分布式发电系统接地保护与无功补偿技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小水电和风力发电是重要的分布式发电(Distributed Generation,DG)技术,近年来发展迅速。配电网接入DG后,其结构和故障后的故障电流及电压分布发生改变。小水电一般采用多台发电机并列运行;定子绕组单相接地故障是发电机最常见的故障类型,现有保护方法难以有选择性地检测故障点位置,判断故障发电机。风电场一般处于比较薄弱的电网末端,有功出力随风速随机变化,输电电缆和输变电设备消耗的无功功率也随之变化,影响风电场和互联电网的无功潮流和电压稳定。
     论文研究了分布式发电系统接地保护与无功补偿技术。针对配电网接入DG后的单相接地保护问题,通过分析接入DG的配电网各相电流故障分量特征,提出了基于对地计算电阻的单相接地保护方法,由故障相电压和相间差电流故障分量计算接地故障电阻。EMTP仿真分析结果表明该保护方法不受中性点接地方式和DG容量及接入位置的影响,具有较高的保护精度,灵敏度和鲁棒性。针对并列运行发电机定子单相接地保护问题,利用对地泄漏电流的基波和三次谐波故障分量相间差检测故障点,判断故障发电机,实现100%定子接地保护。EMTP仿真分析表明该保护方法适用于各种中性点接地方式且不受发电机运行工况影响,具有灵敏度高和鲁棒性强等优点。针对风电场无功-电压稳定问题,建立风电场多目标无功优化补偿模型,提出适用风电场内部电网的潮流计算方法,利用模态电压法确定风电场无功补偿点,运用改进遗传算法求解无功优化补偿模型,确定各补偿点最优补偿容量。理论分析和MATLAB仿真计算表明无功优化补偿模型及其求解模式的合理性和正确性。该无功补偿技术在合理的投资范围内降低了风电场网损,提高了风电场电压稳定水平。
Small hydroelectric power plant and wind farm are typical forms of Distributed Generation (DG), have developed rapidly in the recent years. With the increasing penetration of DG, the topology configuration of distributed networks (DN) is changed, as well as the distribution of fault current and voltage. More than one generator directly connects to a common bus in a small hydroelectric power plant, which is defined as a multi-generator-system (MGS). Hydroelectric generators are often subjected to grounding faults in their stators. It is difficult to detect the fault location and the fault generator in the MGS by traditional stator grounding protection schemes. Wind farms generally lie in the terminal of power grid. The active power output of wind turbine generators varies along with the wind whose speed changes randomly. The reactive power absorbed by power equipments and cables is also varied, So that the reactive power flow and voltage stability of the DG system will be influenced.
     The schemes of grounding protection and reactive compensation for DG are studied in this thesis. In order to improve the grounding protection of DN with DG, a novel grounding resistance based single-phase grounding protection scheme is proposed. The grounding resistance is calculated by the faulted phase voltage and the fault component of phase currents difference. EMTP simulation results show that the protection scheme can detect the faulted feeder with high precision, and without influenced by neutral point grounding methods, the capacity and location of DG. In order to detect the generator with stator winding single-phase grounding fault in MGS, two protection schemes with the fundamental and the third harmonic fault components of the stator winding leakage current are proposed respectively. EMTP simulation results show that the protection scheme can detect the generator with grounding faults in the total (100%) stator winding and the condition of all kinds neutral grounding methods with high sensitivity and selectivity. In order to improve the reactive power-voltage stability of wind farms, a multi-objective optimal reactive power compensation model and a power flow calculation method are proposed. Modal voltage analysis is used to determine the candidate installation locations of the reactive compensation devices, and the improved genetic algorithm (GA) is applied to solve the reactive power compensation model and cuaculate the best compensation capacity. MATLAB simulation results show that the proposed scheme is with rationality and validity. The reactive power compensation techniques reduce power loss and improve voltage stability with rational investment.
引文
[1] 易欣,陆于平. 分布式发电及其在电力系统中的应用研究综述. 电网技术,2003, 27(12):71-75
    [2] 李蓓,李兴源. 分布式发电及其对配电网的影响. 国际电力,2005,29(3):53-58
    [3] 王建,李兴源,邱晓燕. 含有分布式发电装置的电力系统研究综述. 电力系统自动化,2005,29 (24):90-97
    [4] 韦钢,吴伟力,胡丹云等. 分布式电源及其并网时对电网的影响. 高电压技术, 2007,1(33):36-40
    [5] 要焕年,曹梅月. 电力系统谐振接地. 北京: 中国电力出版社,2000, 3-18
    [6] 贺家李,宋从矩. 电力系统继电保护原理. 第三版. 北京:中国电力出版社,2007, 56-57,188-201
    [7] IEEE Std.242-2001. IEEE recommended practice for grounding of industrial and commercial power systems. 2001, 11-28.
