西洋参茎叶总皂苷减轻心肌缺血/再灌注损伤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽早恢复组织血供,是目前防治心肌缺血损伤最有效的措施。但研究发现,缺血一定时间的心肌在重新恢复血液供应后,损伤反而加重,出现心肌顿抑、心功能低下、恶性心律失常等,即心肌缺血/再灌注(ischemia/reperfusion, I/R)损伤。随着急性心肌梗死(AMI)溶栓、经皮穿刺冠状动脉腔内血管成型术和冠状动脉旁路手术等再灌注疗法的广泛应用,心肌再灌注损伤成为心血管领域研究的热点之上世纪九十年代以来,我国对西洋参茎叶化学成分和药理学作用进行了大量研究,表明其化学成分包括皂苷类、氨基酸类、糖类、挥发油类、无机元素类和脂肪酸类等。西洋参茎叶总皂苷(panax quinquefolium saponins, PQS)是从西洋参茎叶中提取出的活性成分。研究显示,PQS具有抗I/R心肌细胞凋亡、维持细胞内Ca2+稳态等作用。
     内质网(endoplasmic reticulum, ER)为细胞中调控蛋白质折叠、Ca2+稳态的细胞器之一,对应激非常敏感,缺血缺氧、葡萄糖/营养物质匮乏、三磷酸腺苷(adenosine triphosphate, ATP)耗竭、大量自由基产生及Ca2+稳态破坏等均可引起内质网功能障碍,触发内质网应激(endoplasmic reticulum stress, ERS)。一定程度的ERS通过上调葡萄糖调节蛋白类(glucose-regulated proteins, GRPs)、钙网蛋白(calreticulin, CRT)、蛋白质折叠酶等促进内质网功能恢复,持续或严重的ERS则破坏细胞Ca2+稳态、上调促凋亡因子CCAAT/增强子结合蛋白同源蛋白(CCAAT/enhancer-binding protein-homologous protein, CHOP)及caspase12的表达和活化,诱导ERS相关细胞凋亡,加重I/R损伤。
     本研究采用大鼠心肌I/R模型及心肌细胞缺氧/复氧(hypoxia/reoxygenation,H/R)模型,模拟在体心肌I/R损伤,研究西洋参茎叶总皂苷保护心肌I/R损伤的作用,并从内质网应激方面,探讨可能的分子机理。研究分为以下三个部分:研究一西洋参茎叶总皂苷对于心肌缺血/再灌注损伤的影响目的:观察西洋参茎叶总皂苷(PQS)对心肌I/R损伤的作用。方法:采用SD大鼠在体心脏I/R模型,检测血流动力学及血清心肌肌钙蛋白T(cardiac troponin T, cTnT)含量,以TTC和伊文思蓝双染法检测心梗面积,采用HE和TUNEL法分别评估心肌病理损伤和心肌细胞凋亡程度,采用Westernblot法检测心肌组织凋亡调节因子的表达。采用乳鼠心肌细胞缺氧/复氧(H/R)损伤模型,以台盼蓝排斥实验、乳酸脱氢酶活性以及流式细胞术检测细胞损伤及凋亡情况,以RT-PCR和Western blot方法,检测凋亡相关蛋白Bcl-2、Bax的表达。
     结果:(1)动物实验结果:与Sham组比较,I/R组平均动脉压升高55.0%(P<0.05),左室收缩与舒张功能(±dp/dtmax)分别降低42.0%和43.0%(P<0.05),血清cTnT含量为Sham组的3.9倍(P<0.05),梗死区心肌/缺血区面积(area of necrosis/area at risk, AN/AAR)百分比为(44.2±1.4)%,心肌细胞凋亡指数是Sham组的7.0倍(P<0.05)。病理观察表明,心肌纤维结构紊乱,局部呈断裂、坏死融合。抗凋亡蛋白Bcl-2表达降低54.9%(P<0.05),促凋亡蛋白Bax表达是Sham组的3.9倍(P<0.05);与I/R组比较,PQS+I/R组平均动脉压降低32.0%(P<0.05),左室±dp/dtmax分别升高64.0%和35.0%(P<0.05),血清cTnT含量降低53.3%(P<0.05), AN/AAR百分比降低65.5%(P<0.05),心肌细胞凋亡率降低54.9%(P<0.05);心肌组织病理损伤程度减轻;抗凋亡蛋白Bcl-2表达升高110.0%(P<0.05),促凋亡蛋白Bax表达降低47.8%(P<0.05)。
     (2)细胞实验结果:与对照组比较,H/R组心肌细胞凋亡率升高5.0%(P<0.05),细胞存活率降低21.7%(P<0.05),LDH活性较对照组高约6.0倍(P<0.05)。Bcl-2mRNA和蛋白表达分别降低44.5%和58.3%(P<0.05), Bax mRNA和蛋白表达分别升高86.9%和167.0%(P<0.05);和H/R组比较,PQS+H/R组细胞凋亡率降低4.2%(P<0.05),存活率升高21.2%(P<0.05), LDH活性降低66.6%(P<0.05)。 Bcl-2mRNA和蛋白的表达分别升高30.9%和48.0%(P<0.05), Bax mRNA和蛋白的表达分别降低39.7%和48.4%(P<0.05)。
     结论:PQS可减轻心肌缺血/再灌注损伤,其机制与增加抗凋亡因子Bcl-2和降低促凋亡因子Bax的表达有关。
     研究二西洋参茎叶总皂苷减轻心肌缺血/再灌注损伤致严重内质网应激的研究
     目的:观察西洋参茎叶总皂苷(PQS)对心肌I/R损伤致严重ERS的影响。方法:采用SD大鼠在体心脏缺血/再灌注(I/R)模型和乳鼠心肌细胞缺氧/复氧(H/R)模型,以RT-PCR和Western blot方法,分别检测内质网应激相关因子的表达。
     结果:(1)动物实验结果:与Sham组比较,I/R组GRP78、CRT蛋白表达分别为Sham组的3.1倍和3.0倍(P<0.05), CHOP蛋白表达为Sham组的3.4倍(P<0.05),剪切后的caspase12的蛋白表达是Sham组的2.5倍(P<0.05);与I/R组比较,PQS+I/R组CRT蛋白表达降低43.4%(P<0.05), CHOP蛋白表达和剪切后的caspase-12蛋白表达分别降低38.6%和23.7%(P<0.05)。
     (2)细胞实验结果:与对照组比较,H/R组GRP78mRNA和蛋白的表达分别升高380.0%和142.0%(P<0.05), CRT mRNA和蛋白的表达分别升高96.0%和312.0%(P<0.05); CHOP mRNA和蛋白的表达分别升高311.0%和219.0%(P<0.05);剪切后的caspase-12蛋白表达升高180.0%(P<0.05);与H/R组比较,PQS+H/R组GRP78mRNA和蛋白的表达分别降低61.6%和37.7%(P<0.05), CRT mRNA(?)口蛋白的表达分别降低35.7%和52.2%(P<0.05); CHOP mRNA和蛋白的表达分别降低57.0%和51.7%(P<0.05);剪切后的caspase-12蛋白表达降低34.9%(P<0.05)。
     结论:PQS可减轻心肌I/R诱导的严重ERS,表现为降低I/R后CRT的过表达,抑制CHOP、caspase-12等内质网凋亡通路的激活,减少过度ERS介导的细胞凋亡。
     研究三西洋参茎叶总皂苷减轻心肌缺血/再灌注损伤致严重内质网应激的下游信号通路研究
     目的:探讨西洋参茎叶总皂苷(PQS)减轻大鼠心肌I/R损伤致严重ERS的机制。
     方法:采用SD大鼠在体心脏缺血/再灌注(I/R)模型,检测血流动力学及血清cTnT含量,以TTC和伊文思蓝双染法检测心梗面积,采用HE和TUNEL法分别评估心肌病理损伤和心肌细胞凋亡程度,按CaN测试盒步骤测定心肌CaN活性,采用Western blot法检测心肌组织CaN蛋白表达;采用乳鼠心肌细胞缺氧/复氧(H/R)损伤模型,转染pCDB-CaN质粒或CaN抑制剂FK506干扰CaN表达,以流式细胞术检测细胞凋亡,按CaN测试盒步骤测定心肌细胞CaN活性,以Western blot方法,检测心肌细胞CaN表达。
     结果:(1)动物实验结果:与PQS+I/R组比较,CaN抑制剂(PQS+CaN+I/R)组平均动脉压、左室收缩舒张功能(±dp/dtmax)血清cTnT含量、心梗面积、心肌细胞凋亡率、抗凋亡蛋白Bcl-2和促凋亡蛋白Bax表达、CaN活性及蛋白表达无显著差异(P>0.05)。
     (2)细胞实验结果:与PQS+H/R组比较,CaN抑制剂(FK506)组心肌细胞凋亡率、抗凋亡蛋白Bcl-2和促凋亡蛋白Bax表达、CaN活性及蛋白表达无显著差异(P>0.05)。
     结论:PQS减轻心肌I/R致严重ERS的下游信号通路可能与CaN途径无关。
Early reperfusion in ischemic myocardium is the most effective measure to improve the prognosis of acute myocardial infarction (AMI). However, a great concern of ischemia/reperfusion (I/R) injury with reperfusion approach has raised for nearly30years. I/R injury mainly manifested as myocardial stunning, heart dysfunction, malignant ventricular arrhythmias and even sudden death. With the wide application of reperfusion therapy, such as thrombolysis, percutaneous coronary intervention and coronary artery bypass surgery, myocardial reperfusion injury has become a hot spot in the cardiovascular researches.
     Since1990s, there're extensive researches to chemical composition of American ginseng stem and leaf, indicating that its chemical constituents include saponins, amino acids, carbohydrates, essential oils, the class of inorganic elements and fatty acids. PQS (panax quinquefolium saponins) is the active ingredient extracted from Panax quinquefolius. Studies have shown that it can prevent cardiomyocyte apoptosis against ischemia/reperfusion injury and maintain intracellular Ca2+homeostasis.
