornU. Measurement of Tyre/Road Friction Ahead of the Car and Inside the Tyre[C]. Proceedings of AVEC, Yokohama,1992:347-35.
    [48]Bachmann Th. The Importance of the Integration of Road, Tyre, and Vehicle Technologies[C].FISITAXXth World Congress, Montreal, Canada,1995.
    [49]Wang J, AgrawalP, AlexanderL. An Experimental Study with Al-ternate Measurement Systems for Estimation of Tire-road Friction Coefficient[C]. Proceeding of the American Control Conference, Denver, Colorado,2003:4957-4962.
    [50]Uwe Kiencke, Lars Nielsen. Automotive Control Systems[M]. Springer,2000.
    [51]Hikaru Nishira, Taketoshi Kawabe, Seiichi. Road Friction Estimation Using Adaptive Observer with Periodical σ-modification[C]. Proceedings of the1999IEEE International Conference on Control Applications, Hawaii,1999:662-667.
    [52]Hikaru Nishira, Taketoshi Kawabe, Seiichi Shin. A multi-level estimation of road condition using an adaptive observer combined with periodical σ-modification [C].2000IEEE international Conference on Industrial Electronics, Control and Instrumentation, Nagoya,2000:2237-2242.
    [53]Hideo Sado, Sakai Shin-ichiro and Yoichi Hori. Road condition estimation for traction control in electric vehicle [C]. Tokyo,1999:973-978.
    [54]Koji Matsuno, Ryi Nitta, Koichi Inoue, Katsufumi Ichikawa and Yutaka Hiwatashi. Development of a new all-wheel drive control system [C]. In Seoul FIRSTA World Automotive Congress, Seoul,2000:1-7.
    [55]Fredrik Gustafsson. Monitoring tire-road friction using the wheel slip [J]. IEEE Control Systems Magazine,1998,18(4):42-49.
    [56]Wookug Hwang and Byung-Suk Song. Road condition monitoring system using tire-road friction estimation [C]. In Proceedings of the International Symposium on Advanced Vehicle Control (AVEC), Michigan,2000:437-442.
    [57]Laura Ray. Nonlinear tire force estimation and road friction identification, simulation and experiments[J]. Automatica.1997,33(10):1819-1833.
    [58]Nakajima, K., Masahiko K., Masaya E. and Takayuki K. A Vehicle State Detection Method Based on Estimated Aligning Torque using EPS [C]. AVEC2005:2005-01-1265.
    [59]T. Umeno. Detection of tire lateral force based on a resolver mechanism.[J] R&D Review of Toyota CRDL.2005,40(4):14-19.
    [60]C. Ahn, H. Peng and H. Eric Tseng. Estimation of Road Friction for Enhanced Active Safety Systems:Algebraic Approach [C].2009American Control Conference, St. Louis, MO, USA,2009:1104-1109.
    [61]F. Takagi, A. Takeya, M. Kurishige, N. Inoue, H. Fujioka and T. Satake. An Estimation Method of the Maximum Tire-road Friction Coefficient Using an Electric Power Assist Steering [C]. AVEC2010, Loughborough, UK,2010:1-4.
    [62]C. Ahn, H. Peng and H. Eric Tseng. Estimation of Road Friction for Enhanced Active Safety Systems:Dynamic Approach[C].2009American Control Conference, St. Louis, MO, USA,2009:1110-1115.
    [63]Y. J. Hsu, S. M. Laws, C. D. Gadda and J. C. Gerdes. A Method to Estimate the Friction Coefficient and Tire Slip Angle Using Steering Torque [C].2006ASME International Mechanical Engineering Congress and Exposition, Chicago, Illinois,2006:1-10.
    [64]Y J. Hsu, S. M. Laws, and J. C. Gerdes. Estimation of Tire Slip Angle and Friction Limits Using Steering Torque [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY.2010,18(4):896-907.
    [65]李君,喻凡等.基于道路自动识别ABS模糊控制系统的研究[J].农业机械学报,2001,32(5):26-29.
    [66]刘喜东,马建.动载荷作用下客车轮胎侧偏刚度的估算[J].汽车技术.2005,(2):9-12.
    [67]徐颖.基于信息融合技术的线控汽车状态和路面参数的仿真估算与实验研究[学位论文].吉林:吉林大学.2010.
    [68]吴利军,王建跃,李克强.面向汽车纵向安全辅助系统的路面附着系数估计方法[J].汽车工程2009,31(3):239-243.
    [69]刘力,罗禹贡,李克强.基于归一化轮胎模型的路面附着系数观测[J].清华大学学报(自然科学版).2009,49(5):723-727.
    [70]杨福广,等.基于扩张状态观测器的路面附着系数实时估计[J].农业机械学报.2010,41(8):6-9.
    [71]余卓平,左建令.基于四轮轮边驱动电动车的路面附着系数估算方法[J].汽车工程,2007,29(2):141-145.
    [72]沈勇,徐维庆.基于数据融合技术的道路特征实验识别[J].车辆与动力技术,2004,11(4):1-6.
    [73]ANTON T.Van Zanten.Evolution of Electronic Control Systems for Improving the Vehicle Dynamic Behavior [C]. In Proceedings of the International Symposium on Advanced Vehicle Control (AVEC), Hiroshima,2002:7-15.
    [74]潘定海.汽车稳定性控制(VSC-Vehicle Stability Control)[R]吉林:吉林大学,1997.
    [75]Yoshihiro Ikushima and Kaoru Sawase. A Study on the Effects of the Active Yaw Moment Control[C]. International Congress&Exposition, Detroit,1995:1-9.
    [76]Yung-Hsiang Judy Hsu. Estimation and Control of Lateral Tire Force Using Steering Torque[D]. California:Stanford University,2009.
