激光熔覆原位合成陶瓷相增强Fe基熔覆层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨损作为工程构件的三大主要失效形式(疲劳、磨损、腐蚀)之一,在工程应用中造成巨大的经济损失。在普通金属材料表面制备耐磨熔覆层,改善材料表面的物理、化学性质增强构件的抗磨损能力,成为了提高产品使用性能,发展维修与再制造技术,延长机械产品使用寿命的重要途径。本文利用激光(CO_2、Nd:YAG)作为热源,结合原位自生技术在低碳钢基体上熔覆制备了TiB_2、TiC、TiB_2+TiC增强Fe基耐磨熔覆层,并对熔覆层的微观组织、物相构成、增强相的生长机制、熔覆层磨损性能进行了系统研究,分析了影响熔覆层组织及性能的因素和规律。
     预涂合金粉末的组分和工艺性能是激光熔覆制备原位自生陶瓷相增强Fe基熔覆层的关键因素。利用FeTi30+FeB16预置粉末,采用CO_2激光熔覆制备了TiB_2增强Fe基熔覆层,所得Fe-Ti-B复合熔覆层中TiB_2呈条、块状均匀分布于基体之中。当熔覆粉末中B,Ti原子比例在1.8:1-2:1之间时可以获得以TiB_2+α-Fe为物相组成的熔覆层,该熔覆层具有较好的抗裂性。采用FeTi30+石墨作为预置粉末,CO_2激光熔覆可以制备原位合成TiC/Fe熔覆层,试验表明在综合考虑石墨和Ti元素在熔覆过程中的烧损量的情况下,预置粉末中Ti,C原子比为1:1.3的配比可以促进TiC增强相的生成,提高其在熔覆层中的含量并避免脆性相Fe_2Ti及高碳马氏体的产生。所得熔覆层中TiC以花瓣状和枝晶状存在于Fe基基体之中。
     采用Nd:YAG固体激光,以Fe+Ti+B_4C为预置粉末,制备了TiB_2+TiC联合增强Fe基熔覆层。当预置合金粉末中Ti和B_4C含量按照反应3Ti+B_4C=2TiB_2+TiC配制,采用较高功率密度时,易因熔覆过程中Ti元素的烧损导致熔覆层中产生Fe_3(B,C)脆性相,而且所得熔覆层中增强相的含量较低。优化试验表明,采用Fe45-Ti41.12-B_4C13.88(wt.%)作为预置粉末,较低功率密度时,所得熔覆层物相组成为TiB_2,TiC和α-Fe,避免了脆性相的产生,同时增强相TiB_2和TiC的含量较高。熔覆层致密、无缺陷,且同基材呈良好冶金结合,TiB_2和TiC增强相均匀分布于熔覆层之中,TiB_2呈条、块状,TiC粒子为尺寸较小的等轴状和花瓣状。TiB_2和TiC可以单独形核、生长,达到双相粒子复合强化的效果。而且增强相生长浓度环境的改变以及增强相之间的竞争生长,使得其在熔覆层基体中的分布更加分散。随着熔覆层稀释率的减小,增强相的含量和尺寸变大;随着熔覆层稀释率的增加,增强相的含量和尺寸减小。
     对熔覆层合金体系进行热力学分析表明Fe-Ti-B,Fe-Ti-C以及Fe-Ti-B-C体系中TiB_2、TiC在300K-2000K区间为稳定存在物相,预置粉末中增强相生成元素的相对原子比例对熔覆层的物相组成具有重要影响。预置合金粉末在激光作用下,首先经历加热过程形成低熔共晶,之后通过元素在熔体中的扩散、化合反应生成细小增强体(TiB_2、TiC),在激光持续加热和反应放热的耦合作用下,生成的增强体还可溶解于熔体之中,在随后的冷却过程中增强相通过形核-长大方式生长。原位合成的TiB_2和TiC增强相均表现出小平面相特征,激光熔覆快冷过程并未带来增强相生长界面从光滑向粗糙的转变。
     TiB2增强相的(0001),{10(?)0}界面能较低,具有较慢的生长速度,增强相粒子的形态表现为以(0001)为基面,{10(?)0}为侧面的棱柱形貌。TiC在形成过程中由于晶核在界面前沿熔体扩散驱动力以及成分过冷的作用下易发生界面失稳,枝晶主干沿着[001]方向发展使增强相生长为花瓣和枝晶状,枝晶端部的显露面为密排{111}平面。此外,在冷凝过程中还会因共晶反应形成细小的棒状和分枝状TiC。(TiB_2+TiC)/Fe熔覆层中TiB_2和TiC可以独立形核长大,其晶体生长惯习性并未改变,但在熔覆层内局部区域发现了TiB_2依附TiC长大的现象。通过原位反应生成的增强相同基体界面结合良好、洁净、无附着物及非晶相。
     室温干滑动磨损试验表明,原位合成TiB_2/Fe、TiC/Fe和(TiB_2+TiC)/Fe熔覆层具有良好的抗磨损性能,在同样磨损条件下,熔覆层的摩擦系数平均比母材低0.1-0.15。熔覆层内大量增强相(TiB_2、TiC、TiB_2+TiC)的存在使得磨轮在摩擦过程中对材料的粘着和犁削作用明显减弱,而且增强相在磨损过程中还起到承受载荷以及对熔覆层基体钉扎强化作用,因此使得熔覆层抗磨损性能得到显著提高。原位合成TiB_2/Fe熔覆层磨损体积为低碳钢Q235的1/17-1/19,其磨损机制主要为显微切削和硬质相剥落;原位合成TiC/Fe熔覆层的磨损体积为Q235基材的1/15-1/16,其磨损机制为显微切削和区域选择性粘着磨损;原位合成(TiB_2+TiC)/Fe熔覆层的磨损机制为显微切削、划擦,由于TiB_2和TiC的互补效应,增强相的分布均匀而且平均自由间距减小,从而使得熔覆层表现出最优的抗磨损能力,其磨损体积约为Q235金属的1/21。
As one of the three most commonly encountered failure modes (fatigue, wear, corrosion) of engineering components, wear causes great economic loss in commercial application. The fabrication of wear resistant coatings on metallic materials through modifying the physical and chemical properties of surface becomes an important way to improve the quality of products, develop the technology of maintenance and reproduction, and extend the service time of mechanical products. In the present study, laser (CO_2, Nd: YAG) was employed with combination of in situ technology to fabricate TiB_2, TiC, TiB_2+TiC reinforced Fe-based wear resistant coatings on low carbon steel. Systematic analysis was carried out to study the microstructure and phase constituent of coating, formation mechanism of reinforcement and wear properties of coating. Besides, factors that have influence on microstructure and properties of coating were also investigated.
