变压器维修决策的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力需求的迅速增长,变压器长期以来所采用的计划维修体制逐渐暴露出维修过剩、维修不足和维修成本不断攀升等问题;另一方面,近年来随着计算机技术和传感技术的快速发展,使得先进的状态维修技术得到了大力推广,受到广大研究人员的关注。本文重点研究了变压器状态维修问题,包括变压器维修方式选择问题、变压器状态评估问题、变压器故障诊断问题,最后设计并开发了变电设备维修管理系统。
     具体研究内容如下:
     提出了应用基于目标规划的模糊层次分析法来评价和选择变压器的维修方式,对于决策者给出的模糊判断,本文采用梯形模糊数进行建模。针对传统模糊层次分析法的缺陷,提出了目标规划的精确权重确定方法,避免了对模糊权重排序的问题。给出了变压器维修方式选择的具体应用过程,并与标准层次分析法进行了对比,说明了所提方法的正确性与合理性。
     分析并建立了变压器状态评估的指标体系,给出了指标归一化的方法,完善了指标的隶属度函数,引入灰色关联度处理缺失指标,减小指标缺失可能引起的状态评估的精确度。提出了OWA(Ordered Weighted Averaging)算子与模糊评判相结合的变压器状态综合评估模型。为了充分考虑指标权值和指标隶属度对评估结果的影响,引入一种基于OWA算子的模糊聚合转换函数以融合多个不同重要信息源的属性信息;模型分为两层,在第二层子指标采用模糊聚合法得到第一层主指标的模糊隶属度,第一层主指标采用OWA算子聚合最终的变压器综合状态评估,实例分析表明这种方法可以便捷的实现变压器状态评估,结论合理客观,接近于变压器运行的真实状态。
     提出了改进的免疫模糊聚类算法的变压器故障诊断的新方法。算法将已知故障类型样本作为初始抗体,对初始抗体群进行了混沌扰动,综合考虑了灰色关联度和模糊聚类目标函数两种因素作为衡量抗体抗原的亲和度优劣的评价标准,采用了混沌克隆和柯西变异算子相结合;仿真分析表明所提算法不仅有效的克服了模糊C均值聚类算法易陷入局部最小值的缺点,又能有效的抑制免疫进化过程中产生的“退化“现象,提高了后期的局部搜索能力,加快了收敛速度,在聚类的同时还考虑了故障样本的灰色关联度,进一步提高了故障分类的正确性。设计并开发了变电设备维修管理系统。详述了系统的需求分析、总体设计、基于MVC的详细设计与系统实现的关键技术等。
With the rapid growth in power demand, many problems arise gradually as thescheduled maintenance system has been adopted for Transformer for a long time,including maintenance excess, deficiencies and cost increment. On the other hand,with the rapid development of computer technology and sensing technology in recentyears, the advanced condition-based maintenance technology has been promotedgreatly, which was paid attention to by many researchers. This dissertation focuses onthe condition-based maintenance problems of the Transformer, especially on theapplication of transformer, including maintenance strategies selection of Transformer,condition assessment and fault diagnosis of transformer, and finally the design and thedevelopment of maintenance management system for the power transformationequipment. Details are described as follows:
     A systematic study of the optional maintenance strategies of the Transformer isconducted and a set of general factors which should be considered in the maintenancestrategies is established. A Fuzzy Analytic Hierarchy Process (FAHP) based on thegoal programming is proposed in view of the defects of the traditional Fuzzy AnalyticHierarchy Process (FAHP), and the specific application process of this method in thetransformer maintenance strategies selection is described. In addition, a comparisonwith the standard Analytic Hierarchy Process is made to clarify the validity of themethod proposed in this dissertation.
     The criteria system and criteria normalization method for the conditionassessment of Transformer is developed and membership function of the criteria isestablished. The establishment of Expert Weight is decided jointly by subjectiveweight and objective weight which is based on entropy weight thoughts, while thecriteria weight is gained by the weight which is derived from the standard AnalyticHierarchy Process and the Expert Weight. A Comprehensive Condition AssessmentModel of Transformer based on OWA(Ordered Weighted Averaging) operator andfuzzy assessment is proposed and divided into two layers, fuzzy polymerization isadopted for the second layer sub-criteria to get the fuzzy membership of the first layermain criteria, while OWA operator polymerized with the final comprehensivecondition assessment of the transformer is adopted for the main criteriaof the first layer. In order to fully consider the impact of criteria weight and membership on thecondition assessment result, a fuzzy polymerization conversion function based onOWA operator is introduced in the model, so as to integrate the attribute informationfrom various important information sources. Case analysis indicates that the conditionassessment of transformer can be carried out by this method; the reasonable andobjective conclusion is close to the true condition of transformer.