    [77]Marlene K., Martin H. and Josef Z. Improving Vehicle Dynamics by Active Rear Wheel Steering Systems[J]. Vehicle System Dynamics.2009,47(12):1551-1564.
    [78]C. Doniselli, G. Mastinu and M. Gobbi. Aerodynamic Effects on Ride comfort and Road Holding of Automobiles [C]. Proc. of the XIV IAVSD Symposium, Netherlands,1996:99-125.
    [79]M. Harada and Harada. Analysis of Lateral Stability with Integrated Control of Suspension and Steering Systems[J]. JSAE Review,1999,20(4):465-570.
    [80]Koibuchi K., Yamaoto M., Fukada Y. and Inagaki S. Vehicle Dynamics Control in Limit Cornering by Active Brake[C]. International Congress&Exposition, Detroit,1996.
    [81]沈晓鸣.基于广义执行器-受控对象的车辆底盘集成控制的研究[学位论文].上海:上海交通大学,2006.
    [82]郑水波,韩正之,唐厚君.汽车稳定性控制[J].上海汽车,2005,22(3):1-3.
    [83]姜炜,余卓平,张立军.汽车底盘集成控制综述[J].汽车工程,2007,29(5):420-425.
    [84]赵治国,余卓平,孙泽昌.车辆主动前轮转向H_鲁棒控制系统研究[J].汽车工程,2005,27(4):442-447.
    [85]晏蔚光,陈全世一种基于前馈一反馈复合控制方式的制动稳定性控制方法[J].信息与控制,2005,34(1):26-29.
    [86]晏蔚光,张卫冬,陈全世.采用2自由度调节器结构的制动方向稳定性控制算法[J].控制理论与应用,2006,23(2):324-328.
    [87]王金湘,陈南,皮大伟.基于横摆角速度变门限值的车辆稳定性控制策略及实车场地试验[J].汽车工程,2008,30(3):222-226.
    [88]朱德军.车辆VSC的控制算法和硬件实现研究[学位论文].南京:东南大学,2005.
    [89]祁永宁,陈南,李普.四轮转向车辆的直接横摆力矩控制[J].东南大学学报(自然科学版),2004,34(4):451-454.
    [90]余卓平,高晓杰,张立军,等.用于车辆稳定性控制的直接横摆力矩及车轮滑移率联合控制研究[J].汽车工程,2006,28(9):845-848.
    [91]王其东,王霞,陈无畏,等.汽车主动前轮转向和防抱死制动协调控制[J].农业机械学报,2008,39(3):1-5.
    [92]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [93]余志生.汽车理论[M].第2版.北京:机械工业出版社,2000.
    [94]Pacejka H. Tire and Vehicle Dynamics[M]. SAE International,2002.
    [95]Abe M. Vehicle Handling Dynamics:Theory and Application[M]. Oxford:EIsevier Ltd.,2009.
    [96]赵林峰,等.基于转向轻便性及回正性能设计的EPS应用[J].机械工程学报,2009,45(6):181-187.
    [97]李君.车辆ABS控制系统快速开发研究[博士论文].上海:上海交通大学,2002.
    [98]Uwe Kiencke, Lars Nielsen. Automotive Control Systems[M]. Springer,2000:306-308.
    [99]Simon Haykin. Adaptive Filter Theory[M].4th Ed. PEARSON EDUCATION NORTH ASIA LIMITED and Publishing House of Electronics Industry,2002:466-501.
    [100]刘豹.现代控制理论[M].第2版.北京:机械工业出版社,2000.
    [101]苏育才,等.矩阵理论[M].北京:科学出版社,2006.
    [102]朱兴元等,轮胎接地长度和径向静刚度计算方法[J].轮胎工业,1998,18(8):458-461.
    [103]S. Laws et al., Steer-by-wire Suspension and Steering Design for Controllability and Observability [C]. IFAC World congress, Prague,2005:1-6.
    [104]Simon Haykin. Adaptive Filter Theory[M].4th Ed. PEARSON EDUCATION NORTH ASIA LIMITED and Publishing House of Electronics Industry,2002:436-463.
    [105]Uwe Kiencke, Lars Nielsen. Automotive Control Systems[M].2nd Ed., Springer,2005:469-474.
    [106]方勇纯,等.非线性系统理论[M].北京:清华大学出版社,2009.
    [107]M. Zeitz. Observability canonical (phase-variable) form for non-linear time-variable systems [J]. Internat. J. Systems Sci.,1984,15(9):949-958.
    [108]Zeitz M. The extended Luenberger observer for nonlinear systems[J]. Systems&Control Letters,1987,9(2):149-156.
    [109]Taylor P, Birk J, Zeitz M. Extended Luenberger observer for non-linear multivariable systems[J]. International Journal of Control,2007,47(6):37-41.
    [110]牟忠凯,等.顾及线性化模型误差补偿的卡尔曼滤波算法[J].武汉大学学报.2011,36(9):1073-1076.
    [111]Robenack K. Direct approximation of observer error linearization for nonlinear forced systems[J]. IMA Journal of Mathematical Control and Information,2007,24(4):551-566.
    [112]Furukawa K. Recent Development of Road Condition Estimation Techniques for Electric Vehicle and their Experimental Evaluation using the Test EV " UOT March Ⅰ and Ⅱ " M w[J]. Electrical Engineering,2003(2):925-930.
    [113]Peng, X.Y., Chen, C.R., Zhang, J. and Wang L.H. Optimal Slip Ratio Estimation Using Local Polynomial Fitting [C].2010International Conference on Computer Application and System Modeling,2010:319-323.
    [114]Gordon T. Vehicle dynamics lecture notes [R]. Ann Arbor:University of Michigan,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700