Ts-cystatin重组减毒沙门氏菌对小鼠相关免疫应答的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋毛虫病是由摄入未煮熟含有旋毛虫包囊的肉类引起的,对人类健康依然构成了巨大的威胁。沙门氏菌携带靶基因可以有效的诱导细胞和体液免疫。口服携带靶向基因的沙门氏菌口服可以模拟旋毛虫自然感染过程,减毒沙门菌疫苗经口服进入宿主肠道被Peyer淋巴结内的吞噬细胞吞噬。这些吞噬细胞被激活后开始迁移至全身,沙门菌裂解后质粒被释放出来并被转运至胞浆,最后在宿主细胞内表达外源基因。在鼠伤寒沙门氏菌,有一种由phoP基因(转录激活因子)和PhoQ(传感器激酶)构成的调节子蛋白质。这个操纵子可调控重要毒力功能,包括抵御肽御素cryptdin家族的内源性抗微生物肽。phoP/PhoQ缺失突变体能显著降低对BALB/c小鼠的毒力作用,并作为有效的疫苗应用于很多动物。所以phoP/phoQ缺失突变体的减毒沙门氏菌的菌株,并宿主提供安全保障。目前,phoP/phoQ突变体被广泛地应用于各种药理实验和免疫模型中。
     旋毛虫有一个复杂的生命周期,涉及肠内和肠外两个阶段,能够诱发粘膜免疫和全身免疫反应,关于旋毛虫入侵的机制还有很多不明确的地方。本实验中的Ts-cystatin编码基因是本实验室在前期工作中,利用感染旋毛虫的猪血清,对旋毛虫生命周期中各个阶段的cDNA文库进行免疫筛选获得的,它是一种高峰度强反应原性基因。本实验旨在通过减毒沙门氏菌真核表达研究该基因对宿主相关免疫应答的影响。虽然沙门氏菌可以携带原核和真核两种质粒,来引起免疫应答,而且许多研究小组已经把注意力集中在在大肠杆菌中的基因表达和收集融合蛋白上。虽然这种方法可以获得大量的蛋白质,但所表达的蛋白质在结构和功能方面可能不同于天然活性蛋白。本实验选择真核表达系统作为该基因的表达载体。本实验检测了体液IgG和粘膜IgA来研究抗体应答,检测脾细胞增殖来分析细胞免疫。为研究该基因对Th1或Th2应答的影响,本实验检测了Th1细胞和Th2细胞因子以及特异性细胞转录因子。此外,利用流式细胞仪检测T淋巴细胞和巨噬细胞变化情况。最后,检查寄生虫数量的变化。结果表明,Ts-cystatin重组减毒沙门氏菌能够诱导机体产生特异性的血清IgG抗体和肠道IgA抗体;能够刺激宿主脾细胞增殖并引起T淋巴细胞和巨噬细胞的变化;能够诱发Th1/Th2混合型免疫反应,并能降低STAT6的转录。Ts-cystatin组肠道肠道成虫回收率增加了15.8%,雌虫繁殖力下降了89%。但是与对照组相比较Ts-cystatin组肌幼虫的数目没有变化。我们的研究结果表明,Ts-cystatin编码基因在旋毛虫抵抗宿主快速排虫反应过程中起重要作用,值得进一步研究。
Trichinosis is caused by ingesting undercooked meat containing the larvae of thenematode Trichinella. The infection rate in swine remains high in prevalent areas andposes a great threat to human health. Salmonella-carried targeted genes are extremelyeffective at inducing both cellular and humoral immunity. Administering aSalmonella-carried targeted gene orally can mimic the natural process of Trichinellainfection, which targets the intestinal mucosa, where professional antigen-presentingcells (APCs) are abundant in the intestinal Peyer’s patches (PPs). In S. typhimurium,one such regulon is modulated by the PhoP (transcriptional activator) and PhoQ(sensor kinase) proteins, which are essential to S. typhimurium pathogenesis andsurvival within macrophages. These regulators control the transcription of multipleunlinked phoP-activated and phoP-repressed genes. PhoP/PhoQ null mutants aremarkedly attenuated in BALB/c mice and are effective vaccines in these animals. SophoP/phoQ deletion mutants are attenuated strain of Salmonella and provide securityguarantees for host. Currently, phoP/phoQ mutants were widely used in a variety ofpharmacology experimental studies in mice and immune models.