     Endoplasmic reticulum (ER) is the most important organelle in adjusting protein folding, Ca2+homeostasis and stress response in cells. ER is very sensitive to stress stimulation. Ischemia/hypoxia, glucose/nutrient deprivation, ATP depletion, a large number of free radicals production or disturbance of Ca2+homeostasis can cause dysfunction of endoplasmic reticulum and trigger ERS (endoplasmic reticulum stress). A certain degree of ERS improves the restoration of ER function through upregulation of ER molecular chaperones such as glucose-regulated proteins (GRPs), calreticulin (CRT) and folding enzymes. However excessive and prolonged ERS, as one of the mechanisms of ischemia/reperfusion injury, destroy Ca2+homeostasis and induce ER associated cell death, and result in tissue injury through inducing and activating of pro-apoptotic factors such as CHOP/GADD153and caspase-12.
     The study used rat myocardial ischemia/reperfusion model and neonatal rat cardiomyocyte hypoxia/reoxygenation model to simulate in vivo cardiac ischemia/reperfusion injury. First to confirm cardioprotective effects of PQS in myocardial I/R injury; then on this basis, the detection of endoplasmic reticulum stress-related proteins to explore the impact of PQS for endoplasmic reticulum stress-mediated apoptosis; subsequently adopted by the CaN inhibitor or transfected plasmid CaN to interfere calcineurin phosphatase expression to further explore the cell signaling pathways. This study is divided into three parts:
     Part I:The effects of panax quinquefolium saponins on myocardial ischemia/reperfusion injury
     Objective:Investigate the protective effect of panax quinquefolium saponins against myocardial ischemia/reperfusion injury.
     Methods:The model of myocardial I/R injury in vivo was made by occluding the left anterior descending artery for45min followed by24h of reperfusion in SD rats. Hemodynamics and serum content of cardiac tropoin T (cTnT) were measured. Myocardial infarct size was measured by evens blue and2,3,5-triphenyhetrazolium chloride (TTC) staining; cardiomyocyte apoptosis was detected using in situ TdT-mediated dUTP nick end labeling (TUNEL). Cultured cardiomyocytes of neonatal Sprague-Dawley rats were made into hypoxia/reoxygenation (H/R) model as to observe the cardioprotective effects of PQS. Morphological studies, lactate dehydrogenase (LDH) activity and Flow Cytometry were employed to assess cell injury and apoptosis. RT-PCR and Western blot were used to test the mRNA and protein expression of apoptosis-associated proteins Bax and Bcl-2.
     Results:(1) The results in vivo showed that:Compared with the sham group, in the I/R group the mean arterial pressure was increased by55.0%, left ventricular±dp/dtmax were decreased by42.0%and43.0%, respectively (P<0.05); the serum content of cTnT was increased by290%(P<0.05); the percentage of AN/AAR value was (44.2±1.4)%and the apoptosis rate was increased by600.0%(P<0.05); Pathological observations suggest that the structural of cardiac muscle fibers disordered, the local was broken, motified and fused. Bcl-2protein expression was decreased by54.9%and that of Bax was increase by290.0%(P<0.05).Compared with the I/R group:in the PQS+I/R group the mean arterial pressure was decreased by32.0%, left ventricular±dp/dt max were increased by64.0%and35.0%, respectively (P<0.05); the serum content of cTnT was decreased by53.3%(P<0.05); the percentage of AN/AAR value was reduced by65.5%and the apoptosis rate was decreased by54.9%(P<0.05); the myocardial pathological changes were improved; Bcl-2protein expression was increased by110.0%and that of Bax was decreased by47.8%(P<0.05);
     (2) The results in vitro showed that:Compared with the control group, in the H/R group the apoptosis rate and the LDH concentration in the culture medium were increased by5.0%and600.0%, respectively(P<0.05); the survival rate was decreased by21.7%(P<0.05). Bcl-2mRNA and protein expression of the cardiomyocytes were decreased by44.5%and58.3%(P<0.05), those of Bax were increased by86.9%and167.0%(P<0.05). Compared with H/R cardiomyocytes: The apoptosis rate and the LDH concentration in the culture medium were decreased by4.2%and66.6%, respectively in PQS+H/R cardiomyocytes (P<0.05); the survival rate was increased by21.2%(P<0.05). Bcl-2mRNA and protein expression of the cardiomyocytes were increased by30.9%and48.0%(P<0.05), those of Bax were decreased by39.7%and48.4%(P<0.05).
