新型精馏—蒸发—热泵集成系统的动态行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精馏过程是化工工业中耗能最大的单元操作之一,在当今能源价格持续上涨的情况下,精馏操作能耗的降低便具有极其重要的意义。而热集成与精馏的结合作为节能的一种主要方法,其发展和应用也受到了广泛的关注和较为深入的研究。
     本文针对植物多糖提取液的精制分离过程,提出一种新型的DVH流程。通过精馏塔侧线出料和蒸汽喷射泵的结合,完成蒸发过程并回收了蒸汽潜热,将精馏、蒸发和热泵三个操作单元进行集成,不仅节约了一个蒸发器,节省下了设备费用,并且通过产品蒸汽潜热的再利用,使DVH流程比传统流程的能耗降低34%以上。但是同时,新流程增加了系统的耦合程度,给生产过程中的控制和系统的开车带来了很大的难题,为了能够实现新流程的工业应用,对其进行详细的可控性分析和动态行为研究是必要的。
     本文展开了严格机理模型的建立、动态行为研究、可控性分析、控制结构的选择和闭环动态响应的比较、开车方案的设计和开车过程的模拟优化等研究,具体的内容包括:
     1.采用商业模拟软件Aspen Plus中的严格非线性模型对DVH流程进行稳态模拟,在模拟中精馏塔采用Radfrac模块,并且应用了严格的水力学计算方法。换热器都采用独立的换热器Heatx模块。所有单元操作模块的计算所需数据均根据工厂实际设备参数选取。并通过Aspen Plus结合分布式并行遗传算法计算出系统在稳定生产时的最优操作参数;
     2.采用Aspen Dynamics和Aspen Custom Modeler对DVH流程进行动态建模,并对系统对于操作变量扰动及进料和蒸汽扰动的开环动态响应进行分析,观察系统变量之间的相互关系,总结其开环动态特性,并根据流程的特点建立起可能的控制结构;
     3.本文采用相对增益矩阵、NI准数和MRI准数来对不同控制结构的传递矩阵进行对比分析并判断系统的可控性,从而选择出较优的控制结构来做进一步的讨论;
     4.针对上述的控制结构,本文对浓度直接控制和预测控制两种方案及不同混合蒸汽压力的状态在操作变量扰动及进料和蒸汽扰动情况下的闭环动态响应进行了分析,选择出了在不同扰动下的最佳控制方案,并总结了各种控制方案的优势和不足;
     5.最后,本文对DVH流程进行了解耦,提出了一种独特的开车方案,以工艺软水作为初始进料,在蒸汽喷射泵可以提供稳定热源后再将提取液作为进料。并通过对开车过程进行动态模拟,获得了系统随时间的变化趋势和较佳的操作参数。同时,对塔顶和塔底的出料时间及出料浓度进行了优化,避免了不合格产品需要循环进入系统的问题,保证了系统的稳定性,并实现了原料提取液的零损失和废料的零排放。
The distillation is one of the most energy-consuming unit operations in the chemical engineering and industry. Nowadays, since the price of energy source keeps increasing, it is of great significance to reduce the energy consumption of distillation operation. As the main approach to energy-saving, the distillation with the heat integration has gained intensive concern and further study in the aspect of development and application.
     In this dissertation, a novel DVH process is proposed for the purification and separation process of plant polysaccharide extract. By means of combination of side draw of distillation column and vapor jet pump, the evaporation process is accomplished, at the same time, the latent heat of vapor is recycled. The integration of the three unit operation unit-distillation, evaporation and heat pump, not only saves one evaporator and then decreases the equipment cost, but also makes the DVH process reduces the heat consumption by at least 34% compared with the traditional process, by the recycle of the latent heat of product vapor. However, at the same time, this novel process increases the coupling of the system, and leads to significant difficulties in the control during operation of production and start-up. It is necessary to study the dynamic behavior and controllability analysis of this novel system on purpose of industrial application.