     Trichinella has a complex life cycle that involves both enteral and parenteralphases, which stimulate both mucosal and systemic immune responses. Althoughmuch remains unknown about the mechanism of Trichinella invasion, recent studieshave successfully focused on some of the immune regulate antigens of this parasite. Inour previous works, the cDNA encoding a cystatin-like protein (Ts-cystatin) wasidentified by immunoscreening intestinal muscle larvae cDNA libraries with serumfrom pigs experimentally infected with20000T. spiralis muscle larvae. Further,immunoscreening cDNA libraries of all Trichinella life stages that it is a highlyimmunogenic/antigenic gene. The main goal of this work was to determine the abilityof this gene to induce an immune response, when expressed by live attenuatedSalmonella. Although Salmonella is reported to be competent at carrying both prokaryotic and eukaryotic plasmids and then provoking an immune response, manyresearch groups have targeted gene expression in E. coli and have collected the fusionprotein. Although this method can provide a large amount of protein, the expressedprotein may differ from the native active protein in terms of structure and function.We chose a eukaryotic expression system based on several comparisons of theimmunogenicities of two Salmonella administration schemes, which indicated that theeukaryotic expression system is superior. Humoral IgG and mucosal IgA weremeasured to examine the antibody response, and a splenocyte proliferation assay wasperformed to evaluate cellular responses. To explore whether the Th1or Th2responsewas induced, Th1-and Th2-specific cellular transcription factors were examined inaddition to the cytokine profile. Furthermore, changes in T lymphocyte andmacrophage populations were detected by flow cytometry. Lastly, parasitologicalexamination was examined. The results showed that Ts-cystatin induced aTh1/Th2-mixed type of immune response and decreased STAT6transcription. Theintestinal adult recovery increased by15.8%in the Ts-cystatin group, the Ts-cystatingroup fecundity rate was decreased by89%. Furthermore, the number of musclelarvae did not change compared with the control group. In conclusion, our resultssuggest that Ts-cystatin plays an important role in Trichinella resistance to rapidexpulsion by the host and is worth further study.
引文
[1] LIU M, BOIREAU P. Trichinellosis in China: epidemiology and control [J].Trends in parasitology,2002,18(12):553-6.
    [2] TAKAHASHI Y, MIZUNO N, SHIMAZU K, et al. Ultra structure,antigenicity,and histochemistry of stichocyte granules of adult trichinellaspiralis [J]. J Parasitol,1992,78(3):518-23.
    [3] XU D, NAGANO I, TAKAHASHI Y. Electron microscopic observations on thenormal development of Trichinella spiralis from muscle larvae to adult worms inBALB/c mice with emphasis on the body wall, genital organs andgastrointestinal organs [J]. Japanese Society of Electron Microscopy,1997,46(4):347-52.
    [4] WU Z, NAGANO I, KAJITA K, et al. Hypoglycaemia induced by Trichinellainfection is due to the increase of glucose uptake in infected muscle cells [J].International Journal for Parasitology,2009,39(2009):427-34.
    [5] TAKAHASHI Y, T. UNO J Y, YAMADA S, et al. Morphology of thealimentary tract of Trichinella spiralis muscle larvae with emphasis on theesophagus [J]. Parasitol Res,1988,75(1988):42-9.
    [6]崔国祯;王学林;刘明远;夏慧卿;邓洪宽;杨志东;孙磊;谭业平旋毛虫属分类的研究进展;《动物医学进展》-2006-08-20
    [7] Pozio E, Tamburrini A,La Rosa G. Horse trichinellosis, anunresolved puzzle [J].Parasit,2001,8(2):2632265.
    [8] LIU M, BOIREAU P. Trichinellosis in China: epidemiology and control [J].Trends in parasitology,2002,18(12):553-6.[8] BORREGAARD N A C, J.B.Granules of the human neutrophilic polymorphonuclear leukocyte [J]. Blood,1997,89(10):3503-21.
    [9]刘明远.我国的旋毛虫病及最新研究概况[J].食品与药品,2005,7(1A):11-3.
    [10]姚春雨;汪明;刘明远;付宝权旋毛形线虫分类的研究进展《中国兽医科学》-2008-01-20
    [11] DEA-AYUELA MA, F B-F. Trichinella antigens: a review.[J]. Vet Res,1999,30(6):559.
    [12] Rapic D et al.Vet Parasitol,1986:21(4):285-289
    [13] Michael R et al. Mol BiochemParasitol,1983;9(1):319-327
    [14] Gamble HR et al.Vet Parasitol,1988;30(2):131-137
    [15]赵慰先主编.人体寄生虫学.第二版.人民卫生出版社,1994:692-693.
    [16] OLIVER-GONZ LEZ J. The in vitro Action of Immune Serum on the Larvae andAdults of Trichinella spiralis [J]. The Journal of Infectious Diseases,1940,67(3):292-300.
    [17]SILBERSTEIN D, DESPOMMIER D. Antigens from trichinella spiralis thatinduce a protective response in the mouse [J]. The Journal of Immunology,1984,132(2):898-904.
    [18] CAROLANN MCGUIRE, WENG C. CHAN, WAKELIN D. NasalImmunization with Homogenate and Peptide Antigens Induces ProtectiveImmunity against Trichinella spiralis [J]. INFECTION ANDIMMUNITY,2002,2001(12):7149-52.
    [19] ROBINSON K, BELLABY T, CHAN W C, et al. High levels of protectioninduced by a40-mer synthetic peptide vaccine against the intestinal nematodeparasite Trichinella spiralis [J]. Immunobiology,1995,86(495-8).
    [20] D.L. W, N. W, M. M, et al. Immunodiagnosis of Trichinella infection: useofuniquecarbo-hydrate epitopes as target antigens. in: Trichinellosis.eds W.C.[M]. Rome: Instituto Superioredi Sanita Press,1993.
    [21] BOL SFERNANDEZ F, CORRAL BEZARA L D. TSL-1antigens of Trichinella:An overview of their potential role in parasite invasion, survival andserodiagnosis of trichinellosis [J]. Research in Veterinary Science,2006,81(3):297-303.