     Conclusion:PQS alleviated myocardial ischemia/reperfusion injury by decreasing the expression of pro-apoptotic factor Bax and increasing the expression of anti-apoptotic factor Bcl-2.
     Part Ⅱ:Panax quinquefolium saponins protect myocardium against ischemia/reperfusion injury through attenuating excessive endoplasmic reticulum stress
     Objective:Investigate whether excessive endoplasmic reticulum stress was involved in the protective effect of panax quinquefolium saponins against ischemia/reperfusion injury in rat myocardium.
     Methods:The model of myocardial I/R injury in vivo and cultured neonatal Sprague-Dawley cardiomyocytes of hypoxia/reoxygenation (H/R) injury in vitro were applied. RT-PCR and Western blot were used to test the mRNA and protein expression of glucose-regulated protein78(GRP78), calreticulin (CRT),(C/EBP) homologous protein (CHOP) and cleaved-caspase12.
     Results:(1) The results in vivo showed that:Compared with the sham group, in the I/R group GRP78and CRT protein expression were increased by210.0%and200.0%(P<0.05); CHOP protein expression was increased by240.0%(P<0.05); cleaved-caspase12was increased by150.0%(P<0.05). Compared with the I/R group, in the PQS+I/R group CRT protein expression was decreased by43.4%(P<0.05); CHOP protein expression and the protein level of cleaved-caspasel2were decreased by38.6%and23.7%(P<0.05).
     (2) The results in vitro showed that:Compared with the control group, in the H/R group GRP78mRNA and protein expression were increased by380.0%and142.0%(P<0.05); those of CRT were increase by96.0%and312.0%(P<0.05); CHOP mRNA and protein expression were increased by311.0%and219.0%(P<0.05); cleaved-caspase12protein expression was increased by180.0%(P<0.05). Compared with the H/R group, in the PQS+H/R group GRP78mRNA and protein expression of the cardiomyocytes were decreased by61.6%and37.7%(P<0.05), CRT mRNA and protein expression were decreased by35.7%and52.2%(P<0.05); CHOP mRNA and protein expression were decreased by51.0%and51.7%(P<0.05); the protein level of cleaved-caspase12was decreased by34.9%(P<0.05).
     Conclusion:These results indicated that PQS could alleviate myocardium injury caused by I/R, its mechanism is probably related to inhibition of excessive ERS induced by I/R.
     Part III:The machenism underlying panax quinquelium saponins attenuating excessive endoplasmic reticulum stress induced by I/R
     Objective:Investigate the machenism of PQS supressing excessive ERS induced by myocardial ischemia/reperfusion.
     Methods:The model of myocardial I/R injury in vivo was made by occluding the left anterior descending artery for45min followed by24h of reperfusion in SD rats. Hemodynamics and serum content of cardiac tropoin T (cTnT) were measured. Myocardial infarct size was measured by evens blue and2,3,5-triphenyhetrazolium chloride (TTC) staining; cardiomyocyte apoptosis was detected using in situ TdT-mediated dUTP nick end labeling(TUNEL). Cultured cardiomyocytes of neonatal Sprague-Dawley rats were made into hypoxia/reoxygenation (H/R) model. Transfect pCDB-CaN plasmid or apply the inhibitor of CaN (FK506) to interfere the CaN expression. Flow Cytometry was employed to assess apoptosis. The activity of CaN in myocardium and cardiomyocyte were detected according to the instructions. Western blot was used to test the protein expression CaN.
     Results:(1) The results in vivo showed that:Compared with the PQS+I/R group, in the CaN inhibitor (PQS+CsA+I/R) group the mean arterial pressure, left ventricular±dp/dt max, the serum content of cTnT, AN/AAR value, the apoptosis rate, apoptosis protein Bcl-2and Bax expression, CaN activity and protein expression in myocardium were no significantly different (P>0.05).
     (2) The results in vitro showed that:Compared with the PQS+H/R group, in the the CaN inhibitor (FK506) group cardiomyocyte apoptosis, the expression of Bcl-2and Bax, the activity of CaN and its protein expression were not significantly different (P>0.05).
     Conclusion:The machenism of PQS supressing excessive ERS induced by myocardial ischemia/reperfusion may not be associated with the CaN signal pathway.
引文
[1]徐惠波,孙晓波,周继胡,等.西洋参茎叶总皂甙毒理学研究[J].中药药理与临床,1999,15(6):24-26.
    [2]张学武,陈丽艳,崔长旭.人参二醇组皂甙对梗阻性黄疸大鼠肝损伤保护作
    用机理的实验研究[J].时诊国医药,2006,17(5):771-772.
    [3]张健,张舵舵,张妍,等.人参二醇皂甙抑制人乳腺癌细胞增殖的实验研究[J].中国老年学杂志,2008,28(24):2448-2449.
    [4]孙际童,李洪岩,苏静,等.人参二醇组皂甙(PQDS)抑制NOS和p38减轻LPS休克脑损伤[J].中国病理生理杂志,2008,24(1):44-45.
    [5]王秋静,刘芬,刘洁,等.人参二醇皂甙对急性血瘀模型大鼠血液流变性及PGF1a、TXB2的影响[J].中国实验方剂学杂志,2009,15(5):52-54.
    [6]唐笑迪,孙晓霞,王健春.人参二醇组皂甙对感染性休克大鼠血液流变性及循环的影响[J].中国老年学杂志,2009,29(23):3044-3046.
    [7]赵航,陈光,王贵民,等.人参二醇皂甙对重症胰腺炎急性肺损伤时水通道蛋白表达的影响[J].中国老年学杂志,2009,29(5):561-562.
    [8]于振香,刘喜春,赵雪俭.人参二醇组皂甙对抗二次打击诱导大鼠急性肺损伤[J].中国病理生理杂志,2008,24(12):2402-2406.
    [9]古天明,盘强文,冉兵,等.人参二醇组皂甙促进缺血再灌注性血清致人肾小管细胞损伤后增殖作用研究[J].中药药理与临床,2008,24(4):28-30.
    [10]刘艳波,赵丽娟,郭亚雄,等.人参二醇组皂甙增强顺铂对人前列腺癌DU145细胞凋亡的效应[J].中国男科学杂志,2009,23(2)12-16.
    [11]李凤娥,孔繁利,李威.人参二醇组皂甙抗动脉粥样硬化作用实验研究[J].北华大学学报(自然科学版),2009,10(6):498-501.
    [12]刘洁,刘芬,王秋静,等.人参二醇组皂甙对心肌梗死犬血清一氧化氮、一氧化氮合酶水平的影响[J].中国实验方剂学杂志,2008,14(4):46-49.
    [13]刘凯,谢湘林,李晔,等.西洋参叶三醇再到对正常大鼠学习记忆的影响[J].中草药,2007,38(11):1700-1702.