     In this dissertation, a high-fidelity model is developed, dynamic behavior is studied, control structure is selected, the closed-loop dynamic behavior of different control schemes are compared, the start-up scheme is designed, and the start-up process is simulated and optimized. The detailed research work and contributions of this dissertation are as follows:
     1. The steady-state simulation of DVH process is completed using rigid non-linear model in the commercial simulation tools Aspen Plus. In the simulation, distillation column uses RADFRAC models with rigorous hydraulics method. The heat-exchanger use independent Heatx models. All the parameters needed in the calculation of unit operation are derived from the practice factory data. The parameters in the steady-state run are optimized by the method of Aspen Plus coupled with a distributed parallel genetic algorithm.
     2. The dynamic process of DVH is simulated using the software Aspen Dynamics and Aspen Custom Modeler. The detailed open-loop dynamic behavior study about the feed stream and manipulating variables disturbances is proposed to analyze the interaction between system parameters, and summarize the open-loop dynamic behavior characteristic of the system to establish suitable control structure.
     3. The transfer matrices of different control structures are compared and analyzed using the relative gain matrix and dimensionless number NI and MRI, the controllability of the system is judged, and then the better control structure is picked out for the further study.
     4. Specific to the above-mentioned control structure, in this dissertation, the closed-loop dynamic behavior study about the operation parameters and feed stream or vapor pressure disturbances are analyzed with different mixed vapor pressure separately using the control strategy-direct composition control and predictive control. Under different disturbances, the best control strategy is chosen, the advantages and disadvantages of each control strategy are summarized.
     5. Finally, in this dissertation, DVH process is decoupled, a special start-up strategy is proposed, soft water from the process is set as initial feed, when the steam jet pump can supply sufficient heat, extract is then set as feed. The trend of the system changing with time and better operation parameters are achieved by the dynamic simulation of the start-up. At the same time, the out-put timing and composition of both column top and bottom are optimized, avoiding the recycle of the disqualified product and make sure the stabilization of the system. At the same time, the extract gets zero loss and no waste discharged.
引文
1 Linnhoff B, Dunford H, Smith R. Heat integration of distillation columns into overall processes. Chemical Engineering Science,1983,38(8):1175-1188
    2 Mix T J, Dweck J S, Weinberg M, Armstrong R C. Chemical Engineering Process, 1978,74(4):49
    3 Rathore R N S, Wormer K A V, Powers G J. Synthesis strategies for multicomponent separation systems with energy integration. American Institue of Chemical Engieers Journal.,1974,20(3):491
    4杨挺,温卫东,曹蕴敏,常红英.ADV微分浮阀在甲醇精馏系统改造中的应用.煤化工,2001,4:32-34
    5 Jens Bausa, George Tsatsaronis. Reducing the energy demand of continuous distillation processes by optimal controlled forced periodic operation. Computers and Chemical Engineering,25(2001):359-370
    6 Brousse E, Claudel B, Jallut C. modeling and optimization of the steady state operation of a vapor recompression distillation column. Computers and Chemical Engineering,1985,40(11):2073-2078
    7 Salim M A, Sadasivam M, Balakrishnan A R. transient analysis of heat pump assisted distillation systems—1 the heat pump. International Journal of Energy Research,1991,15:123-135