     It is found that constituent of preplaced powder and the related effect on processing are key factors of synthesizing in situ ceramic phase reinforced Fe-based coating by laser cladding. Using FeTi30+FeB16 as precursor, TiB_2 reinforced Fe-based coatings were produced by CO_2 laser cladding. TiB_2 particles with blocky and strip shape are distributed uniformly in the clad layer. Phase constituent of TiB_2+α-Fe is obtained when the atomic ratio of Ti to B in the preplaced powder is between 1:1.8 to 1:2. These coatings also show better cracking resistance. In situ TiC reinforced Fe-based coatings were fabricated by CO_2 laser cladding using FeTi30+graphite as precursor. By considering the burning amount of graphite and Ti during laser cladding, the selection of atomic ratio of Ti:C=1:1.3 can facilitate the formation of TiC, improve its content and avoid the presence of brittle phases such as Fe_2Ti and high-carbon martensite. TiC with flower-like and dendritic morphology is dispersed in the Fe-based matrix.
     In situ synthesized TiB_2+TiC reinforced Fe-based coating was fabricated by Nd:YAG laser cladding using preplaced powder of Fe+Ti+B_4C Brittle Fe_3(B,C) phase presented in the coating and the content of reinforcements was relatively low when the amount of Ti and B4C in the preplaced powder was selected based on the reaction of 3Ti+B_4C=2TiB_2+TiC and relatively higher power density was used. By using Fe45-Ti41.12-B_4C13.88(wt.%) as precursor and smaller power density, phases presented in the coating evolved into TiB_2, TiC andα-Fe, and the content of reinforcements also increased. Dese and defect-free coating with metallurgical joint to the substrate was obtained. Reinforcements dispersed uniformly in the matrix, and TiB_2 shows the morphology of block and strip while TiC takes on the shape of equiaxed and flower. This is because of the competing growth and deviation of concentration environment for TiB_2 and TiC. Moreover, due to the influence of dilution ratio, the content and size of reinforcements increase with the increasing of scan speed while the increasing of laser power results in the decreasing of content and size of reinforcements.
     It is shown by thermodynamic analysis that in Fe-Ti-B, Fe-Ti-C and Fe-Ti-B-C system TiB_2 and TiC possess lower Gibbs free energy from 300K to 2000K, and thus they are stable phases. The atomic ratio of elements for forming reinforcements is of importance to the phase constituent of coatings. During laser cladding, the laser-materials interaction induces the heating effect and formation of low-melting point eutectic. Fine reinforcements (TiB_2 and TiC) can be formed by diffusion and reaction. Furthermore, the coupling effect of laser heating and exothermic reaction make the reinforcement remelt into the liquid alloy. Reinforcements are formed by nucleation and growth. In situ synthesized reinforcements of TiB_2 and TiC exhibit faceted nature, which shows that the rapid solidification process during laser cladding does not transform the solid-liquid interface from smooth to rough.
     The (0001) and {10(1|-)0} planes of TiB_2 have lower interface energy and thus tend to grow more slowly, leading to the final morphology of TiB_2 with (0001) asbasal plane and {10(1|-)0} planes as prismatic faces. Due to the driving force induced bydiffusion and constitutional supercooling in front of the interface of nucleus, TiC tends to lose its interface stability. The dendrite arm of TiC grows along the [001] direction, which leads to the flower-like and/or radial dendrite shape of TiC. The faces shown at the tip of TiC dendrite are close-packed {111} planes. In addition, club-shaped and branch-like TiC was found owing to the eutectic reaction during solidification. In the (TiB_2+TiC)/Fe coating, TiB_2 and TiC nucleate separately, but their growing habitus is not changed. Phenomenon of TiB_2 growing on TiC particles was observed. The interface between in situ synthesized reinforcement and matrix remains strong, clean and free from deleterious and amorphous phase.
     It was shown by dry sliding wear test at room temperature that in situ synthesized TiB_2/Fe, TiC/Fe and (TiB_2+TiC)/Fe possess superior wear resistance. Compared with the substrate, wear coefficient of the coating decreased by 0.1-0.15 under the same wear environment. Uniformly distributed reinforcements with high amount can effectively decrease the adhesion and abrasion during sliding with the counter-wheel, resulting in the substantial increase in wear resistance. Wear mechanism of in situ TiB_2/Fe coating is micro-ploughing and peeling of reinforcement, and its wear volume is 1/17-1/19 of that of Q235 substrate; Wear mechanism of in situ TiC/Fe coating is micro-ploughing and selective adhesion, and its wear volume is 1/15-1/16 of that of Q235 substrate; Wear mechanism of in situ (TiB_2+TiC)/Fe coating is micro-ploughing and scratching, and due to the simultaneous presence of TiB_2 and TiC, reinforcements are distributed more uniformly with smaller free distance, leading to the best wear resistance (1/21 of Q235 metal).
引文
1.宣天鹏编著.材料表面功能镀覆层及其应用[M].北京:机械工业出版社,2008.
    2.屈晓斌,陈建敏,周惠娣等.材料的磨损失效及其防护研究现状与发展趋势[J].摩擦学学报,1999,19(2):187-192.
    3.王宇飞,杨振国.材料失效的数值模拟技术及其应用前景[J].金属热处理,2007,增刊:45-48.
    4.刘佳睿.材料耐磨耐蚀及其表面技术概论[M].北京:机械工业出版社,1986.
    5.P. S. Sidky, M. G Hocking, et al. Review of inorganic coatings and coating process for reducing wear and corrosion [J]. British Corrosion Journal, 1999, 34(3):171-182.
    6.徐滨士.表面工程和再制造工程的现状及展望[J].材料工程,2003增刊:1-6.
    7.D. Matthews, V. Ocelik, D. Branagan, et al. Laser engineered surfaces from glass forming alloy powder precursors: Microstructure and wear [J]. Surface and Coatings Technology, 2009,203(13): 1833-1843.
    8.H. Ouyang, Y. T. Pei, T. C. Lei. Tribological behaviour of laser-clad TiC composite coating [J]. Wear(l-2), 1995,185:167-172.
    9.W. M. Steen. Laser Material Processing [M]. Berlin: Springer-Verlag, 1998.