    [14]田志刚,杨贵贞.人参三醇皂甙促进人白细胞介素-1基因表达[J].中国药理学报,1993,14(2)159-161.
    [15]江岩,刘伟,王晓明,等.人参三醇皂甙对培养心肌细胞的钙通道阻滞作 用和抗自由基作用[J].中国药理学报,1996,17(2):143.
    [16]刘伟宏,龚守良,李新民,等.人参三醇组甙对雄性大鼠免疫器官的辐射防护作用[J].白求恩医科大学学报,1994,20(1):32-34.
    [17]黄敏珊,黄炜,吴其平,等.齐墩果酸诱导人乳腺癌细胞凋亡及于细胞内Ca2+水平关系的研究[J].中国现代医学杂志,2004,14(16):58-61.
    [18]刘玉兰,王慧姝.齐墩果酸对血小板功能的影响[J].沈阳药学院学报,1993,10(4):275-278.
    [19]薛芳喜,葛堂栋,王迪迪,等.齐墩果酸对HL60细胞bcl-2和bax表达的影响[J].中国老年学杂志,2008,28(5):437-439.
    [20]李竹,郭月英,吴春福.西洋参茎叶皂甙F11对学习记忆的影响[J].中药药理与临床,1998,14(2):12-14.
    [21]张文杰,李红,赵中华,等.西洋参皂甙单体P-F11对大鼠血流动力学心室肌细胞动作电位的作用[J].人参研究,2002,14(3):21-23.
    [22]Wei XY, Yang JY, Wang JH, et al. Anxiolytic effect of saponins from Panax quinquefolium in mice[J]. J Ethnopharmacol,2007,111 (3):613-618.
    [23]Lian X Y, Zhang Z Z. Protective effects of ginseng components in a rodent model of neurodegeneration[J]. Ann Neurol,2005,57:642-648.
    [24]Lian X Y, Zhang Z Z, Anticonvulsant and neuroprotective effects of ginsenosides in rats[J]. Epilepsy Research,2006,70 (2):244-256.
    [25]King ML, Murphy LL. Role of cyclin inhibitor protein P21 in the inhibition of HCT116 human colon cancer cell proliferation by American ginseng(Panax quinquefolius) and its constituents[J]. Phytomedicine,2010,17 (3-4):261-268.
    [26]Peralta EA, Murphy LL, Minnis J, et al. American Ginseng inhibits induced COX-2 and NF-κB activation in breast cancer cells[J]. J Surg Res,2009,157 (2): 261-267.
    [27]Miller SC, Delorme D, Shan JJ. CVT-E002 stimulates the immune system and extends the life span of mice bearing a tumor of viral origin[J]. J Soc Integr Oncol, 2009,7 (4):127-136.
    [28]Kitts DD, Popovich DG, Hu C. Characterizing the mechanism for ginsenoside-induced cytotoxicity in cultured leukemia(THP-1) cells[J]. Can J Physiol Pharmacol,2007,85 (11):1173-1183.
    [29]Xie JT, Wu JA, S Mehendale, H H Aung, et al. Antihyperglycemic effect of the polysaccharides fraction from American ginseng berry extract in ob/ob mice[J]. Phytomedicine,2004,11 (2-3):182-187.
    [30]臧晓峰,谢湘林,吴轶川,等.西洋参二醇组皂甙对糖尿病‘肾病大鼠肾脏葡萄糖转运蛋白、尿β2-微球蛋白的影响[J].中国病理生理杂志,2008,24(6):1237-1239.
    [31]殷惠军,张颖,蒋悦绒,等.西洋参总皂甙对四氧嘧啶高血糖大鼠血脂代谢的影响[J].中西医结合心脑血管病杂志,2004,2(11):647-648.
    [32]Liu W, Zheng Y, Han L, et al. Saponins(Ginsenosides) from stems and leaves of Panax quinquefolium prevented high-fat diet-induced obesity in mice[J]. Phytomedicine,2008,15 (12):140-145.
    [33]许力军,段秀梅,钱东华,等.西洋参茎叶皂甙对CPHD患者细胞免疫功能的影响[J].中国药理学通报,2004,20(8):901.
    [34]赵玉珍,刘蕾,陈立平,等.西洋参茎叶皂甙对大鼠实验性肝损伤的影响[J].中成药,2000,22(3):219.
    [35]Murphy LL, Cadena RS, Chavez D, et al. Effect of American ginseng (Panax quinquefolium) on male copulatory behavior in rat[J]. Physiol Behav,1998,64 (4): 445-450.
    [36]Pawar AA, Tripathi DN, Ramarao P, et al. Protective effects of American ginseng (Panax quiquefolium) against mitomycin C induced micronuclei in mice[J]. Phytother Res,2007,21 (12):1221-1227.
    [37]Mehendale SR, Aung H. Effects of antioxidant herbs on chemotherapy-induced nausea and vomiting in a rat-pica model[J]. Am J Chin Med,2004,32 (6):897-905.
    [38]Sangeeta R.Mehendale, Chong-Zhi Wang, Zuo-Hui Shao, et al. Chronic pretreatment with American ginseng berry and its polyphenolic constituents attenuate oxidant stress in cardiomyocytes[J]. European Journal of Pharmacology, 2006,553 (1-3):209-214.
    [39]翟鹏贵,赵珺彦,祝铃栋等.西洋参制剂抗疲劳作用的实验研究[J].浙江 中医药大学学报,2007,31(6):761-762.
    [40]丁涛,徐慧波,孙晓波,等.西洋参茎叶总皂甙对心肌缺血的保护作用[J].中药药理与临床,2002,18(4):14-15.
    [41]陆丰,睢大员,于晓风,等.西洋参叶20S-原人参二醇组皂甙对急性心肌梗死大鼠交感神经递质及肾素-血管紧张素系统的影响[J].中草药,2001,32(7):619-621.
    [42]刘尚欲,睢大员,于晓风,等.西洋参叶20S-原人参二醇组皂甙对急性心肌梗死犬血流动力学和氧代谢的影响[J].中国药学杂志,2001,36(1):25-29.
    [43]武淑芳,睢大员,于晓风,等.西洋参叶20S-原人参二醇组皂甙抗实验性心肌缺血作用及其机制[J].中国药学杂志,2002,37(2):100-103.
    [44]翟丽洁,于晓风,曲绍春,等.西洋参叶20S-原人参二醇组皂甙对小鼠心肌营养性血流量的影响[J].人参研究,2004,4(4):2-4.
    [45]卢爱萍,刘金平,卢丹,等.西洋参过总皂甙对冠状动脉结扎犬血流动力学及心肌缺血的影响[J].吉林大学学报(医学版),2006,32(3):383-386.
    [46]安钢力,于晓风,曲绍春,等.西洋参叶20S-原人参二醇组皂甙对鼠实验性心肌缺血的保护作用[J].吉林中医药,2005,25(1):48-49.
    [47]王绚卉,徐华丽,于晓风,等.西洋参二醇皂甙注射液对犬实验性心肌梗死的保护作用及其机制[J].中国药学杂志,2008,43(10):754-757.