    [22] Sugane K et al.J Helminthol,1990;64(1):1-8.
    [23] Sun S et al.J Helminthol,1994;68(1):89-91.
    [24]付宝权,吴秀萍,刘明远.旋毛虫新生幼虫p46000抗原基因的克隆及序列分析[J].中国兽医学报,2005,25(1):37-9.
    [25]于申业,吴秀萍,王学林.旋毛虫p46000抗原基因的转录及表达特性鉴定[J].中国兽医科学,2009,39(5):389-94.
    [26]原丽红,付宝权,刘明远.旋毛虫编码新生幼虫p46kDa抗原基因重组融合蛋白对小鼠的免疫保护性研究[J].中国人兽共患病杂志,2005,21(3):221-4.
    [27] Grencis PK et a l. Parasitol Immununol,1986:8(6):587-596.
    [28] el Azzouni MZ et al.Egypt Soc Parasitol,1993;23(2):507-514.
    [29] Mclaren DJ et al. Parasitology,1987;94(1):101-114.
    [30]BEITING D P, GAGLIARDO L F, HESSE M, et al. Coordinated control ofimmunity to muscle stage Trichinella spiralis by IL-10, regulatory T cells, andTGF-beta [J]. J Immunol,2007,178(2):1039-1047.
    [31] WU Z, SOFRONIC-MILOSAVLJEVIC L, NAGANO I, et al. Trichinella spiralis:nurse cell formation with emphasis on analogy to muscle cell repair [J].ParasitVectors,2008,1(1):27.
    [32] NAGANO I, WU Z, TAKAHASHI Y. Functional genes and proteins ofTrichinella spp [J]. Parasitol Res,2009,104(2):197-207.
    [33] ELSE K J. Have gastrointestinal nematodes outwitted the immune system?[J].Parasite Immunol,2005,27(10-11):407-415.
    [34] MOSMANN T R. Cytokine secretion patterns and cross-regulation of T cellsubsets [J]. Immunol Res,1991,10(3-4):183-188.
    [35] ISHIKAWA N, GOYAL P K, MAHIDA Y R, et al. Early cytokine responsesduring intestinal parasitic infections [J]. Immunology,1998,93(2):257-263.
    [36] FINNEY C A, TAYLOR M D, WILSON M S, et al. Expansion and activation ofCD4+CD25+regulatory T cells in Heligmosomoides polygyrus infection [J]. EurJ Immunol,2007,37(7):1874-1886.
    [37] TAYLOR J J, MOHRS M, PEARCE E J. Regulatory T cell responses develop inparallel to Th responses and control the magnitude and phenotype of the Theffector population [J]. J Immunol,2006,176(10):5839-5847.
    [38] SHER A, PEARCE E, KAYE P. Shaping the immune response to parasites: roleof dendritic cells [J]. Curr Opin Immunol,2003,15(4):421-429.
    [39] KANE C M, CERVI L, SUN J, et al. Helminth antigens modulate TLR-initiateddendritic cell activation [J]. J Immunol,2004,173(12):7454-7461.
    [40] BALIC A, HARCUS Y, HOLLAND M J, et al. Selective maturation of dendriticcells by Nippostrongylus brasiliensis-secreted proteins drives Th2immuneresponses [J]. Eur J Immunol,2004,34(11):3047-3059.
    [41] SEGURA M, SU Z, PICCIRILLO C, et al. Impairment of dendritic cell functionby excretory-secretory products: a potential mechanism for nematode-inducedimmunosuppression [J]. Eur J Immunol,2007,37(7):1887-1904.
    [42] VAN RIET E, HARTGERS F C, YAZDANBAKHSH M. Chronic helminthinfections induce immunomodulation: consequences and mechanisms [J].Immunobiology,2007,212(6):475-490.
    [43] MACDONALD A S, MAIZELS R M. Alarming dendritic cells for Th2induction[J]. J Exp Med,2008,205(1):13-17.
    [44] ILIC N, GRUDEN-MOVSESIJAN A, SOFRONIC-MILOSAVLJEVIC L.Trichinella spiralis: shaping the immune response [J]. Immunol Res,2012,52(1-2):111-119.
    [45ILIC N, WORTHINGTON J J, GRUDEN-MOVSESIJAN A, et al. Trichinellaspiralis antigens prime mixed Th1/Th2response but do not induce de novogeneration of Foxp3+T cells in vitro [J]. Parasite Immunol,2011,33(10):572-582.
    [46] ILIC N, COLIC M, GRUDEN-MOVSESIJAN A, et al. Characterization of ratbone marrow dendritic cells initially primed by Trichinella spiralis antigens [J].Parasite Immunol,2008,30(9):491-495.
    [47] LEECH M D, GRENCIS R K. Induction of enhanced immunity to intestinalnematodes using IL-9-producing dendritic cells [J]. J Immunol,2006,176(4):2505-2511.
    [48] LANGELAAR M, ARANZAMENDI C, FRANSSEN F, et al. Suppression ofdendritic cell maturation by Trichinella spiralis excretory/secretory products [J].Parasite Immunol,2009,31(10):641-645.