    10.Y. T. Pei, T. C. Zou. Gradient microstructure in laser clad TiC-reinforced Ni-alloy composite coating [J]. Materials Science and Engineering A, 1998, 241(1-2):259-263.
    11.I. Manna, J. Dutta Majumdar, B. Ramesh Chandra, et al. Laser surface cladding of Fe-B-C, Fe-B-Si and Fe-B-C-Si-Al-C on plain carbon steel [J]. Surface and Coatings Technology, 2006, 201(1-2): 434-440.
    12.X. B. Liu, R. L. Yu. Influences of precursor constitution and processing speed on microstructure and wear behavior during laser clad composite coatings on γ-TiAl intermetallic alloy [J]. Materials & Design, 2009, 30(2): 391-397.
    13. 关振中主编.激光加工工艺手册[M].北京:中国计量出版社,1998.
    14. A. Viswanathan, D. Sastikumar, P. Rajarajan, et al. Laser irradiation of AISI 316L stainless steel coated with Si_3N_4 and Ti [J]. Optics & Laser Technology, 2007,39(8): 1504-1513.
    15. Z. Xiong, G. X. Chen, X. Y. Zeng. Effects of process variables on interfacial quality of laser cladding on aeroengine blade material GH4133 [J]. Journal of Materials Processing Technology, 2009, 209(2): 930-936.
    16. T. M. Yue, Y. P. Su. Laser cladding of SiC reinforced Zr65A17.5Nil0Cul7.5 amorphous coating on magnesium substrate [J]. Applied Surface Science, 2008,255(5): 1692-1698.
    17. 李胜,曾晓雁,胡乾午.高硬度激光熔覆专用Fe基合金强韧化机理[J].焊接学报,2008,29(7):101-104.
    18. Y. Pu, B. Guo, J. Zhou. Microstructure and tribological properties of in situ synthesized TiC, TiN, and SiC reinforced Ti_3Al intermetallic matrix composite coatings on pure Ti by laser cladding [J]. Applied Surface Science, 2008, 255(5):2697-2703.
    19. 曾小雁.激光熔覆金属陶瓷涂层中陶瓷相的行为研究[D].华中理工大学博士学位论文,1993.
    20. C.P. Paul, H. Alemohammad, E. Toyserkani, et al. Cladding of WC-12 Co on low carbon steel using a pulsed Nd:YAG laser [J]. Materials Science and Engineering A, 2007, 467(1-2): 170-176.
    21. H.C. Man, S. Zhang, F.T. Cheng. Improving the wear resistance of AA 6061 by laser surface alloying with NiTi [J]. Materials Letters, 2007, 61(19-20):4058-4061.
    22. 陈继民.激光微技术的发展现状[J].激光与光电子学进展,2006,43(9):25-29.
    23. H.M. Wang, F. Cao, L.X.Cai, et al. Microstructure and tribological properties of laser clad Ti_2Ni_3Si/NiTi intermetallic coatings [J]. Acta Materialia, 2003, 51(20):6319-6327.
    24. P. J. E. Monson, W.M. Steen. Comparison of laser hardfacing with conventional processes[J]. Surface Engineering, 1990, 6(3): 185-193.
    25. J. F. Ready. LIA Handbook of laser materials processing [M]. Orlando: Laser Institute of America, 2001.
    26. 左铁钏著.21世纪的先进制造-激光技术与工程[M].北京:科学出版社,2006.
    27. 张永康主编.激光加工技术[M].北京:化学工业出版社,2004.
    28. J. Yao, Q. Zhang, M. Gao, et al. Microstructure and wear property of carbon nanotube carburizing carbon steel by laser surface remelting [J]. Applied Surface Science, 2008, 254(21): 7092-7097.
    29. K.Y. Benyounis, O.M. Fakron, J.H. Abboud. Rapid solidification of M2 high-speed steel by laser melting[J]. Materials & Design, 2009, 30(3):674-678.
    30. 刘喜明,连建设,季长涛.铁素体基球磨铸铁激光表面重熔后的组织与性能[J].材料热处理学报,2002,23(3):55-58.
    31. W. R. Osorio, N. Cheung, J. E. Spinelli, et al. Microstructural modification by laser surface remelting and its effect on the corrosion resistance of an Al-9 wt%Si casting alloy [J]. Applied Surface Science, 2008, 254(9): 2763-2770.
    32. A.K. Mondal, S. Kumar, C. Blawert, et al. Effect of laser surface treatment on corrosion and wear resistance of ACM720 Mg alloy [J]. Surface and Coatings Technology, 2008, 202(14): 3187-3198.
    33. D. Wang, Z. Tian, L. Shen, et al. Influences of laser remelting on microstructure of nanostructured Al_2O_3-13wt.%TiO_2 coatings fabricated by plasma spraying [J].Applied Surface Science, 2009, In press.
    34. R. S. Razavi, M. Salehi, M. Monirvaghefi, et al. Corrosion behaviour of laser gas-nitrided Ti-6Al-4V alloy in nitric acid solution [J]. Journal of Materials Processing Technology, 2008, 203(1-3): 315-320.
    35. X. L. Wu and Y. S. Hong. Surface amorphous and crystalline microstructure by alloying zirconium using Nd:YAG pulsed Laser [J]. Metallurgical and Materials Transactions A, 2000, 31(12): 3123-3127.
    36. P. Heung, N. Kazuhiro, T. Shogo. In situ formation of TiC particulate composite layer on cast iron by laser alloying of thermal sprayed titanium coating [J]. Journal of Materials Science, 2000, 35(3): 747-755.
    37.G. R. Gordani, S. Reza, H. H. Sayed, et al. Laser surface alloying of an electroless Ni-P coating with Al-356 substrate [J]. Optics and Lasers in Engineering, 2008, 46(7): 550-557.
    38.田永生.钛合金表面激光碳氮硼合金化组织结构与磨损性能研究[D].山东大学博士学位论文,2006.
    39.田永生,陈传忠,王德云等.激光熔覆生成碳硅钛化合物及其组织性能研究[J].中国激光,2004,31(7):880-882.
    41.李强,欧阳家虎,雷廷权等.材料表面激光熔覆研究进展[J].材料科学与工艺,1996,4(4):22-35.
    40.L. Dubourg, J. Archambeault. Technological and scientific landscape of laser cladding process in 2007 [J]. Surface and Coatings technology, 2008, 202(24):5863-5869.
    42.L. Costa, R. Vilar, T. Reti, et al. Rapid tooling by laser powder deposition: Process simulation using finite element analysis [J]. Acta Materialia, 2005, 53(14):3987-3999.