    [48]曹霞,谷欣权,陈燕萍,等.西洋参茎叶三醇组皂甙对缺血再灌注损伤心肌的保护作用[J].中国老年学杂志,2004,24(7):654-655.
    [49]王承龙,缪宇,殷惠军,等.西洋参茎叶总皂甙对急性心肌梗死大鼠心肌能量代谢的影响[J].中华老年心脑血管病杂志,2005,7(5):341-343.
    [50]柳海滨,赵洪序,张秀和,等.西洋参二醇组皂甙对心肌缺血与再灌注损伤保护效果的临床观察[J].白求恩医科大学学报,1999,25(1):47-48.
    [51]殷惠军,张颖,蒋跃绒,等.西洋参叶总皂甙对急性心肌梗死大鼠心肌细胞凋亡及凋亡相关基因表达的影响[J].中国中西医结合杂志,2005,25(3):232-235.
    [52]马琼英,周文祥,高鸣,等.西洋参茎叶皂甙对中分子物质损伤心肌的保护作用的实验研究[J].中国中西医结合肾病杂志,2000,1(2):79-81.
    [53]关利新,衣欣,杨世杰,等.西洋参茎叶皂甙对大鼠心肌细胞Ca2+内流的影响[J].中国药理与临床,2004,20(6):8-9.
    [54]睢大员,于晓风,曲绍春,等.西洋参叶20S-原人参二醇组皂甙对大鼠实验性心室重构的影响[J].中国药学杂志,2007,42(2):108-112.
    [55]鞠传静,张志国,赵学忠,等.西洋参叶二醇组皂甙对大鼠实验性心室重构的保护作用[J].中国老年学杂志,2007,27(22):2173-2175.
    [56]范宝晶,裴非,赵学忠.西洋参茎叶总皂甙对心肌肥厚大鼠血管内皮功能的影响[J].中国老年学杂志,2009,29:811-812.
    [57]王承龙,史大卓,殷惠军,等.西洋参茎叶总皂甙对急性心肌梗死大鼠心肌VEGF、bFGF表达及血管新生的影响[J].中国中西医结合杂志,2007,27(4):331-334.
    [58]杜键,张治国,李洋,等.西洋参叶二醇组皂甙对血管平滑及细胞增殖及凋亡的影响[J].中国老年学杂志,2007,27(21):2085-2088.
    [59]徐海燕,马沛然.西洋参对小鼠病毒性心肌炎的疗效及机制[J].山东中医药大学学报,2002,26(6):458.
    [60]林艳,藤清,邢丽君.西洋参粉治疗病毒性心肌炎13例[J].护理研究,2004,18(2):296.
    [61]吴捷,于晓江,刘传镐.西洋参茎叶皂甙对离体家兔胸主动脉条的作用[J].中国药理学与毒理学杂志,1995,9(2):155-156.
    [62]P Mark Stavro, Minma Woo. North American ginseng exerts a neutral effect on blood pressure in individuals with hypertension[J]. Hypertension,2005,6 (6):411.
    [63]周明学,徐浩,史大卓,等.西洋参茎叶皂甙对载脂蛋白E基因敲除小鼠血脂及脂质代谢相关基因周脂素和CD36表达的影响[J].中国动脉硬化杂志,2007,15(12):881-884.
    [1]Kaufman R J. Orchestrating the unfolded protein response in health and disease [J]. J Clin Invest,2002,110 (10):1389-1398.
    [2]Kozutsumi Y, Segal M, Normington K, et al. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins[J]. Nature,1988,332 (6163):462-464.
    [3]Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress[J]. Cell Death Differ,2004,11 (4):381.
    [4]Yoshida H. ER stress and diseases[J]. FEBS J,2007,274 (3):630-658.
    [5]Yoshida H, Matsui T, Yamamoto A, et al. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor[J]. Cell,2001,107 (7):881-891.
    [6]Srinivasan S, Ohsugi M, Liu Z, et al. Endoplasmic reticulum stress induced apoptosis is partly mediated by reduced insulin signaling through phosphatidyl inositol 3-kinase/Akt and increased glycogen synthase Kinase-3 B in mouse insulinoma cells[J]. Diabetes,2005,54 (4):968-975.
    [7]Espostei M, Erler J, Hickman J, et al. Bid, a widely expressed proapoptotic protein of the Bcl-2 family, displays lipid transfer activity[J]. Mol Cell Biol,2001, 21 (21):7268-7276.
    [8]Ma Y, Brewer JW, Diehl JA, et al. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response [J]. J Mol Biol,2002,318 (5):1351-1365.
    [9]Dizhe AA, Levshankov Al, Krasovskaia IE, et al. Intracellular disorders in myocardium of dogs during cardiogenic shock and possibilities of their correction[J]. Anesteziol Reanimatol,2003,4:59-61.
    [10]Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress[J]. Cell Death Differ,2004,11 (4):381-389.
    [11]Diane RF, Constantinos K. The PERK/eIF2a/ATF4 module of the UPR in hypoxia resistance and tumor growth[J]. Cancer Biology & Therapy,2006,5 (7): 723-728.
    [12]Glembotski CC. The role of the unfolded protein response in the heart [J]. J Mol Cell Cardiol,2008,44:453-459.
    [13]Zeng L, Zampetaki A, Marqariti A, et al. Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow[J]. P Natl Acad Sci,2009,106 (20):8326-8331.
    [14]Nishitoh H, Matsuzawa A, Tobiume K, et al. ASK1 is essential for endoplasmic reticulum stress induced cell death triggered by expanded polyglutamine repeats[J]. Genes Dev,2002,16 (11):1345-1355.
    [15]Du Y, Wang K, Fang H, et al. Coordination of intrinsic, extrinsic and endoplasmic reticulum-mediated apoptosis by imatinib mesylate combined with arsenic trioxide in chronic myeloid leukemia[J]. Blood,2006,107 (4):1582-1590.
    [16]Siman R, Flood D, Thinakaran G, et al. Endoplasmic reticulum stress-induced cysteine protease activation in cortical neurons:effect of an Alzheimer's disease-linked presenilin-1 knock-in mutation[J]. J Biol Chem,2001,276 (48): 44736-44743.
    [17]Doroudgar S, Thuerauf DJ, Marcinko MC, et al. Ischemia activates the ATF6 branch of the endoplasmic reticulum stress response [J]. J Biol Chem,2009,284 (43): 29735-29745.
    [18]Kogler H, Schott P, Toischer K, et al. Relevance of brain natriuretic peptide in preload-dependent regulation of cardiac sarcoplasmic reticulum Ca2+ATPase expression[J]. Circulation,2006,113 (23):2724-2732.
    [19]Nakagawa T, Zhu H, Motidhims N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-h[J]. Nature, 2002,403 (6765):98-103.
    [20]Szegezdi E, Duffy A, O'Mahoney ME, et al. ER stress contributes to ischemia-induced cardiomyocyte apoptosis[J]. Biochem Bioph Res Co,2006,349 (4),1406-1411.