    [49] CERVI L, MACDONALD A S, KANE C, et al. Cutting edge: dendritic cellscopulsed with microbial and helminth antigens undergo modified maturation,segregate the antigens to distinct intracellular compartments, and concurrentlyinduce microbe-specific Th1and helminth-specific Th2responses [J]. J Immunol,2004,172(4):2016-2020.
    [50] THOMAS P G, CARTER M R, ATOCHINA O, et al. Maturation of dendritic cell2phenotype by a helminth glycan uses a Toll-like receptor4-dependentmechanism [J]. J Immunol,2003,171(11):5837-5841.
    [51] JENKINS S J, MOUNTFORD A P. Dendritic cells activated with productsreleased by schistosome larvae drive Th2-type immune responses, which can beinhibited by manipulation of CD40costimulation [J]. Infect Immun,2005,73(1):395-402.
    [52] MARSHALL F A, PEARCE E J. Uncoupling of induced protein processing frommaturation in dendritic cells exposed to a highly antigenic preparation from ahelminth parasite [J]. J Immunol,2008,181(11):7562-7570.
    [53] PONCINI C V, ALBA SOTO C D, BATALLA E, et al. Trypanosoma cruziinduces regulatory dendritic cells in vitro [J]. Infect Immun,2008,76(6):2633-2641.
    [54BOUSHERI S, CAO H. New insight into the role of dendritic cells in malariaimmune pathogenesis [J]. Trends Parasitol,2008,24(5):199-200.
    [55] REVEST M, DONAGHY L, CABILLIC F, et al. Comparison of theimmunomodulatory effects of L. donovani and L. major excreted-secretedantigens, particulate and soluble extracts and viable parasites on human dendriticcells [J]. Vaccine,2008,26(48):6119-6123.
    [56] WIETHE C, DEBUS A, MOHRS M, et al. Dendritic cell differentiation state andtheir interaction with NKT cells determine Th1/Th2differentiation in the murinemodel of Leishmania major infection [J]. J Immunol,2008,180(7):4371-4381.
    [57] MANICKASINGHAM S P, EDWARDS A D, SCHULZ O, et al. The ability ofmurine dendritic cell subsets to direct T helper cell differentiation is dependenton microbial signals [J]. Eur J Immunol,2003,33(1):101-107.
    [58] CHANG J, KUNKEL S L, CHANG C H. Negative regulation ofMyD88-dependent signaling by IL-10in dendritic cells [J]. Proc Natl Acad Sci US A,2009,106(43):18327-18332.
    [59] XIA C Q, KAO K J. Suppression of interleukin-12production throughendogenously secreted interleukin-10in activated dendritic cells: involvement ofactivation of extracellular signal-regulated protein kinase [J]. Scand J Immunol,2003,58(1):23-32.
    [60] MUTHANA M, FAIRBURN B, MIRZA S, et al. Identification of a rat bonemarrow-derived dendritic cell population which secretes both IL-10and IL-12:evidence against a reciprocal relationship between IL-10and IL-12secretion [J].Immunobiology,2006,211(5):391-402.
    [61] SALLUSTO F, LANZAVECCHIA A. The instructive role of dendritic cells onT-cell responses [J]. Arthritis Res,2002,4Suppl3: S127-132.
    [62] CARVALHO L P, PEARCE E J, SCOTT P. Functional dichotomy of dendriticcells following interaction with Leishmania braziliensis: infected cells producehigh levels of TNF-alpha, whereas bystander dendritic cells are activated topromote T cell responses [J]. J Immunol,2008,181(9):6473-6480.
    [63] VASQUEZ R E, XIN L, SOONG L. Effects of CXCL10on dendritic cell andCD4+T-cell functions during Leishmania amazonensis infection [J]. InfectImmun,2008,76(1):161-169.
    [64] SHAW J, GRUND V, DURLING L, et al. Dendritic cells pulsed with arecombinant chlamydial major outer membrane protein antigen elicit a CD4+type2rather than type1immune response that is not protective [J]. InfectImmun,2002,70(3):1097-1105.
    [65] ALLEN J E, MAIZELS R M. Diversity and dialogue in immunity to helminths[J]. Nat Rev Immunol,2011,11(6):375-388.
    [66] KOYASU S, MORO K, TANABE M, et al. Natural helper cells: a new player inthe innate immune response against helminth infection [J]. Adv Immunol,2010,108:21-44.
    [67] SAENZ S A, NOTI M, ARTIS D. Innate immune cell populations function asinitiators and effectors in Th2cytokine responses [J]. Trends Immunol,2010,31(11):407-413.
    [68] WHELAN M, HARNETT M M, HOUSTON K M, et al. A filarialnematode-secreted product signals dendritic cells to acquire a phenotype thatdrives development of Th2cells [J]. J Immunol,2000,164(12):6453-6460.
    [69] MACDONALD A S, ARAUJO M I, PEARCE E J. Immunology of parasitichelminth infections [J]. Infect Immun,2002,70(2):427-433.
    [70] GRUDEN-MOVSESIJAN A, ILIC N, COLIC M, et al. The impact of Trichinellaspiralis excretory-secretory products on dendritic cells [J]. Comp ImmunolMicrobiol Infect Dis,2011,34(5):429-439.