    43.F.A. Hoadley, M. Rappaz. A thermal model of laser cladding by powder injection [J]. Metallurgical and Materials Transaction B, 1992, 23(5): 632-641.
    44.张庆茂,刘喜明,钟敏霖.送粉式激光熔覆过程激光有效能量的表征方法[J].稀有金属材料与工程,2003,32(7):550-553.
    45.W. Liu, J. N. DuPont. Effects of melt-pool geometry on crystal growth and microstructure development in laser surface-melted superalloy single crystals:Mathematical modeling of single-crystal growth in a melt pool (Part Ⅰ) [J]. Acta Materialia, 2004, 52(16):4833-4847.
    46.W. Liu, J.N. DuPont. Effects of substrate crystallographic orientations on crystal growth and microstructure development in laser surface-melted superalloy single crystals: Mathematical modeling of single-crystal growth in a melt pool (Part Ⅱ) [J]. Acta Materialia, 2005, 53(5): 1545-1558.
    47.周建忠,杨继昌,张永康.激光冲击对球铁表面性能的影响[J].应用激光,2001,25(2):91-95.
    48. 任乃飞,杨继昌,蔡兰等.激光冲击对金属材料机械性能的影响[J].应用激光,1998,22(4):235-238.
    49. 任乃飞,张永康.金属材料的激光表面处理强化[J].应用激光,1997,17(5):201-205.
    50. 董世运,马运哲,徐滨士.激光熔覆材料研究现状[J].材料导报,2006,20(6):5-11.
    51. 李强,王富耻,雷廷权等.激光熔覆Ni-Cr-Si-B-C合金组织及其摩擦磨损特性[J].中国有色金属学报,1998,8(2):201-205.
    52. A. Conde, F. Zubiri, J. Damborenea. Cladding of Ni-Cr-B-Si-C coatings with a high power diode laser [J]. Materials Science and Engineering A, 2002, 334(1-2):233-238.
    53. 雷廷权,李强,孟庆昌.激光熔覆和熔铸Ni-Cr-B-Si-C微观组织结构的比较[J].中国表面工程,1998,3:20-26.
    54. 雒江涛,郭洪,梁二军等.镍基合金的宽带激光熔覆[J].中国激光,2001,28(10):957-959.
    55. Q. W. Meng, L. Geng, B. Y. Zhang. Laser cladding of Ni-based composite coatings onto Ti-6A1-4V substrates with pre-placed B_4C+NiCrBSi powders [J].Surface & Coatings Technology, 2006,200(16-17): 4923-4928.
    56. 孙荣禄,牛伟,刘录录.基体材料对NiCrBSiC合金激光熔覆层组织和磨损性能的影响[J].材料工程,2006,(9):45-48.
    57. R. L. Sun, J. F. Mao, D. Z. Yang. Microstructural characterization of NiCrlBSiC laser clad layer on titanium alloy substrate [J]. Surface and Coatings Technology,2002,150(2-3): 199-204.
    58. W.C. Lin, C. Chen. Characteristics of thin surface layers of cobalt-based alloys deposited by laser cladding [J]. Surface and Coatings Technology, 2006,200(14-15): 4557-4563.
    59. G Xu, M. Kutsuna, Z. Liu, et al. Comparison between diode laser and TIG cladding of Co-based alloys on the SUS403 stainless steel [J]. Surface and Coatings Technology, 2006, 201(3-4): 1138-1144.
    60. W. L. Song, P. D. Zhu, K. Cui. Effect of Ni content on cracking susceptibility and microstructure of laser-clad Fe-Cr-Ni-B-Si alloy [J]. Surface and Coatings Technology, 1996, 80(3): 279-282.
    61.W. L. Song, J. Echigoya, B. D. Zhu, et al. Effects of Co on the cracking susceptibility and the microstructure of Fe-Cr-Ni laser-clad layer [J]. Surface and Coatings Technology, 2001, 138(2-3): 291-295.
    62.P. Kadolkar, N. B. Dahotre. Effect of processing parameters on the cohesive strength of laser surface engineered ceramic coatings on aluminum alloys [J].Materials Science and Engineering A, 2003, 342(1-2): 183-191.
    63.杨森,张庆茂,陈娜等.激光熔覆制备原位自生MoSi_2/SiC陶瓷复合涂层的研究[J].金属热处理,2002,27(4):4-6.
    64.斯松华,袁晓敏,何宜柱.激光熔覆等离子喷涂Al_2O_3陶瓷涂层组织结构研究[J].表面技术,2002,31(4):11-14.
    65.P. Kadolkar, N. B. Dahotre. Variation of structure with input energy during laser surface engineering of ceramic coatings on aluminum alloys [J]. Applied Surface Science, 2002, 199(1-4): 222-233.
    66.S. Ignat, P. Sallamand, A. Nichici, et al. MOSi_2 laser cladding-elaboration,characterisation and addition of non-stabilized ZrO_2 powder particles [J].Intermetallics, 2003,11(9): 931-938.
    67.赵亚凡,陈传忠.激光熔覆金属陶瓷涂层材料对裂纹的影响及控制[J].材料导报,2005,19(6):64-66.
    68.陈传忠,雷廷权,包全合,姚树山.等离子喷涂一激光重熔陶瓷涂层存在问题及改进措施[J].材料科学和工艺,2002,10(4):431-435
    69.赵亚凡,陈传忠.激光熔覆金属陶瓷涂层开裂的机理及防止措施[J].激光技术,2006,30(1):16-22.
    70.吴萍,姜恩永,周昌炽等.激光熔覆Ni/WC复合涂层的组织和性能[J].中国激光,2003,30(4):357-360.
    71.斯松华,何宜柱,袁晓敏.激光熔覆含B_4Cp,SiCp钴基合金涂层的组织与耐磨性能[J].中国有色金属学报,2003,13(2):454-459.
    72.B. G. Guo, J. S. Zhou, S. T. Zhang, et al. Microstructure and tribological properties of in situ synthesized TiN/Ti_3Al intermetallic matrix composite coatings on titanium by laser cladding and laser nitriding [J]. Materials Science and Engineering A, 2008,480(1-2): 404-410.
    73. C. Cui, Z. Guo, H. Wang, et al. In situ TiC particles reinforced grey cast iron composite fabricated by laser cladding of Ni-Ti-C system [J]. Journal of Materials Processing Technology, 2007,183(2-3): 380-385.