    [21]Azfer A, Niu J, Rogers LM, et al. Activation of endoplasmic reticulum stress response during the development of ischemic heart disease[J]. Am J Physiol Heart Circ Physiol,2006,291 (3):H1411.
    [22]Thuerauf DJ, Marcinko M, Gude N, et al. Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes[J]. Circ Res,2006,99:275-282.
    [23]Terai K, Hiramot O Y, Masaki M, et al. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress [J]. Mol Cell Biol,2005,25 (21):9554.
    [24]Reeve JL, Szegezdi E, Logue SE, et al. Distinct mechanisms of cardiomyocyte apoptosis induced by doxorubicin and hypoxia converge on mitochondria and are inhibited by Bcl-X1 [J]. J Cell Mol Med,2007,11:509-520.
    [25]Pan YX, Lin L, Ren AJ, el al. HSP7O and GRP78 induced by endothelin-1 pretreatment enhance tolerance to hypoxia in cultured neonatal rat cardiomyoeytes [J]. J Cardiovasc Pharmacol,2004,44 (suppl 1):s117-s120.
    [26]Harpster MH, Bandyopadhyay S, Thomas DP, et al. Earliest changes in the left ventricular transcription postmyocardial infarction[J]. Mamm Genome,2006,17(7): 701-715.
    [27]Kaminski KA, Bonda TA, Korecki J, et al. Oxidative stress and neutrophil activation-the two key stones of ischemia/reperfusion injury[J]. Int J Cardiol,2002, 86(1):41.
    [28]Talukder MA, Yang F, Nishijima Y, et al. Reduced SERCA2a converts sub-lethal myocardial injury to infarction and affects postischemic functional recovery[J]. J Mol Cell Cardiol,2009,46 (2):285.
    [29]Nickson P, Toth A, Erhardt P. PUMA is critical for neonatal cardiomyocyte apoptosis induced by endoplasmic reticulum stress[J]. Cardiovasc Res,2007,73 (1): 48-56.
    [30]Hofgaard JP, Sigurdardottir KS, Treiman M. Protection by 6-aminonicotinamide against oxidative stress in cardiac cells[J]. Pharmacol Res,2006,54 (4):303-310.
    [31]马青变,高炜,郭艳红,等.缺氧复氧诱导大鼠心肌细胞ERS反应.北京大学学报(医学版)[J],2005,37:386-387.
    [32]Shibata M, Hattori H, Sasaki T, et al. Activation of caspase 12 by endoplasmic reticulum stress induced by transient middle cerebral artery occlusion in mice[J]. Neuroscience,2003,118:491-499.
    [33]Zhang GG, Teng X, Liu Y, et al. Inhibition of endoplasm reticulum stress by ghrelin protects against ischemia/reperfusion injury in rat heart[J]. Peptides,2009, 30:1109-1116.
    [34]Qi X, Vallentin A, Churchill E, et al. deltaPKC participates in the endoplesmic reticulum stress-induced response in cultured cardiac myocytes and ischemic heart [J]. J Mol Cell Cardiol,2007,43 (4):420-428.
    [35]Martiedale JJ, Fernandez R, Thuemuf D, et al. Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6[J]. Circ Res,2006,98 (9): 1186-1193.
    [36]Liu XH, Zhang ZY. Sun S, et al. Ischemic postconditioning protects myocardium from ischemia/repedusion injury by attenuating endoplasmic reticulum stress[J]. Shock,2008,30(4):422-427.
    [37]Natarajan R, Salloum FN, Fisher BJ, et al. Prolylhydroxylase inhibition attenuates post-ischemic cardiac injury via induction of endoplasmic reticulum stress genes[J]. Vasc Pharmacol,2009,51:110-118.
    [38]Okada Ken, Minamino T, Tsukamoto Y, et al. Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction:possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis, Circulation,2004,110 (6):705.
    [39]张振英,刘秀华,孙胜,等C/EBP同源蛋白介导的内质网应激相关凋亡途径参与腹主动脉狭窄致大鼠心肌肥厚[J].生理学报,2009,61(2):161-168.
    [40]Takeuchi S. Molecular cloning, sequence, function and structural basis of human heart 150kDa oxygen-regulated protein, an ER chaperone[J]. Protein J,2006, 25(7-8):517-528.
    [41]Niu J, Azfer A, Rogers LM, et al. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy[J]. Cardiovasc Res, 2007,73:549-559.
    [42]SunY, Liu G, song T, et al. Upregulation of GRP78 and caspase 12 in diastolic failing heart[J]. Acts Bioehim Pol,2008,55 (3):511-516.
    [43]Werstuck GH, Lentz SR, Dayal S,et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways[J]. J Clin Invest,2001,107:1263-1273.
    [44]Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease[J]. Cell Death Differ,2004,11: suppl 1,S56-S64.
    [45]Feng B, Yao PM, Li Y, et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages[J]. Nat Cell Biol,2003,5:781-792.
    [46]Tabas I. Cholesterol in health and disease[J]. J Clin Invest,2002,110:583-590.
    [47]Tabas I. Consequences of cellular cholesterol accumulation:basic concepts and physiological implications[J]. J Clin Invest,2002,110:905-911.
    [48]Lim W, Timmins J, Seimon T, et al. Signal transducer and activator of transcription-1 is critical for apoptosis in macrophages subjected to endoplasmic reticulum stress in vitro and in advanced atherosclerotic lesions in vivo[J]. Circulation,2008,117 (7):940-951.
    [49]Devries-Seimon T, Li Y, Yao P, et al. Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor[J]. J Cell Biol,2005,171 (1):61-73.
    [1]Brawnwald E, et al. Myocardial Reperfusion:A Double edged sword?[J]. J. Clin Invest,1995:76 (5):1713.
    [2]孔宪明.冠状动脉疾病与侧支循环[M].2版.北京:人民卫生出版社,2006:167-168.
    [3]Kaufman RJ. Stress signling from the lumen of the endoplasmic reticolum: coordination of gene transcriptional and translational controls[J]. Gene Dev,1999, 13 (10):1211-1233.
    [4]Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ,2004,11 (4):381-389.
    [5]Zhang PL, Lun M, Teng J, et al. Preinduced molecular chaperones in the endoplasmic reticulum protect cardiomyocytes from lethal injury[J]. Ann Clin Lab Sci,2004,34 (4):449-457.
    [6]Boya P1, Cohen N, Zamzami HL, et al. Endoplasmic reticulum stress induced cell death requires mitochondrial membrane permeabilization[J]. Cell Death Differ, 2002,9:465-467.
    [7]Breckenridge DG, Germain M, Mathai JP, et al. Regulation of apoptosis by endoplasmic retieulum pathways[J]. Oncogene,2003,22:8608-8618.
    [8]崔德深,高镇生.西洋参[M].北京:人民卫生出版社,1984:171.
    [9]丁涛,徐慧波,孙晓波,等.西洋参茎叶总皂甙对心肌缺血的保护作用[J].中药药理与临床,2002,18(4):14-15.
    [10]陆丰,睢大员,于晓风,等.西洋参叶20S-原人参二醇组皂甙对急性心肌梗死大鼠交感神经递质及肾素-血管紧张素系统的影响[J].中草药,2001,32(7):619-621.