    [71] GRUDEN-MOVSESIJAN A, ILIC N, MOSTARICA-STOJKOVIC M, et al.Mechanisms of modulation of experimental autoimmune encephalomyelitis bychronic Trichinella spiralis infection in Dark Agouti rats [J]. Parasite Immunol,2010,32(6):450-459.
    [72] MALDONADO R A, VON ANDRIAN U H. How tolerogenic dendritic cellsinduce regulatory T cells [J]. Adv Immunol,2010,108:111-165.
    [73] MAIZELS R M, BALIC A, GOMEZ-ESCOBAR N, et al. Helminthparasites--masters of regulation [J]. Immunol Rev,2004,201:89-116.
    [74] BABU S, BLAUVELT C P, KUMARASWAMI V, et al. Regulatory networksinduced by live parasites impair both Th1and Th2pathways in patent lymphaticfilariasis: implications for parasite persistence [J]. J Immunol,2006,176(5):3248-3256.
    [75] GRAINGER J R, SMITH K A, HEWITSON J P, et al. Helminth secretionsinduce de novo T cell Foxp3expression and regulatory function through theTGF-beta pathway [J]. J Exp Med,2010,207(11):2331-2341.
    [76] SAKAGUCHI S, ONO M, SETOGUCHI R, et al. Foxp3+CD25+CD4+naturalregulatory T cells in dominant self-tolerance and autoimmune disease[J].Immunol Rev,2006,212:8-27.
    [77] Wolff JA et al.Science,1990;247(4949):1465-1468
    [78] Brown WM,Dziegielewska KM.Friends and relations of the cystatinsuperfamily-new members and their evolution [J]. Protein Sci,1997,6(1):5-12.
    [79] Mclaren DJ et al. Parasitology,1987;94(1):101-114.
    [80] Vray S, Hartmann S, Hoebeke J. Immunomodulatory properties ofcystatins J.Cell Mol Life Sci,2002,59(9):15031512.
    [81] Hartmann S, Lucius R. Modulation of host immune responses by nematodecystatinsJ. Int J Parasitol,2003,33(11):12911302.
    [82] Klotz C, Ziegler T, Danilowwiczluebert E,. Cystatins of parasitic organismsJ.Adv Exp Med Biol,2011,712:208221.
    [83] Turk V, Bode W. The cystatins: protein inhibitors of cysteine proteinases [J].FEBS Lett,1991,285(2):213-219.
    [84]姚菊霞;付宝权寄生性线虫半胱氨酸蛋白酶抑制剂研究进展《中国寄生虫学与寄生虫病杂志》-2012-04-30
    [85] Bode W, Engh R, Musil D,. The2.0A X ray crystal structure of chicken eggwhite cystatin and its possible mode of in teraction with cysteine proteinases J.EMBO J,1988,7(8):25932599.
    [86] Stubbs MT, Laber B, Bode W,. The refined2.4A X raycrystal structure ofrecombinant human stefin B in complex with the cysteine proteinase papain: anovel type of proteinase inhibitor interaction J. EMBO J,1990,9(6):19391947.
    [87] Bjork I, Brieditis I, Abrahamson M. Probing the functional role ofthe N terminalregion of cystatins by equilibrium and kinetic studies of the binding of Gly11variants of recombinant human cystatin C to target proteinases J. Biochem J,1995,306(2):513518
    [88] Manoury B, Gregory WF, Maizels RM, et al. Bm-CPI-2, a cystatin homologsecreted by the filarial parasite Brugia malayi, inhibits class Ⅱ MHC-restrectedangtigen processing[J], Curr Biol,2001,11(6):447-451.
    [89] Manoury B, Hewitt EW, Morrice N, et al. An asparaginyl endopeptidaseprocesses microbial antigen for class ⅡMHC presentation[J].Nature,1998,396(17):695-699.
    [90]郑海音蛇毒cystatin分离及其合成基因在COS7细胞中的表达《福建医科大学硕士论文》-2004-04-01
    [91] Hartmann S, Schonemeyer A, Sonnenburg B, et al. cystatins of filarialnematodes up-regulate the nitric oxide production of interferon-γ-activatedmouse peritoneal macrophages [J]. Parasite Immunol,2002,24(5):253-262.
    [92] Sch nemeyer A, Hartmann S. et al Modulation of human T cell responses andmacrophage functions by onchocystatin, a secreted protein of the filarialnematode Onchocerca volvulus.[J]. Immunol.2001,167(6):3207-15.
    [93] Hartmann S, Lucius R. Modulation of host immune responses by nematodecystatins[J]. Int J Parasitol,2003,33(11):1291-1302.
    [94] Verdot L, Lalmanach G, Vercruysse V, et al. cystatins up-regulate nitric oxiderelease from interferon-γ-activated mouse peritoneal macrophages [J]. J BiolChem,1996,271(45):28077-28081.
    [95] Verdot L, Lalmannch G, Vercruysse V, et al. Chicken cystatin stimulates nitricoxide release from interferon-γ-activated mouse peritoneal macrophages viacytokine synthesis [J]. Eur J Biochem,1999,266(3):1111-1117.