    [8] 李福寿. 中性点非有效接地电网的运行. 北京:水利电力出版社,1993,87-104.
    [9] 方瑜. 配电网过电压. 北京:中国电力出版社,1994,1-3
    [10] 龚静,周有庆,王娜等. 小电流接地系统单相接地故障选线诸方法原理及利弊探讨. 电站系统工程,2004,20(1):31-33
    [11] 王志群,朱守真,周双喜等. 分布式发电对配电网电压分布的影响. 电力系统自动化,2004,28(16):56-60
    [12] 张超,计建仁,夏翔. 分布式发电对配电网线路保护的影响. 继电器,2006,34 (13):9-12
    [13] 王希舟,陈鑫,罗龙,甘德强. 分布式发电与配电网保护协调性研究. 继电器, 2006,34(3):14-19
    [14] 王维俭,侯炳蕴. 大型机组继电保护理论基础. 第二版. 北京:水利电力出版社, 1989,221-282
    [15] 王维俭. 电气主设备继电保护原理与应用.北京:中国电力出版社,1996,131-210
    [16] 国家电力调度通信中心. 发电机变压器继电保护应用.第二版.北京:中国电力出版社,2005, 108-157
    [17] 王维俭,王祥珩,王赞基. 大型发电机变压器内部故障分析与继电保护. 北京:中国电力出版社,2006, 101-204
    [18] 迟永宁,刘燕华,王伟胜. 风电接入对电力系统的影响. 电网技术, 2007, 31(3):77-81.
    [19] 雷亚洲,Gordon Lightbody. 国外风力发电导则及动态模型简介. 电网技术, 2005, 29(12):27-32.
    [20] 于德龙,赵海翔,曹娜等. 风电场接入地区电网的电压问题分析. 中国电力,2006, 39(6):10-14
    [21] 马幼捷,张继东,周雪松等. 风电场的稳定问题. 可再生能源,2006,3(127):37-39
    [22] 陈树勇,申洪,张洋等. 基于遗传算法的风电场无功补偿及控制方法的研究. 中国电机工程学报,2005,25( 8):1-6
    [23] 陈实,谢少军. 大型风电场风电机组动态无功补偿装置的研究. 华北电力技术, 2004,(4): 26-29
    [24] 郝玉山,杨以涵等. 小电流接地微机选线的群体比幅比相原理. 电力情报,1994, 2,14-19
    [25] 袁进伶,张涛. 6~66KV 电力系统电容电流自动跟踪补偿及接地选线装置原理及应用. 中国电力,1998,31(1):67-68
    [26] 曾祥君,尹项根,张哲等. 零序导纳法线路接地保护的研究. 中国电机工程学报,2001, 21(4):4-10
    [27] Zeng Xiangjun, Yin Xianggen, Chen Deshu, et al. New Principle for Grounding Fault Feeder Detection in MV Distributions with Neutral Ineffectively Earthed. Journal of Southeast University(English Edition),2000,16 (1):64-69
    [28] 曾祥君,尹项根,张哲等. 配电网接地故障负序电流分布及接地保护原理研究. 中国电机工程学报,2001,21(6):84-89
    [29] 张兰,龚静,周有庆. 小电流接地系统单相接地暂态保护判据研究. 湖南大学学报,2004,31(2):70-73
    [30] 何奔腾,金华烽等. 能量方向保护原理和特性研究. 中国电机工程学报,1997, 17(3):166-170
    [31] Prakash K.S, Malik O.P, Hope G.S. Amplitude comparator based algorithm for directional comparison protection of transmission lines. IEEE Trans on Power Delivery, 1989, 4(4): 2032-2041
    [32] 肖鹏. 基于小波分析的小电流接地系统单相接地故障选线研究: [硕士学位论文]. 华北电力大学,北京,2000,22-37
    [33] 葛耀中. 小波变换与继电保护技术. 继电器,1998,26(4):1-6
    [34] 张立华,徐文立. 小接地电流系统单相接地故障选线的一种算法. 清华大学学报(自然科学版),1998,38(9):74-76
    [35] 郝玉山,马玉田等. 应用模糊推理的一种小电流接地保护原理. 电力情报,1994, 2,4-7
    [36] 刘宇,申东. 小电流系统单相接地选线的两种新思路. 继电器,1998,26(4):24-28
    [37] 桑在中,张慧芬等. 用注入法实现小电流接地系统单相接地选线保护. 电力系统自动化,1996,20(2):11-12
    [38] 曾祥君,尹项根,于永源等. 基于注入变频信号法的经消弧线圈接地系统控制与保护新方法. 中国电机工程学报,2000,20(1):29~32
    [39] 齐郑,刘宝柱,王璐等. 广域残流增量选线方法在辐射状谐振接地系统中的应用. 电力系统自动化,2006,84-88