    [11]刘尚欲,睢大员,于晓风,等.西洋参叶20S-原人参二醇组皂甙对急性心肌梗死犬血流动力学和氧代谢的影响[J].中国药学杂志,2001,36(1):25-29.
    [12]武淑芳,睢大员,于晓风,等.西洋参叶20S-原人参二醇组皂甙抗实验性心肌缺血作用及其机制[J].中国药学杂志,2002,37(2):100-103.
    [13]曹霞,谷欣权,陈燕萍,等.西洋参茎叶三醇组皂甙对缺血再灌注损伤心肌的保护作用[J].中国老年学杂志,2004,24:654-655.
    [14]殷惠军,张颖,蒋跃绒,等.西洋参叶总皂甙对急性心肌梗死大鼠心肌细胞凋亡及凋亡相关基因表达的影响[J].中国中西医结合杂志,2005,25(3):232-235.
    [1]Murry CE, Jennings RB, Reimer KA, et al. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium [J]. Circulation,1986,74 (5): 1124-1136.
    [2]Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparison with ischemic preconditioning [J]. Am J Physiol Heart Circ Physiol,2003,285 (2):H579-H 588.
    [3]金祝秋,陈修.药理性预适应的心脏保护作用.国外医学生理、病理科学与临床分册[J].1997,1、7(2):106-109.
    [4]丁涛,徐慧波,孙晓波,等.西洋参茎叶总皂甙对心肌缺血的保护作用[J].中药药理与临床,2002,18(4):14-15.
    [5]武淑芳,睢大员,于晓风,等.西洋参叶20S-原人参二醇组皂甙抗实验性心肌缺血作用及其机制[J].中国药学杂志,2002,37(2):100-103.
    [6]赵秀梅,孙胜,刘秀华.垫扎球囊法复制大鼠在体心肌缺血/再灌注模型[J].中国微循环,2007,11(3):206-208.
    [7]Liu X H, Grund F, kanellopoulos G K, et al. Myocardial extracellular signal regulatory kinases are activated by laser treatment[J]. Cardiovascular suregery,2003, 44(1):1-7.
    [8]Simpson P, Savion S. Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Cross-striations, ultrastructure, and chronotropic response to isoproterenol [J].Circ Res,1982,50 (1):101-16.
    [9]Li YZ, Liu XH, Rong F:Puma mediates the apoptotic signal of hypoxia/reoxygenation in cardiomyocytes through mitochondrial pathway [J]. Shock, 35(6):579-584,2011.
    [10]Rabkin SW, Kong JY. Nitroprusside induces cardiomyocyte death:interaction with hydrogen peroxide [J]. Am J Physiol Heart Cire Physiol,2000,279 (6): H3089-H3100.
    [11]Liu XH, W u XD, Han Y, et al. Signal pathway of cardioprotection induced by monophosphoryl lipid A in rabbit myocardium [J]. Pathophysiology,2002,8 (3): 193-196.
    [12]Brawnwald E, et al. Myocardial Reperfusion:A Double edged sword?[J]. J Clin Invest,1995:76 (5):1713.
    [13]Zhao Z Q, Vinten Johansen. Myocardial apoptosis and ischemic preconditioning [J]. Cardiovascular Research,2002,55 (3):438-455.
    [14]Gottlieb R A, Burleson K O, Kloner R A, et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes[J]. J Clin Invest,1994,94 (10):1621-1628.
    [15]Musat-Marcu S, Gunter HE, Jugdutt BI, et al. Inhibition of apoptosis after ischemia-reperfusion in rat myocardium by cycloheximide [J]. J Mol Cell Cardiol, 1999,31:1073-1082.
    [16]Fliss H, Gattiuger D. Apoptosis in sachemic and reperfused rat myocardium [J]. Circ Res,1996,79 (5):949-956.
    [17]Zhao Z Q, Nakmaura M, Wang N P, et al. Progressively developed myocardial apoptotic cell death during late phase of Reperfusion[J]. Apoptosis,2001,6: 279-290.
    [18]Borutaite V, Brown GC. Mitochondria in apoptosis of ischemic heart [J]. FEBS Lett,2003,541 (1-3):1.
    [19]姚震,焦解歌,冯建章.心肌缺血再灌注损伤与细胞凋亡关系的实验研究[J].海南医学院学报,2000,6(3):129-133.
    [20]Kumar D, Jugdutt Bodhl. Apoptosis andoxidants in the heart[J]. J Lab Clin Med,2003,142 (5):288.
    [21]吴青,陶宏凯,陶大昌,等.灌注诱导心肌细胞凋亡及凋亡相关基因表达的研究[J].中国心血管病研究杂志,2004,2(11):905.
    [22]Xie Z, Koyama T, Suzuki J, et al. Coronary reperfusion following ischemia: different expression of bcl-2 and bax proteins, and cardiomyocyte apoptosis[J]. Jpn Heart J,2001,42 (6):759-770.
    [23]祝筱梅,刘秀华,蔡莉蓉.缺氧后处理对缺氧/复氧心肌细胞的保护作用及其机理研究[J].中国微循环,2007,11(4):223-230.
    [24]尹雪莲,成蓓.Urocortin调控bcl-2家族与大鼠缺氧/复氧心肌细胞凋亡[J].微循环学杂志,2005,15(4):22.
    [1]Li YZ, Liu XH, Rong F:Puma mediates the apoptotic signal of hypoxia/reoxygenation in cardiomyocytes through mitochondrial pathway[J]. Shock, 35 (6):579-584,2011.
    [2]Boya P1, Cohen N, Zamzami HL, et al. Endoplasmic reticulum stress induced cell death requires mitochondrial membrane permeabilization[J]. Cell Death Differ, 2002,9 (4):465-67.
    [3]Breckenridge DG, Germain M, Mathai JP, et al. Regulation of apoptosis by endoplasmic retieulum pathways[J]. Oncogene,2003,22 (53):8608—8618.
    [4]Shibata M,Hattori H, Sasaki T, et al. Activation of caspase-12 by endoplasmic reticulum stress induced by transient middle cerebral artery occlusion in mice[J]. Neuroscience,2003,118 (2):491-499.
    [5]Vilatoba M, Eckstein C, Bilbao G, et al. Sodium 4phenylbutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum stress mediated apoptosis[J]. Surgery,2005,138 (2):342-351.
    [6]Kaufman RJ. Stress signling from the lumen of the endoplasmic reticolum: coordination of gene transcriptional and translational controls[J]. Gene Dev,1999, 13(10):1211-1233.
    [7]Shibata M,Hattori H, Sasaki T, et al. Activation of caspase-12 by endoplasmic reticulum stress induced by transient middle cerebral artery occlusion in mice[J]. Neuroscience,2003,118 (2):491-499.
    [8]Flores-Diaz M, Higuita J C, Florin I, et al. A cellular UDP-glucose deficiency causes overexpression of glucose oxygen-regulated proteins independent of endoplasmic reticulum stress elements [J]. J Biol Chem,2004,279 (21): 21724-21731.