    [96] Verdot L, Lalmanach G, Vercruysse V, et al. cystatins up-regulate nitric oxiderelease from interferon-γ-activated mouse peritoneal macrophages [J]. J BiolChem,1996,271(45):28077-28081.
    [97] Verdot L, Lalmannch G, Vercruysse V, et al. Chicken cystatin stimulates nitricoxide release from interferon-γ-activated mouse peritoneal macrophages viacytokine synthesis [J]. Eur J Biochem,1999,266(3):1111-1117.
    [98] ROBINSON M W, MASSIE D H, CONNOLLY B. Secretion and processing of anovel multi-domain cystatin-like protein by intracellular stages of Trichinellaspiralis [J]. Molecular and Biochemical Parasitology,2007,151(1):9-17.
    [99] van Pijkeren JP, Morrissey D, Monk IR, et al. A novel Listeriamonocytogenes-based DNA delivery system for cancer gene therapy[J]. HumGene Ther2010;21:405-16.
    [100] Vassaux G, Nitcheu J, Jezzard S, Lemoine NR. Bacterial gene therapystrategies[J]. J Pathol2006;208:290-8.
    [101] Marra A, Isberg RR. Common entry mechanisms. Bacterial pathogenesis[J].Curr Biol1996;6:1084-6.
    [102] Loessner H, Weiss S. Bacteria-mediated DNA transfer in gene therapy andvaccination[J]. Expert Opin Biol Ther2004;4:157-68.
    [103] Levine MM, Ferreccio C, Abrego P, et al. Duration of efficacy of tyzla,attenuated Salmonella typhi live oral vaccine. Vaccine.1999;17(suppl2):s22-s27。
    [104] XU D, NAGANO I, TAKAHASHI Y. Electron microscopic observations on thenormal development of Trichinella spiralis from muscle larvae to adult worms inBALB/c mice with emphasis on the body wall, genital organs andgastrointestinal organs [J]. Japanese Society of Electron Microscopy,1997,46(4):347-52.
    [105] CAMPBELL W C. Trichinella and trichinosis [M]. New York: PlenumPress,1983.
    [106] Ellermeier JR, Slauch JM. Adaptation to the host environment: regulation of theSPI1type III secretion system in Salmonella enterica serovar Typhimurium [J].Curr Opin Microbiol,2007,10(1):24-29.
    [107] Pasquali P, Ammendola S, Pistoia C, et al. Attenuated Salmonella entericaserovar Typhimurium lacking the ZnuABC transporter confers immune-basedprotection against challenge infections in mice [J]. Vaccine,2008,26:3421-3426.
    [108] Bueno SM, González PA, Kalergis AM. Use of genetically modified bacteria tomodulate adaptive immunity [J]. Curr Gene Ther,2009,9(3):171-184.
    [109] Galen JE, Pasetti MF, Tennant S, et al. Salmonella enterica serovar Typhi livevector vaccines finally come of age [J].Immunol Cell Biol,2009J,87(5):400-412.
    [110] Curtiss III R, Wanda SY, Gunn BM, et al.Salmonella strains with regulateddelayed attenuation in vivo[J]. Infect Immun,2009,3:1071–1082.
    [111] Waterman SR, Holden DW. Functions and effectors of the Salmonellapathogenicity island2type III secretion system [J]. Cell Microbiol,2003,5:501-511.
    [112] Bueno SM, Gonzalez PA, Carreno LJ, et al. The capacity of Salmonella tosurvive inside dendritic cells and prevent antigen presentation to T cells is hostspecific [J]. Immunology,2008,124:522-533.
    [113] Rhodes KA, Andrew EM, Newton DJ, et al. A subset of IL-10-producinggammadelta T cells protect the liver from Listeriaelicited, CD8(+) Tcell-mediated injury[J]. Eur J Immunol,2008,38:2274-2283.
    [114] Busse M, Traeger T, Potschke C, et al. Detrimental role for CD4+Tlymphocytes in murine diffuse peritonitis due to inhibition of local bacterialelimination [J]. Gut,2008,57(2):188-195.
    [115] Bueno SM, González PA, Kalergis AM. Use of genetically modified bacteria tomodulate adaptive immunity [J]. Curr Gene Ther,2009,9(3):171-184.
    [116] Kong W, Wanda SY, Zhang X, et al. Regulated programmed lysis ofrecombinant Salmonella in host tissues to release protective antigens and conferbiological containment [J]. Proc Natl Acad Sci USA,2008,105:9361-9366.
    [117] Chase JW, Williams KR. Single-stranded DNA binding proteins required forDNA replication [J]. Annu Rev Biochem,1986,55:103–136.
    [118] Galen JE, Chinchilla M, Pasetti MF, et al.Mucosal immunization withattenuated Salmonella enterica serovar Typhi expressing protective antigen fromanthrax toxin (PA83) primes monkeys for accelerated serum antibody responsesto parenteral PA83vaccine [J]. J Infect Dis,2009,199:326–335.
    [119] Bueno SM, Santiviago CA, Murillo AA, et al. Precise excision of the largepathogenicity island, SPI7, in Salmonella enterica serovar Typhi [J]. J Bacteriol,2004,186:3202-3213.