    8 Fidkowski Z, Krolikowski L. minimum energy requirements of thermally coupled distillation systems. American Institue of Chemical Engieers Journal,1987,33(4): 643-653
    9 Takamatsu T, Lueprasitsakul V, Nakaiwa M. modeling and design method for internal heat integrated packed distillation column. Journal of Chemical Engeering (Japan),1988,21(6):595
    10叶青,裘兆蓉,韶晖,钟秦.热偶精馏技术与应用进展.天然气化工,2006,31:53-55
    11宋佰顺,李鸽,刘喜保.甲醇精馏采用高效塔板和工艺路线的改进.小氮肥设计技术,2004,25(1):28-31
    12吴庆洲.甲醇主精馏塔改造.中氮肥,2005,7(4):60-61
    13刘磊,徐彦杰.浅析甲醇精馏装置的改造.应用能源技术.2004,5:17-18
    14应明,黄贵明.高效塔内件在甲醇精馏系统改造中的应用.天然气化工2005,30(1):31-34
    15朱玉琴,李迓红.高效节能的热泵精馏技术.发电设备,2003,3:48-50
    16杨兆娟.乙醇-水精馏节能技术分析.青海大学学报,2001,19(3):8-11
    17 Canales ER, Marquez F. Operation and experimental results on a vapor recompression pilot-plant distillation column. Ind. Eng. Chem. Res.1992, 31:2547-55
    18 Karncharoenkulwong S, Mungcharoen T. Thermal efficiency improvement of the pilotplant distillation column by vapour recompression using Aspen Plus.8th National Conference, Chemical Engineering and Applied Chemistry Conference, 1998. Mahidol University, Nakornpaton. Thailand. Retrieved:January 13.2005
    19 Oliveira SBM. Marques RP, Parise JAR. Modelling of an ethanol-water distillation column assisted by an external heat pump. Int. J. Energy Res.2002, 26:1055-72
    20 Tyreus B D, Luyben W L. Two towers cheaper than one? Hydrocarbon Processing,1975,54:93-96
    21 Wankat P C. Multieffect distillation processes. Industrial and Engineering Chemistry Research,1993,32(5):894-905
    22 Chiang T P, Luyben W L. Comparison of energy consumption in five heat-integrated distillation configurations. Industrial and Engineering Chemistry. Process Design and Development,1983,22(2):175-179
    23 Douglas, Hoadley. A process integration approach to the design of the two-and three-column methanol distillation schemes. Applied Thermal Engineering,2006, 26:338-349
    24吴嘉,陈露.具有热集成和水集成的甲醇精馏新工艺及其模拟.化工学报, 2005,56(3):477-481
    25周志超,吴嘉.具有完全热集成和水集成的合成甲醇精制工艺.绿色化学科学与工程和过程系统工程国际论坛论文集,天津,2006
    26 Tyreus B D, Luyben W L. Controlling heat integrated distillation columns. Chemical Engineering Progress, Sept.1976:59-66
    27 Roffel B, Fontein H J. Constraint control of distillation processes. Chemical Engineering Science,1979,34(8):1007-1018
    28 Lenhoff A M, Morari M. Design of resilient processing plants-Ⅰ:Process design under consideration of dynamic aspects. Chemical Engineering Science,1982, 37(2):245-258
    29 Frey R M, Doherty M F, Douglas J M, Malene M F. Controlling thermally linked distillation columns. Industrial and Engineering Chemistry Process Design and Development,1984,23(3):483-490
    30 Perkins J D, Wong M P F. Assessing controllability of chemical plants. Chemical Engineering Research and Design,1985,63(11):358-362.
    31 Chiang T P, Luyben W L. Comparisons of the dynamic performances of three heat-integrated distillation configurations. Industrial and Engineering Chemistry Process,1988,27(1):99-104
    32 AI-EIg A H, Paiazoglu A. Modeling and control of a high-purity double-effect distillation column. Computers and Chemical Engneering,1989,13(10): 1183-1187
    33 Lang L, Dynamic Behavior and Operational Aspects of Heat-Integrated Distillation Processes. Chemical Engineering Technology,1996,19:489-497
    34 Han M., Park S. Multivariable control of double-effect distillation configurations. Journal of Process Control,1996.6(4):247-253
    35 Pohlmeier J. Rix A. Interactive plant and control design of a double-effect distillation column. Computers and Chemical Engineering,1996.20(4): 395-400
    36 koggersbol A. Andersen B. R. Control Configurations for an Energy Integrated Distillation Column. Computers chem. Engng.1996.20:853-858
    37 Ishwar Chandra, Sukuma Devotta. Control of a heat pump assisted distillation column. Applied thermal engineering,1998,18(8):643-652