    [9]Eva Szegezdi, Angela Duffy, Martin E.O'Mahoney, et al. ER stress contributes to ischemia-induced cardiomyocyte apoptosis[J]. BBRC,2006,349 (4):1406-1411.
    [10]Ihara Y, Urata Y, Goto S, et al. Role of calreticulin in the sensitivity of myocardiac H9c;2 cells to oxidative stress caused by hydrogen peroxide[J]. Am J Physiol Cell Physiol,2006,290 (1):C208-C221.
    [12]Xiu-Hua Liu, Zhen-Ying Zhang, Sheng Sun, et al. Ischemic postconditioning protects myocardium from ischemia/reperfusion injury through attenuation endoplasmic reticulum stress [J]. Shock,2008,30 (4):422-427.
    [13]Hayashi T, Saito A, Okuno S, et al. Damage to the endoplasmic reticulum and activation of apoptotic machinery by oxidative stress in ischemic neurons[J]. J cereb blood flow metab,2005,25 (1):41-53.
    [14]Matindale J J, Fernandez R, Thuerauf D, et al. Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated from of ATF6 [J]. Cir Res,2006,98 (9): 1186-1193.
    [15]Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004; 11(4):381-389.
    [16]Friedman AD. GADD153/CHOP, a DNA damage-inducible protein, reduced CAAT/enhancer binding protein activities and increased apoptosis in 32D c13 myeloid cells [J]. Cancer Res,1996,56 (14):3250-3256.
    [17]K.D. McCullough, J.L. Martindale, L.O. Klotz, T.Y. Aw, et al, Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl-2 and perturbing the cellular redox state, Mol.Cell. Biol.21 (2001) 1249-1259.
    [18]Kitano H, Nishimura H, Tachibana H, et al. ORP150 ameliorates ischemia/reperfusion injury from middle cerebral artery occlusion in mouse brain[J]. Brain Res,2004,1015 (1-2):122-128.
    [19]E. Szegezdi, U. Fitzgerald, A. Samali, Caspase-12 and ER-stressmediated apoptosis:the story so far[J]. Ann. N.Y. Acad. Sci,2003,1010:186-194.
    [20]Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta[J]. Nature,2000,403,98-103.
    [21]Mano A, Tatsumi T, Shiraishi J, et al. Aldosterone directly induces myocyte apoptosis through calcineurin-dependent pathways[J]. Circulation,2004,110 (3): 317-323.
    [22]Ma QB(马青变),Gao W, Guo YH, et al. Hypoxia/reoxygen induced endoplasmic reticulum stress in cultured neonatal rat cardiomyocyte[J]. J Peking Univ(Health Sci)北京大学学报(医学版),2005,37(4):386-388.
    [23]祝筱梅,刘秀华,蔡莉蓉,等.P38丝裂素活化蛋白激酶介导低氧预处理诱导的内质网应激相关的心肌细胞保护[J].生理学报,2006,58(5):463-470.
    [24]Zhang PL, Lun M, Teng J, et al. Preinduced molecular chaperones in the endoplasmic reticulum protect cardiomyocytes from lethal injury[J]. Ann Clin Lab Sci,2004,34 (4):449-457.
    [25]Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress[J]. Cell Death Differ,2004,11 (4):381-389.
    [26]徐菲菲,刘秀华,张振英等.低氧后处理诱导钙网蛋白表达上调的心肌保护机制[J1.生理学报,2009,61(1):35-42.
    [27]Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D.CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum[J].Genes Dev.1998,12 (7):982-95.
    [28]McCullough KD, Martindale JL, Klotz LO, et al. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl-2 and perturbing the cellular redox state[J]. Mol Cell Biol,2001,21 (4):1249-1259.
    [29]Nieto-Miguel T, Fonteriz RI, Vay L, Gajate C, et al. Endoplasmic reticulum stress in the proapoptotic action of edeifosine in solid tumor cells[J].Cancer Res,2007,67 (21):10368-10378.
    [30]Gotoh T, Terada K, Oyadomari S, et al. hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria[J].Cell Death Differ,2004,11 (4):390-402.
    [1]关利新,衣欣,杨世杰,等.西洋参茎叶皂甙对大鼠心肌细胞Ca2+内流的影响[J].中国药理与临床,2004,20(6):8-9.
    [2]Li J, Wang J, Russel FD, et al. Activation of calcineurin in human failing heart ventricle by endothelin-1, angiotensin Ⅱ and Ⅱ[J]. Br J Phamacol,2005, 145:432-440.
    [3]Li YZ, Liu XH, Rong F:Puma mediates the apoptotic signal of hypoxia/reoxygenation in cardiomyocytes through mitochondrial pathway [J]. Shock, 35(6):579-584,2011.
    [4]Agostinho P, Lopes J P, Velez Z, et al. Overactivation of calcineurin induced by amyloid-beta and prion proteins [J]. Neurochem Int,2008,52(6):1226-1233.
    [5]Bueno OF, Lips DJ, Kaiser RA, et al. Calcineurin Aβ gene targeting predispose the myocardium to acute ischemia-induced apoptosis and dysfunction [J]. Circ Res, 2004,94(1):91-99.
    [6]Bueno OF, Lips DJ, Kaiser RA, et al. Calcineurin Aβ gene targeting predispose the myocardium to acute ischemia-induced apoptosis and dysfunction [J]. Circ Res, 2004,94(1):91-99.
    [7]Singh K, Commnal C, Sawyer DB, et al. Adrenergic regulation of myocardial apoptosis [J]. Cardiovasc Res,2000,45(3):713-719.
    [8]李文霞,沈小梅,陈侠,等.钙调神经磷酸酶在老龄大鼠心肌缺血再灌注损伤所致细胞凋亡中的作用[J].中西医结合心脑血管病杂志,2009,7(9):1067-1069.
    [9]Ikeda Y, Miura T, Sakamoto J, et al. Activation of ERK and suppression of calcineurin are interacting mechanisms of cardioproteetion afforded by delta-opioid receptor activation [J]. Basic Res Cardiol,2006,101(5):418—426.
    [10]Nathan M, Friehs I, Choi YH, et al. Involvement of nuclear factor of activated T—cells (NFATc) in calcineurin-mediated ischemic brain damage in vivo [J]. Yao Xue Xue Bao,2005,40(4):299—305.
    [11]姚树桐,刘秀华,赵秀梅等.钙调神经磷酸酶的抑制参与大鼠心脏缺血后处理的保护作用[J].2008,24(12):2289-2294.
    [12]张秀娥,成蓓,彭雯,等P38MAPK信号通路在钙调磷酸酶促心肌凋亡中的作用[J].中国病理生理杂志,2008,24(2):266-269.
    [13]沈小梅,张巨艳,成蓓等.钙调磷酸酶Aα基因过表达在缺血/再灌注和肾上腺素能受体介导的心肌凋亡中的作用[J].南方医科大学学报,2006,26(11):1633-1636.
    [14]Mano A, Tatsumi T, Shiraishi J, et al. Aldosterone directly induces myocyte apoptosis through calcineurin-dependent pathways[J]. Circulation,2004,110(3): 317-323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700