    [120] Hohmann EL, Oletta CA, Loomis WP, et al. Macrophage-inducibleexpressionof a model antigen in Salmonella typhimurium enhancesimmunogenicity [J]. Proc Natl Acad Sci USA,1995,92:2904–2908.
    [121] Stratford R, McKelvie ND, Hughes NJ, et al. Optimization of Salmonellaenterica serovar typhi DeltaaroC DeltassaV derivatives as vehicles for deliveringheterologous antigens by chromosomal integration and in vivo induciblepromoters[J]. Infect Immun,2005,73:362–368.
    [122] Chen AY, Fry SR, Forbes-Faulkner J, et al. Evaluation of the immunogenicity ofthe P97R1adhesin of Mycoplasma hyopneumoniae as a mucosal vaccine in mice[J]. J Med Microbiol,2006,55:923-929.
    [123] Abdul-Wahid A, Faubert G. Mucosal delivery of a transmissionblocking DNAvaccine encoding Giardia lamblia CWP2by Salmonella typhimuriumbactofection vehicle [J]. Vaccine,2007,25:8372-8383.
    [124] Loessner H, Endmann A, Leschner S, et al. Improving live attenuated bacterialcarriers for vaccination and therapy[J]. Int J Med Microbiol,2008,298(1-2):21-26.
    [125] BACHTIAR E W, OLOE P J C, MOOKER P M S. CONSTRUCTION ANDIMMUNOGENICITY OF SALMONELLA VACCINE VECTOR EXPRESSINGHIV-1ANTIGEN AND MCP3[J]. Acta Microbiologica et ImmunologicaHungarica,2009,56(4):403-15.
    [126] QU D, YU H, WANG S, et al. Induction of protective immunity bymultiantigenic DNA vaccine delivered in attenuated Salmonella typhimuriumagainst Toxoplasma gondii infection in mice [J]. Veterinary Parasitology,2009,166(2009):220-7.
    [127] Gahan ME, Webster DE, Wijburg OL, et al. Impact of prior immunologicalexposure on vaccine delivery by Salmonella enterica serovar Typhimurium[J].Vaccine,2008,26(49):6212-6220.
    [128] GANAI S, ARENAS R B, FORBES N S. Tumour-targeted delivery of TRAILusing Salmonella typhimurium enhances breast cancer survival in mice [J]. Br JCancer,2009,101(10):1683-91.
    [129] LOEFFLER M, LE’NEGRATE G, KRAJEWSKA M, et al. Inhibition of TumorGrowth Using Salmonella Expressing Fas Ligand [J]. Journal of the NationalCancer Institute,2008,100(15):1113-6.
    [130] URASHIMA M, SUZUKI H, YUZA Y, et al. An oral CD40ligand gene therapyagainst lymphoma using attenuated Salmonella typhimurium [J]. Blood,2000,95(4):1258-63.
    [131] Fu W, Chu L, Han X, et al. Synergistic antitumoral effects of human telomerasereverse transcriptase-mediated dual-apoptosisrelated gene vector delivered byorally attenuated Salmonella enterica Serovar Typhimurium in murine tumormodels[J]. J Gene Med,2008,10:690-701.
    [132] Loeffler M, Le'Negrate G, Krajewska M, et al. Inhibition of tumor growth usingsalmonella expressing Fas ligand [J]. J Natl Cancer Inst,2008,100:1113-1116.
    [132] Lee MS, Kim YJ. Signaling pathways downstream of patternrecognitionreceptors and their cross talk[J]. Annu Rev Biochem,2007,76:447-480.
    [133] Bauer S, Pigisch S, Hangel D, et al. Recognition of nucleic acid and nucleicacid analogs by Toll-like receptors7,8and9[J]. Immunobiology,2008,213,315-328.
    [134] Hausmann M, Rogler G. Immune-non immune networks in intestinalinflammation[J]. Curr Drug Targets,2008,9:388-394.
    [135] Ben-Neriah Y, Schmidt-Supprian M. Epithelial NF-kappaB maintains host gutmicroflora homeostasis[J]. Nat Immunol2007,8:479-481.
    [136] van Vliet SJ, den Dunnen J, Gringhuis SI, et al. Innate signaling and regulationof dendritic cell immunity[J]. Curr Opin Immunol,2007,19:435-440.
    [137] Gonzalez PA, Carreno LJ, Figueroa CA, et al. Modulation of immunologicalsynapse by membrane-bound and soluble ligands[J]. Cytokine Growth FactorRev,2007,18:19-31.
    [138] Baba N, Samson S, Bourdet-Sicard R, et al. Commensal bacteria trigger a fulldendritic cell maturation program that promotes the expansion of non-Tr1suppressor T cells [J]. J Leukoc Biol,2008,84(2):468-476.
    [139] Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces[J]. Vaccine,2007,25:5467-5484.
    [140] Rhodes KA, Andrew EM, Newton DJ, et al. A subset of IL-10-producinggammadelta T cells protect the liver from Listeriaelicited, CD8(+) Tcell-mediated injury[J]. Eur J Immunol,2008,38:2274-2283.
    [141] Busse M, Traeger T, Potschke C, et al. Detrimental role for CD4+Tlymphocytes in murine diffuse peritonitis due to inhibition of local bacterialelimination [J]. Gut,2008,57(2):188-195.