    38 Gross F, Baumann E, Geser A, Rippin D W T, Lang L. Modelling, simulation and controllability analysis of an industrial heat-integrated distillation process. Computers and Chemical Engineering,1998,22(1-2):223-237
    39 Mizsey P, Hau N T, Benko N, Kalmar I, Fonyo Z. Process control for energy integrated distillation schemes. Computers and Chemical Engineering,1998,22, Suppl:427-434
    40 Jens Erik Hansen, Sten Bay Jorgenson. Control structure selection for energy integrated distillation column. J. proc. cont.1998,8(3):185-195
    41 Skogestad S, Plantwide. The search for the self-optimizing control structure. Journal of Process Control,2000,10:487-507
    42 Bansal V, Ross R, Perkins J D, Pistikopoulos E N. The interactions of design and control:double-effect distillation. Journal of Process Control,2000,10:219-227
    43 Rix A, Gelbe H. On the Impact of Mass and Heat Integration on Design and Control of Distillation Column Systems. Trans IChemE, Part A,2000,78: 542-548
    44 Mario R. Eden, Arne Koggersbol. Dynamics and control during startup of heat integrated distillation column. Computer & Chemical engineering,2000, 24:1091-1097
    45 Engelien H K, Larsson T, Skogestad S. Implementation of Optimal Operation for Heat Integrated Distillation Columns. Trans IChemE, Part A,2003,81:277-281
    46 Engelien H K, Skogestad S. Selecting appropriate control variables for a heat-integrated distillation system with prefractionator. Computers and chemical Engineering,2004,28(5):683-691.
    47 TSAI W H. HUANG H P. YU C C. CONTROL STRUCTURE DESIGN FOR PARALLEL PROCESSES Application to Heat-integrated Distillation. Trans IChemE. Part A.2005.2:153-159
    48 Kejin Huang, Lan Shan. Qunxiong Zhu, Jixin Qian. Design and control of an ideal heat-integrated distillation column(ideal HIDiC) system separating a close-boiling ternary mixture. Energy,2007,32:2148-2156
    49 Sujit S. Jogwar, Prodromos Daoutidis. Dynamics and control of vapor recompression distillation. Journal of Process Control,2009
    50俞金寿.过程自动化及仪表.化学工业出版社,2003
    51吴坚.计算机控制系统.武汉理工大学出版社,2002
    52王树青,戴连奎,于玲.过程控制工程.北京:化学工业出版社,2008
    53何潮洪,冯霄.化工原理.北京:科学出版社,2005,392-414
    54 Coulson J M. Chemical engineering Vol.1:Fluid Flo, Heat Transfer and Mass Transferfourth ed. Pergamon, Oxford,1990
    55 Wang K, Y. Yuan, Yao P. Synthesis and optimization of heat integrated distillation systems using an improved genetic algorithm. Computers and Chemical Engineering,1998,23:125-136
    56 Ljung L. Matlab system Identification Toolbox Vers.3.01. The Math Works Inc., Natick, MA, U.S.A,1991
    57 Aspen Technology Inc. AES 11.1, Aspen Tech.2001
    58杨成坤,张湜,蒋楠,窦伟.专家系统在精馏塔开车控制中的应用研究。中国制造业信息化,2008,37(9):56-59
    59 Maiti S N, Saraf D N. Adaptive dynamic matrix control of a distillation column with closed—loop online identification[J]. Prcc Cont,1995,5(5):315-327
    60 Fabro JA, Arruda LVR, Neves F. Start up of a distillation column using intelligent control techniques [J]. Computers & Chemical Engineering, 2005(30):309-320
    61 Elgue S, Prat L, Cabassud M. Dynamic models for start-up operations of batch distillation columns with experimental validation. Computers & Chemical Engineering,2004,28:2735-2747
    62 Flavio Neves Junior, Joseph Aguilar Martin. Heterogeneous control and qualitative supervision, application to a distillation column. Engineering Applications of ARTIFICIAL INTELLIGENCE,2000,13:179-197
    63 Mario R E. Arne Koggersbol. Louis Hallager. Sten B J. Dynamics and control during startup of heat integrated distillation column. Computers & Chemical Engineering,2000,24:1091-1097
    64 Yazdi H, Bahar M, Koggersbol A. Knowledge-based control structuring of a distillation plant start-up. Control Eng. Practice,1995,3(3):423-430

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700