    74. J. Xu, Z. Li, W. Zhu, et al. Investigation on microstructural characterization of in situ TiB/Al metal matrix composite by laser cladding [J]. Materials Science and Engineering A, 2007,447(1-2): 307-313.
    75. A. R. Choudhury, T. Ezz, L. Li. Synthesis of hard nano-structured metal matrix composite boride coatings using combined laser and sol-gel technology [J].Materials Science and Engineering A, 2007,445(15): 193-202.
    76. M. Zhong, W. Liu, Y. Zhang, et al. Formation of WC/Ni hard alloy coating by laser cladding of W/C/Ni pure element powder blend [J]. International Journal of Refractory Metals and Hard Materials, 2006,24(6): 453-460.
    77. 赵海云,武晓雷,陈光南.铁基抗高温磨损激光熔覆涂层强韧设计和研究Ⅰ:激光熔覆合金成分、微观结构强韧化设计及涂层制备[J].应用激光,1999,19(5):209-213.
    78. J. Singh, J. Mazumader. Microstructure and wear properties of laser clad Fe-Cr-Mn-C alloys [J]. Metallurgical Transactions A, 1987,18(2): 313-322.
    79. K. Komvopoulos, K. Nagarathnam. Processing and characterization of laser-cladded coating materials [J]. Journal of engineering materials and technology, 1990,112(2): 131-143.
    80. K. Nagarathnam, K. Komvopoulos. Microstructural characterization and in situ transmission electron microscopy analysis of laser-processed and thermally treated Fe-Cr-W-C clad coatings [J]. Metallurgical Transactions A, 1993, 24(7): 1621-1629.
    81. 赵海云,武晓雷,陈光南.铁基抗高温磨损激光熔覆涂层强韧设计和研究Ⅱ:Fe-Cr-C-W-Ni激光熔覆层的微观组织及性能[J].应用激光,1999,19(5):214-217.
    82.谭文,刘文今,贾俊红.激光熔覆Fe-C-Si-B的研究[J].金属热处理,2000,25(1):13-15.
    83.钟敏霖,刘文今,任加烈等,FeCSiB合金连续激光非晶化的研究[J].金属热处理学报,1998,19(1):42-47.
    84.X. Wu., H. Youshi. Fe-based thick amorphous-alloy coating by laser cladding [J].Surface and coating technology, 2001,141(2-3): 141-144.
    85.Q. Zhang, J. H, W. Liu, et al. Microstructur characteristics of ZrC-reinforced composite coating produced by laser cladding [J]. Surface and coatings technology,2003, 162(2-3): 140-146.
    86.张锦英,马明星,刘文今.钒、钛对激光熔覆铁基原位生成颗粒增强复合涂层组织的影响[J].金属热处理,2003,28(8):1-4.
    87.马明星,刘文今,钟敏霖等.铌对激光熔覆铁基原位合成颗粒增强复合涂层组织的影响[J].应用激光,2006,26(3):145-147.
    88.钱兆勇,钟敏霖,刘文今等.瓦楞棍高耐磨激光熔覆颗粒增强铁基复合涂层[J].中国激光,2008,35(8):1271-276.
    89.A. Singh, N. B. Dahotre. Laser in situ synthesis of mixed carbide coating on steel[J]. Journal of Materials Science, 2004, 39(14): 4553-4560.
    90.A. Singh, W. D. Porter, N. B. Dahotre. Thermal transitions in Fe-Ti-Cr-Cquaternary system used as precursor during laser in situ carbide coating [J].Materials Science and Engineering A, 2005, 399(1-2): 318-325.
    91.李胜,曾晓雁,胡乾午.高硬度激光熔覆专用Fe基合金强韧化机理[J].焊接学报,2008,29(7):101-104.
    92.李胜,胡乾午,曾晓雁.激光熔覆用高硬度铁基合金的研究与应用[J].金属热处理,2004,29(9):6-10.
    93.李胜,曾晓雁,胡乾午.激光熔覆专用铁基合金特点分析及设计思想评述[J].中国表面工程,2007,20(4):11-15.
    94.黄继华,刘长松,党全坤等.TiC/Fe-Al复合涂层反应火焰喷涂研究[J].粉末冶金技术,2002,20(4):219-222.
    95.L. Fabbri, M. Oksanen. Characterization of plasma-sprayed coatings using nondestructive evaluation techniques:round-robin test results[J]. Journal of Thermal Spray Technology, 1999, 8(2): 263-272.
    96. H. K. Kang, S. B. Kang. Thermal decomposition of silicon carbide in a plasma-sprayed Cu/SiC composite deposit [J]. Materials Science and Engineering A, 2006,428(1-2): 336-345.
    97. X.H. Wang, M. Zhang, Z.D. Zou, et al. In situ production of Fe-TiC surface composite coatings by tungsten-inert gas heat source [J]. Surface and Coatings Technology, 2006, 200(20-21): 6117-6122.
    98. S. Buytoz, M. Ulutan, M. M. Yildirim. Dry sliding wear behavior of TIG welding clad WC composite coatings [J]. Applied Surface Science, 2005, 252(5):1313-1323.
    99. Xibao Wang, Hongiing Shun, Chunguo Li, et al. The performances of TiB_2-contained iron-based coatings at high temperature [J]. Surface and Coatings Technology, 2006,201(6):2500-2504.
    100. R. R. Bharath, R. Ramanathan, B. Sundararajan, et al. Optimization of process parameters for deposition of Stellite on X45CrSi93 steel by plasma transferred arc technique [J]. Materials & Design, 2008,29(9): 1725-1731.
    101. 吴玉萍,刘立民.常压等离子熔覆FeCrSiB+TiC涂层的研究[J].煤炭学报,2001,26(4):414-417.
    102. C. Hu, H. Xin, L. M. Watson, et al. Analysis of the phases developed by laser nitriding Ti-6Al-4V alloys[J]. Acta Materialia, 1997,45(10): 4311-4322.
    103. B.S. Yilbas, M. Khaled, C. Karatas, et al. Electrochemical properties of the laser nitrided surfaces of Ti-6A1-4V alloy [J]. Surface and Coatings Technology, 2006,201(3-4): 679-685.
    104. K. H. Lo, F. T. Cheng, C. T. Kwok, et al. Improvement of cavitation erosion resistance of AISI 316 stainless steel by laser surface alloying using fine WC powder [J]. Surface and Coatings Technology, 2003, 165(3): 258-267.
    105. Y. Chen, H. M. Wang. Microstructure and high-temperature wear resistance of a laser surface alloyed γ-TiAl with carbon[J]. Applied Surface Science, 2003,220(1-4): 186-192.