    [142] Miller SI., Kukral AM., MekalanosJJ.,1989. A two component regulatorysystem phoP phoQ controls Salmonella typhimurium virulence. Proc Nat! AcadSci USA86,5054-5058.
    [143] Groisman E., Chiao E., Lipps C., Heffron F.,1989. Salmonella typhimuriumphoP Virulence gene is atranscriptional regulator. Proc Nat! Acad Sci USA86,7077-7081.
    [144] Belden WJ., Miller SI.,1994. Further characterization of the PhoP regulon:identification of new pag virulence loci. Infect Immun62,5095-5101.
    [145] Behlau I., Miller S.,1993. A PhoP-repressed gene promotes S.typhimuriuminvasion of epithelial cells. J Bacteriol175,4475-4484.
    [146] Pulkkinen W., Miller S.,1991.A S.typhimurium virulence protein is similar to AYersinia enterocolitica invasion protein and a bacteriophage lambda Outermembrane protein. J Bacteriol173,86-93.
    [147] Fields P., GroismanE., Heffron F.,1986. A Salmonella locus that controlsresistance to microbicidal proteins from phagocytic cells. Science243,1059-1062.
    [148] Miller SI.,Mekalanos JJ., Pulkkinen WS.,1990. Salmonella vaccines withmutations in the phoP virulence regulon. ResMicrobio l141,817-821.
    [149] Seyed D J., Aini I., Zunita Z., Abdul R O.,2012. Attenuated Salmonellatyphimurium SV4089as a Potential Carrier of Oral DNA Vaccine in Chickens.Journal of Biomedicine and Biotechnology.
    [150] Chatfield SN, Charles IG, Makoff AJ, et al. Use of the nirB promoter to directthe stable expression of heterologous antigens in Salmonella oral vaccine strains:development of a single-dose oral tetanus vaccine[J]. Biotechnology (N Y)1992;10:888-92.
    [151] DiPetrillo MD, Tibbetts T, Kleanthous H, Killeen KP, Hohmann EL. Safety andimmunogenicity of phoP/phoQ-deleted Salmonella typhi expressing Helicobacterpylori urease in adult volunteers[J]. Vaccine1999;18:449-59.
    [152] Hohmann EL, Oletta CA, Killeen KP, Miller SI. phoP/phoQ-deleted Salmonellatyphi (Ty800) is a safe and immunogenic single-dose typhoid fever vaccine involunteers[J]. J Infect Dis1996;173:1408-14.
    [152] Sirard JC, Niedergang F, Kraehenbuhl JP. Live attenuated Salmonella: aparadigm of mucosal vaccines[J]. Immunol Rev1999;171:5-26.
    [154] Wu X.P., Fu B.Q., Wang X.L., Yu L., Yu S.Y., Deng H.K., Liu X.Y., Boireau P.,Wang F., Liu M.Y.,2009. Identification of antigenic genes in Trichinella spiralisby immunoscreening of cDNA libraries. Veterinary Parasitology159,272-275.
    [155] SCHIERACK P, LUCIUS R, SONNENBURG B, et al. Parasite-SpecificImmunomodulatory Functions of Filarial Cystatin [J]. Infection and Immunity,2003,71(5):2422-9.
    [156] CATHERINE S. MCVAY, PETER BRACKEN, LUCILLE F. GAGLIARDO, etal. Antibodies to Tyvelose Exhibit Multiple Modes of Interference with theEpithelial Niche of Trichinella spiralis [J]. Infection and Immunity,2000,68(4):1912-8.
    [157] PETAVY A F, HORMAECHE C, LAHMAR S, et al. An Oral RecombinantVaccine in Dogs against Echinococcus granulosus, the Causative Agent ofHuman Hydatid Disease: A Pilot Study [J]. PLoS Negl Trop Dis,2008,2(1):e125.
    [158] E J, J C, D B, et al. Trichinella spiralis in rats: in vivo effects of the bile and invitro action of secretory IgA from bile.[J]. Ann Parasitol Hum Comp,1981,56(4):395-400.
    [159] Haggqvist B., Hultman P.2003. Effects of deviating the Th2-response in murinemercury-induced autoimmunity towards a Th1-response. Clin Exp Immunol134:202-209.
    [160] Maizels R., Yazdanbakhsh M.,2008. T-cell regulation in helminth parasiteinfections: implications for inflammatory diseases. Chem. Immunol. Allergy94,112-123.
    [161] AKIHO H, BLENNERHASSETT P, DENG Y, et al. Role of IL-4, IL-13, andSTAT6in inflammation-induced hypercontractility of murine smooth musclecells [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2002,282(2): G226-G32.
    [162] KHAN W I, BLENNERHASSET P, MA C, et al. Stat6dependent goblet cellhyperplasia during intestinal nematode infection [J]. Parasite Immunology,2001,23(1):39-42.
    [163] URBAN J F, SCHOPF L, MORRIS S C, et al. Stat6Signaling PromotesProtective Immunity Against Trichinella spiralis Through a Mast Cell-and TCell-Dependent Mechanism [J]. The Journal of Immunology,2000,164(4):2046-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700