    [40] Welfondert, Leitlffv, Feuilleetr, et al. Location strategies and evaluation of detection algorithms for earth faults in compensated MV distribution systems. IEEE Transactions on Power Delivery, 2000, 15(4): 1121~1128
    [41] 陈晓科,徐玉琴,杜丁香. 小电流接地系统单相接地故障选线新发展. 电力自动化设备,2002,22(9):66-69
    [42] R. C. Dugan, T. E. McDermott. Operating conflicts for distributed generation on distribution systems. Rural Electric Power Conference, Arkansas, 2001,a3/1-a3/6
    [43] A. Girgis, S. Brahma. Effect of distributed generation on protective device coordination in distribution system. 2001 Large Engineering Systems Conf. on Power Engineering, Nova Scotia, Canada, 2001, 114-119
    [44] Su Sheng; Li K.K., Chan W.L., Zeng, X.J. et al. Agent-based wide area current differential protection system. Fourtieth Annual Industry Applications Conference, Vol.1, Oct.2005, 53-458
    [45] 苏盛,段献忠,曾祥君. 基于多 Agent 的广域电流差动保护系统, 电网技术,2005, 29(14):14-19
    [46] Zeng Xiangjun, Li K.K., Chan W.L., et al. Multi-agents based protection for distributed generation systems, Proc. of 2004 IEEE International Conf. on Electric Utility Deregulation, Restructuring and Power Technologies,2004, Vol.1,393-397
    [47] 毕大强. 大型水轮发电机定子绕组单相接地故障及保护方案的研究:[博士学位论文].北京:清华大学,2003,2-10
    [48] J.W.Pope. A Comparison of 100% Stator Grounding fault Protection Schemes for Generator Stator Windings. IEEE Trans. on Power Apparatus and Systems. 1984, No.4,832-840
    [49] Fulczyk, M. Voltage 3rd harmonic in generator stator winding at changes in generator load conditions. The 2003 IEEE Conference of Electric Machines and Drives, 2003,Vol.3,1476 -1482
    [50] Rifaat, R.M. Utilizing third harmonic 100% stator grounding fault protection, a cogeneration experience. The 2000 IEEE Conference of Industry Applications, 2000,Vol.5,3254-259
    [51] 穆大庆,尹项根. 中小型水电站中发电机定子单相接地保护原理的探讨. 继电器,2005,33(22):10-15
    [52] 毕大强,王祥珩,王维俭. 基于小波变换的发电机定子单相接地保护能量法. 电力系统自动化,2003,27(22): 50-55
    [53] IEEE Std.1547-2003. IEEE Standard for Interconnecting Distributed Resources with Electric Power System. 2003,20-60
    [54] 王兆安,杨君,刘进军,王跃. 谐波抑制和无功功率补偿. 第二版. 北京:机械工业出版社.2006,21-39
    [55] 缪梅. 基于 SVC 考虑谐波污染的无功优化:[硕士学位论文],南京:河海大学硕士学位论文,2007:9-10
    [56] 吴俊玲. 大型风电场并网运行的若干技术问题研究:[硕士学位论文], 北京:清华大学, 2004,53-55
    [57] 胡彩娥. 考虑静态电压稳定欲度的多目标电压-无功规划:[博士学位论文], 北京:中国农业大学,2004,41-43
    [58] 靳静,艾芊,赵岩. FACTS 装置在风电场中的无功补偿原理与仿真. 电力自动化设备,2007,27(8):58-61
    [59] 张洋.风力发电无功补偿容量及其控制方法的研究:[硕士学位论文], 吉林:东北电力大学,2005:21-41
    [60] 程伟,孔繁华,刘国富. 通榆风力发电厂送出补偿工. 吉林电力,2001,12(6):24-27