    106.高才,许斌.激光熔覆陶瓷增强金属基复合涂层的研究进展[J].表面技术,2008,37(4):63-66.
    107.B. J. Kooi, Y. T. Pei, J. Th. M. De Hosson. The evolution of microstructure in a laser clad TiB-Ti composite coating [J]. Acta Materialia, 2003, 51(3): 831-845.
    108.Y. T. Pei, V. Ocelik, J. Th. M. De Hosson. SiCp/Ti6A14V functionally graded materials produced by laser melt injection [J]. Acta Materialia, 2002, 50(8):2035-2051.
    109.刘荣祥,雷廷权,郭立新.钛合金激光表面熔覆的研究与进展[J].材料科学与工艺,2004,12(5):524-528.
    110.G. Xu, M. Kutsuna, Z. Liu, et al. Characteristic behavior of clad layer by multi-layer laser cladding with powder mixture of satellite-6 and tungsten carbide[J]. Surface & coating technology, 2006,201(6): 3385-3392.
    111.J. D. Majumdar, B. R. Chandra, A. K. Nath, et al. Compositionally graded SiC dispersed metal matrix composite coating on Al by laser surface engineering [J].Materials science and engineering A, 2006,433(1-2): 241-250.
    112.X. Wang. The metallurgical behavior of B4C in the iron-based surfacing alloy during PTA powder surfacing [J]. Applied surface science, 2005, 252(5):2021-2028.
    113.龙祥愿,章爱生.原位反应生成纳米TiB_2颗粒增强铝基复合材料的研究近况[J].热加工工艺,2006.35(9):73-76.
    114.李赤枫,王俊,李克等.原位结晶法制备自生颗粒增强金属基复合材料的研究进展[J].材料导报,2004,17(10):65-67.
    115.马颖,郝远,寇生中.原位自生增强金属基复合材料的制备方法[J].材料导报,2002,15(12):23-26.
    116.C. Tekmen, Y. Tsunekawa, M. Okumiya. In-situ TiB_2 and Al_2O_3 formation by DC plasma spraying [J]. Surface and Coatings Technology, 2008, 202(17): 4170-4175.
    117.王新洪,邹增大,宋思利等.TiC-VC免预热耐磨堆焊焊条[J].焊接学报,2002,23(4):31-34.
    118.H. C. Man, S. Zhang, F.T. Cheng, et al. In situ formation of a TiN/Ti metal matrix composite gradient coating on NiTi by laser cladding and nitriding [J]. Suface and coatings technology, 2006,200(16-17): 4961-4966.
    119.C. Cui, Z. Guo, H. Wang, et al. In situ TiC particles reinforced grey cast iron composite fabricated by laser cladding of Ni-Ti-C system [J]. Journal Materials Processing Technology, 2007,183(2-3):380-385.
    120.张维平,刘硕,马玉涛.激光熔覆原位生成TiB_2及其组织结构研究[J].大连理工大学学报,2004,44(3):402-406.
    121.张维平,刘硕.激光熔覆原位析出Ni-Fe-Ti-B复合涂层组织结构研究[J].大连理工大学学报,2005,45(3):351-356.
    122.张维平,刘硕.激光熔覆Fe-Ti-B复合材料涂层的组织[J].中国有色金属学报,2005,15(4):558-564.
    123.刘硕,张维平.激光熔覆制备颗粒增强Ni基复合涂层的组织结构[J].焊接学报,2005,26(2):13-16.
    124.张维平,刘硕,马玉涛.激光熔覆颗粒增强金属基复合涂层[J].材料热处理学报,2005,26(1):70-73.
    125.吕维洁,张小农,张荻等.颗粒增强复合材料研究进展[J].材料导报,1999,13(6):15-18.
    126.姚启均编.金属硬度试验数据手册[M].北京:机械工业出版社,1995.
    127.A. Agarwal, N. B. Dahotre. Synthesis of boride coating on steel using high energy density processes: comparative study of evolution of microstructure [J].Materials characterization, 1999,42(1): 31-44.
    128.D. Vallauri, I. C. Adri(?)n, A. Chrysanthou, et al. TiC-TiB_2 composites: A review of phase relationships, processing and properties [J]. Journal of the European Ceramic Society, 2008,28(8): 1697-1713.
    129.王皓,闵新民,王为民等.二硼化钛电子结构的量子化学计算[J].中国有色金属学报,2002,12(6):1229-1233.
    130.Y. T. Pei, C. Q. Chen, K. P. Shaha. Microstructural contral of TiC/a-C nanocomposite coatings with pulsed magnetron sputtering [J]. Acta Materialia,2008, 56(4): 696-709.
    131.陈华辉,邢建东,李卫编.耐磨材料应用手册[M].北京:机械工业出版社,2006.
    132. M. Darabara, L. Bourithis, S. Diplas, et al. A TiB_2 metal matrix composite coating enriched with nitrogen: Microstructure and wear properties [J]. Applied Surface Science, 2008, 254(13):4144-4149
    133. M. Darabara, G. D. Papadimitriou, L. Bourithis. Production of Fe-B-TiB_2 metal matrix composites on steel surface [J]. Surface and Coatings Technology, 2006,201(6): 3518-3523.
    134. M. Darabara, G. D. Papadimitriou, L. Bourithis. Tribological evaluation of Fe-B-TiB_2 metal matrix composites [J]. Surface and Coatings Technology, 2007,202(2): 246-253.
    135. A. Agarwal, N. B. Dahotre. Laser surface engineering of steel for hard refractory ceramic composite coating [J]. International journal of refractory metals and materials, 1999, 17(4): 283-293.
    136. A. Agarwal, N. B. Dahotre. Comparative wear in titanium diboride coatings on steel using high energy processes [J]. Wear, 2000, 240(1-2): 144-151.
    137. A. Godavarty, A. Agarwal, N. B. Dahotre. Neural networks in studies on oxidation behavior of laser surface engineered composite boride coatings [J].Applied Surface Science, 2000,161(1-2): 131-138.
    138. A. Wank, B. Wielage. Protections of Ti6A14V by laser dispersion of diborides [J]. Journal of thermal spray technology, 2005, 14(1): 134-139.
    139. A. J. Horlock, D. GMcCartney. Thermally sprayed Ni(Cr)-TiB_2 coatings using powder produced by self-propagating high temperature synthesis :microstructure and abrasive wear behavior [J]. Mateials Science and Engineering A, 2002,336(1-2): 88-98.
    140. X. B. Wang, X. F. Wang, Z. Q. Shi. The composite Fe-Ti-B-C coatings by PTA powder surfacing process [J]. Surface and Coatings Technology, 2005, 192(2-3):257-262.
    141. X. B. Wang, Y. Liang, S. L. Yang. Formation of TiB2 whiskers in laser clad Fe-Ti-B coatings [J]. Surface and Coatings Technology, 2001, 137(2-3): 209-216.
    142. 武晓雷,陈光南.激光形成原位TiC颗粒增强涂层的组织及性能[J].金属学 报,1998,34(12):1284-1288.
    143.H. C. Man, S. Zhang, F. T. Cheng. Microstructure and formation mechanism of in situ synthesized TiC/Ti surface MMC on Ti-6A1-4V by laser cladding [J].Scripta Materialia, 2001,44(12): 2801-2807.
    144.S. Yang, W. Liu, M. Zhong, et al. TiC reinforced composite coating produced by powder feeding laser cladding [J]. Materials Letters, 2004, 58(24): 2958-2962.
    145.S. Yang, N. Chen, W. Liu, et al. Fabrication of nickel composite coatings reinforced with TiC particles by laser cladding [J]. Surface and Coatings Technology, 2004,183(2-3): 254-260.
    146.S. Yang, M. Zhong, W. Liu. TiC particulate composite coating produced in situ by laser cladding [J]. Materials Science and Engineering A, 2003, 343(1-2): 57-62.
    147.张松,康煜平,文劾忠等.Al合金表面激光熔覆原位自生TiC增强金属基复合材料涂层[J].稀有金属材料与工程,2001,30(6):422-427.
    148.姚海玉,王引真,王海芳等.超音速火焰喷涂合成TiC-Ni涂层摩擦磨损性能分析[J].兵器材料科学与工程,2006,29(2):42-45.
    149.王引真,姚海玉,王海芳等.粉末状态对超音速喷涂合成TiC-Ni涂层组织和性能影响[J].材料科学与工艺,2008,16(4):569-572.
    150.姚海玉,王引真,王海芳等.超音速火焰喷涂合成TiC-Ni涂层滑动磨损性能研究[J].材料热处理学报,2006,27(1):79-82.
    151.宋思利,邹增大,王新洪等.多层氩弧熔覆含TiC颗粒增强涂层的微观组织及耐磨性能[J].焊接学报,2007,28(4):33-37.
    152.D. Vallauri, V. A. Shcherbakov, A.V. Khitev, et al. Study of structure formation in TiC-TiB_2-MexOy ceramics fabricated by SHS and densification [J]. Acta Materialia, 2008, 56(6): 1380-1389.
    153.C. L. Yeh, Y. L. Chen. Combustion synthesis of TiC-TiB_2 composites [J]. Journal of Alloys and Compounds, 2008,463(1-2): 373-377.
    154.L. Contreras, X. Turrillas, G B. Vaughan, et al. Time-resolved XRD study of TiC-TiB_2 composites obtained by SHS [J]. Acta Materialia, 2004, 52(16):4783-4790.
    155.G Wen, S. B. Li, B. S. Zhang, et al. Reaction synthesis of TiB_2-TiC composites with enhanced toughness [J]. Acta Materialia, 2001,49(8): 1463-1470.
    156. B. Zou, P. Shen, Z. Gao, et al. Combustion synthesis of TiCx-TiB_2 composites with hypoeutectic, eutectic and hypereutectic microstructures [J]. Journal of the European Ceramic Society, 2008, 28(11): 2275-2279.
    157. E. Y. Gutmanas, I. Gotman. Dense high-temperature ceramics by thermal explosion under pressure [J]. Journal of European Ceramic Society, 1999, 19(13-14): 2381-2393.
    158. Y.H. Liang, H.Y. Wang, Y.F. Yang, et al. Reaction path of the synthesis of TiC-TiB_2 in Cu-Ti-B_4C system [J]. International Journal of Refractory Metals & Hard Materials, 2008, 26(4): 383-388.
    159. Z. Zhang, P. Shen, Q. C. Jiang. Differential thermal analysis (DTA) on the reaction mechanism in Fe-Ti-B_4C system [J]. Journal of Alloys and Compounds, 2008, 463(1-2): 498-502.
    160. Q.C. Jiang, B.X. Ma, H.Y. Wang, et al. Fabrication of steel matrix composites locally reinforced with in situ TiB_2-TiC particulates using self-propagating high-temperature synthesis reaction of Al-Ti-B_4C system during casting [J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(1): 133-138.
    161. Y. F. Yang, H. Y. Wang, Y. H. Liang, et al. Fabrication of steel matrix composites locally reinforced with different ratios of TiC/TiB_2 particulates using SHS reactions of Ni-Ti-B_4C and Ni-Ti-B_4C-C systems during casting [J]. Materials Science and Engineering A, 2007,445-446(15): 398-404.
    162. H.Y. Wang, L. Huang, Q.C. Jiang. In situ synthesis of TiB_2-TiC particulates locally reinforced medium carbon steel-matrix composites via the SHS reaction of Ni-Ti-B_4C system during casting [J]. Materials Science and Engineering A, 2005, 407(1-2): 98-104.
    163. F. Akhtar, S.J. Guo. On the processing, microstructure, mechanical and wear properties of cermet/stainless steel layer composites [J]. Acta Matrialia, 2007, 55(4): 1467-1477.
    164. F. Akhtar, Shiju Guo, F. Cui, et al. TiB_2 and TiC stainless steel matrix composites [J]. Materials Letters, 2007, 61(1): 189-191.
    165.F. Akhtar. Processing, microstructure, properties and wear behavior of in situ synthesized TiB_2 and TiC thick films on steel substrates [J]. Surface and Coatings Technology, 2007, 201(24): 9603-9609.
    166.F. Akhtar, F. Hasan. Reactive sintering and properties of TiB_2 and TiC porous cermets [J]. Materials Letters, 2008, 62(8-9): 1242-1245.
    167.W. Zhou, Y.G Zhao, W. Li, et al. The in situ synthesis and wear performance of a metal matrix composite coating reinforced with TiC-TiB_2 particulates, formed on Ti-6A1-4V alloy by a low oxygen partial pressure fusing technique [J]. Surface and Coatings Technology, 2008,202(9): 1652-1660.
    168.胡木林,谢长生,王爱华.激光熔覆材料相容性的研究进展[J].金属热处理,2001,26(1):1-8.