    [61] 陈琳,钟金,倪以信等. 含分布式发电的配电网无功优化. 电力系统自动化,2006, 30(14):20-24
    [62] 姚诸香,涂惠亚,徐国禹等. 基于灵敏度分析的无功优化潮流. 电力系统自动化, 1997,21(11):19-21
    [63] 石韦,韦化,白晓清. 含离散变量的大规模电力系统无功优化. 电力自动化设备, 2007,27(3):41-46
    [64] 李玉龙,宗伟,袁启洪. 基于一种不可行内点法的电力系统无功优化. 中国电力, 2007,40(2):19-22
    [65] F.G.M.Lima, S.Soares, A.Santos, et al. Galiana. Numerical Experiments with an Optimal Power Flow Algorithm Based on Parametric Techniques , IEEE Transactions on Power Systems, 2001, 16(3): 374-379
    [66] 马勇飞,周任军,王献敏等. 基于全局序列二次规划算法的无功优化.长沙电力学院学报,2006,21(3):12-15,41
    [67] 王承民,蒋传文. 配网无功电压实时优化集中控制策略研究. 电气应用, 2005, 24(10):44-47,58
    [68] 张文涛,丁坚勇. 基于 Box 算法的变电站无功优化. 电气应用,2007,26(2):28-33
    [69] Huang Y C, Yang H T, Huang C L. Solving the capacitor placement problem in a Radial Distribution System Using Tabu Search Approach ,IEEE Transactions On Power Systems, 1996,11(4): 1868-1873
    [70] K.H. Abdul-Rahman, S.M. Shahidehpour, M. Daneshdoost. An Approach to Optimal Var Control with Fuzzy Reactive Loads. IEEE Transactions on Power Systems, 1995, 10(1):88-97
    [71] Ying-Tung Hsiao, Hsiao-Dong Chiang, Chun-Chang, et al. A Computer Package for Optimal Multi-Objective Var Planning in Large Scale Power Systems. IEEE Transactions on Power Systems, 1994, 9(2): 668-676
    [72] 王小平 ,曹立明 .遗传算法 -理论引用与软件实现 .西安 :西安交通大学出版社,2002:68-85
    [73] 雷英杰,张善文,李续武,周创明. MATLAB 遗传算法工具箱及应用. 西安:西安电子科技大学出版社,2006:94-107,42-146
    [74] G.. Bakirtzis, P. N. Biskas, C. E. Zoumas, et al. Optimal Power Flow by Enhanced Genetic Algorithm. IEEE Transactions on Power Systems,2002,17(2): 229-236
    [75] 葛耀中. 新型继电保护和故障测距的原理与技术. 第二版, 西安交通大学出版社,2007,1-14
    [76] 申斌,孙同景,白羽等. DNP3.0 在基于 DSP 的 FTU 中的实现.电子技术应用,2004, 30(6):24-27
    [77] 田雨聪,倪晓明. 基于 PROFIBUS 开发的 FTU 及同步采样方法的研究. 电子技术应用,2003,29(7):33-35
    [78] 钱建良. TI DSP 软件开发方法. 电子产品世界,2003,05(A):14-15
    [79] 林崇智. 使用 DSP 完成 DTMF/MFC 信号的收发.电子产品世界,1999,7:28-28
    [80] 王承煦. 风力发电实用技术. 北京:金盾出版社,1995:17-33
    [81] Andres E Feijoo, Jose Cidras. Modeling of wind farms in the load flow analysis. IEEE Transactions on Power Systems,2000,15(1):110-115
    [82] 王守相,江兴月,王成山. 含风力发电机组的配电网潮流计算. 电网技术,2006, 30(21):42-61
    [83] 吴义纯,丁明,张立军. 含风电场的电力系统潮流计算. 中国电机工程学报,2005, 25(4):36-39
    [84] 周双喜,朱凌志,郭锡玖等. 电力系统电压稳定性及其控制. 北京:中国电力出版社,2004:220-225
    [85] 张勇军,任震,钟红梅. 基于灾变遗传算法无功规划优化. 电力系统自动化,2002, 26(23):29-32
    [86] GB/Z 19963-2005. 风电场接入电力系统技术规定. 2005,1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700