    169.长崎诚三,平林真编著,刘安生译.二元合金状态图集[M].北京:冶金工业出版社,2004.
    170.张文钺主编.焊接冶金学[M].北京:机械工业出版社,1993.
    171.M. Darabara, G D. Papadimitriou, L. Bourithis. Synthesis of TiB_2 metal matrix composite on plain steel substrate: microstructure and wear properties [J].Materials Science and Technology, 2007,23(7): 839-846.
    172.张维平,刘硕.激光熔覆Ni基金属陶瓷复合涂层的裂纹研究[J].复合材料学报,2005,22(3):98-102.
    173.阿斯克兰德.材料科学与工程[M].北京:清华大学出版社,2005.
    174.裴宇韬.激光熔覆TiCp/Ni合金自生梯度涂层及其自生机制[J].金属学报,1998,34(9):987-991.
    175.国外硬质合金编写组.国外硬质合金[M].北京:冶金工业出版社,1976.
    176.刘勇,曾晓雁.YAG激光熔覆的研究现状和发展趋势[J].激光杂志,2002,23(5):6-8.
    177.张安峰,朱钢仙,周志敏等.CO_2激光,Nd:YAG激光和准分子激光熔覆特性比较[J].金属热处理,2008,33(6):41-45.
    178.N. B. Dahotre, A. Agarwal. Refractory ceramic-composite coatings via laser surface engineering [J]. Journal of the Minerals, Metals and Materials Society,1999, 51(4): 19-21.
    179.A. Basu, A. N. Samant, S. P. Harimakar, et al. Laser surface coating of Fe-Cr-Mo-Y-B-C bulk metallic glass composition on AISI 4140 steel [J]. Surface and Coatings Technology, 2008, 202(12): 2623-2631.
    180.S. Nayak, N. B. Dahotre. The laser-induced combustion synthesis of iron-oxide nanocomposite coatings on aluminum [J]. Journal of the Minerals, Metals and Materials Society, 2002, 54(9): 39-41.
    181.Y. Touloukian. Thermophysical properties of High termperature materials [M].New York: IFI/Plenum, 1967.
    182.C. H. Kim, W. Zhang, T. DebRoy. Modeling of temperature field and solidified surface profile during gas-metal arc fillet welding [J]. Journal of Applied Physics,2003, 94(4): 2667-2679.
    183.胡汉起主编.金属凝固学原理[M].北京:机械工业出版社,2000.
    184.董世运.铝合金表面激光熔覆铜基自生复合材料层的研究[D].哈尔滨工业大学博士学位论文,2000.
    185.石德珂主编.材料科学基础[M].北京:机械工业出版社,1998.
    186.S. D. Peteves, R. Abbaschian. Growth kinetics of solid-liquid Ga interface: Part 1. experiment [J]. Metallurgical Transactions A, 1991, 22(6): 1259-1270.
    187.S. D. Peteves, R. Abbaschian. Growth kinetics of solid-liquid Ga interface: Part 2. Theoritical [J]. Metallurgical Transactions A, 1991, 22(6): 1271-1285.
    188.Y. Chen, H. M. Wang. Growth morphology and mechanism of primary TiC carbide in laser clad TiC/FeAl composite coating [J]. Materials Letters, 2003,57(5-6): 1233-1238.
    189.X. H. Wang, M. Zhang, Z. D. Zou, et al. Microstructure and wear properties of Fe-based hardfacing layers reinforced by TiC-VC particles [J]. Materials Science and Technology, 2006, 22(2): 193-198.
    190.梁英教,车荫昌编.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    191.S. S. Babu, S. A. David, R. P. Martukanitz, et al. Toward prediction of microstructral evolution during laser surface alloying [J]. Metallurgical and Materials Transactions A, 2002, 33(4): 1189-1200.
    192.Anshui Singh, Narendra B. Dahotre. Phase evolution during laser in-situ carbide coating [J]. Metallurgical and Materials Transactions A, 2005, 36(3): 797-803.
    193.K. Tanaka, T. Saito. Phase equilibria in TiB_2-reinforced high modulus steel [J]. Journal of phase equilibria, 1998, 20(3): 207-214.
    194.宋思利.钨极氩弧原位合成TiC增强铁基熔覆层的研究[D].山东大学博士学位论文,2007.
    195.邹正光著.TiC/Fe复合材料的自蔓延高温合成工艺及应用[M].北京:冶金工业出版社,2002.
    196.Zhiqiang Zhang, Ping Shen, Qichuan Jiang. Differential thermal analysis (DTA) on the reaction mechanism in Fe-Ti-B_4C system [J]. Journal of Alloys and Compounds, 2008,463(1-2): 498-502.
    197.孙荣禄.Ti合金表面激光熔覆Ni-TiC复合涂层的组织及耐磨性能[D].哈尔滨工业大学博士论文,2001.
    198.金云学,刘夙伟.钛合金中TiC晶体的生长基元及平衡形态[J].稀有金属材料与工程,2003,34(10):1532-1536.
    199.常国威编著.金属凝固过程中的晶体生长与控制[M].北京:冶金工业出版社,2002.
    200.陈瑶.小平面相凝固理论及TiC增强金属间化合物复合材料涂层组织与耐磨性[D].北京航空航天大学博士论文,2003.
    201.R. W. Balluffi, S. M. Allen, W. C. Carter. Kinetics of Materials [M]. New Jersey:John Wiley&Sons, 2005.
    202.S. E. Bates, W. E. Buhro, et al. Synthesis of titanium boride (TiB_2)nanocrystallites by solution-phase processing [J]. Journal of Materials Research,1995,10(10): 2599-2611.
    203.A. A. Adel-Hamid, S. Hamar-Thibault, R. Hamar. Crystal morphology of the compound TiB_2 [J]. Journal of Crystal Growth, 1985, 71(3): 744-750.
    204.R. L. Sun, J. F. Mao, D. Z. Yang. Microstructural characterization of NiCrBSiC laser clad layer on titanium alloy substrate [J]. Surface and Coatings Technology,2002,150(2-3): 199-204.
    205.温诗铸.材料磨损研究的进展与思考[J].摩擦学学报,2008,28(1):1-5.
    206.温诗铸.我国摩擦学研究的现状与发展[J].机械工程学报,2004,40(11):1-5.
    207.高彩桥编著.摩擦金属学[M].哈尔滨:哈尔滨工业大学出版社,1998.
    208.孙家枢编著.金属的磨损[M].北京:冶金工业出版社,1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700