     The Chaos Immune Evolutionary Fuzzy Clustering algorithm which is based onGrey Relational Degree is proposed and applied to the fault diagnosis of transformer.Compared with Fuzzy C-Means algorithm and Fuzzy C-Means algorithm which isbased on immune, Fuzzy Clustering algorithm has faster convergence speed andhigher accuracy of fault classification. Chaotic disturbance for initial antibody groupis made by the model, two factors including Grey Relational Degree and FuzzyClustering Objective Function are taken into full consideration as an assessmentstandard of affinity degree of antibody and antigen, adaptive cauchy mutationoperator and chaotic clone operator are adopted, so as to reduce the impact of initialvalue on Fuzzy Clustering algorithm, improve the local search capability at laterstages and accelerate the convergence speed. What’s more, it can also effectively stopthe "degeneration" phenomenon generated in the immune process. The experimentalanalysis indicates that the Fuzzy Clustering algorithm can improve the accuracy offault classification.
     Power transformation equipment maintenance management system is designedand developed. Analysis of requirements, general design and detailed design based onMVC and key technology for implementation is described in detail.
     In this Dissertation, there are thirty-seven figures, fifty-four tables, and onehundred and seventy-six reference documents.
引文
[1]董玉亮.发电设备运行与维修决策支持系统研究[D].北京:华北电力大学(北京),2005.
    [2]李常有.维修决策理论研究及其在离心压缩机转子系统中的应用[D].哈尔滨:哈尔滨工业大学,2009.
    [3]朱承治.输变电设备优化检修(OM)若干关键技术研究[D].杭州:浙江大学,2008.
    [4]孙才新.重视和加强防止复杂气候环境及输变电设备故障导致电网大面积事故的安全技术研究[J].中国电力.2004(6):5-12.
    [5]孙才新.输变电设备状态在线监测与诊断技术现状和前景[J].中国电力.2005(2):1-7.
    [6]王双利.发电设备状态维修决策理论与方法研究[D].天津:天津大学,2007.
    [7]王健.电力市场环境下发电机组检修计划的研究[D].北京:中国农业大学,2004.
    [8]赵维印.日本全员生产维修概况及在中国的应用[J].工程机械与维修.2002(6):46-47.
    [9] Bamber C. J., Sharp J. M., Hides M. T. Factors affecting successful implementation of totalproductive maintenance: A UK manufacturing case study perspective[J]. Journal of (dualityin Maintenance Engineering.1999,5(3):162-181.
    [10] Ireland F., Dale B. G. A study of total productive maintenance implementation[J]. Journal ofduality in Maintenance Engineering.2001,7(3):183-191.
    [11]贾希胜.以可靠性为中心的维修决策模型[M].北京:国防工业出版社,2007.
    [12] de Almedia A. T., Bohoris G. A. Decision theory in maintenance decision making[J].Quality in Maintenance Engineering.1995,1(1):39-45.
    [13] Triantaphyllou E., Kovalerchuk B., Mann L., et al. Determining the most important criteriain maintenance decision making,[J]. Journal of Quality in Maintenance Engineering.1997,3(1):16-28.
    [14] Azadivar F., Shu V. Maintenancepolicyselection for JITproductionsystems[J]. InternationalJournal of Production Research.1999,37(16):3725-3738.
    [15] Luce S. Choice criteria in conditional preventive maintenance[J]. Mechanical Systems andSignal Processing.1999,13(1):163-168.
    [16] Castanier B., Berenguer C., Grall A. A model for maintenance cost optimization underavailability constraints[C]. Proceeding of Safety and reliability, ESREL2001Toward a saferworld,2001:1313-1320.
    [17] L fsten Hans. Management of industrial maintenance–economic evaluation ofmaintenance policies[J]. International Journal of Operations and Production Management.1999,19(7):716-737.
    [18] Bevilacqua M., Braglia M. The analytic hierarchy process applied to maintenance strategyselection[J]. Reliability Engineering& System Safety.2000,70(1):71-83.
    [19] Ivy J. S., Nembhard H. B. A modeling approach to maintenance decisions using statisticalquality control and organization[J]. Quality and Reliability Engineering International.2005,21:355-366.
    [20] Bertolini Massimo, Bevilacqua Maurizio. A combined goal programming—AHP approachto maintenance selection problem[J]. Reliability Engineering& System Safety.2006,91(7):839-848.
    [21] Tahir Zulkifli, Prabuwono Anton Satria, Aboobaider Burhanuddin Mohd. Maintenancedecision support system in small and medium industries: an approach to new optimizationmodel[J]. International Journal of Computer Science and Network Security.2008,8(11):155-162.
    [22] Jafari Azizollah, Jafarian Mehdi, Zareei Abalfazl, et al. Using fuzzy Delphi method inmaintenance strategy selection problem[J]. Journal of Uncertain Systems.2008,2(4):289-298.
    [23] Li Lin, You Mingyi, Ni Jun. Reliability-Based Dynamic Maintenance Threshold for FailurePrevention of Continuously Monitored Degrading Systems[J]. Journal of ManufacturingScience and Engineering.2009,131(3):31010.
    [24] Mechefske Chris K., Wang Zheng. USING FUZZY LINGUISTICS TO SELECTOPTIMUM MAINTENANCE AND CONDITION MONITORING STRATEGIES[J].Mechanical Systems and Signal Processing.2003,17(2):305-316.
    [25] Zadeh L. A. The concept of a linguistic variable and its application to approximatereasoning—I[J]. Information Sciences.1975,8(3):199-249.
    [26] Sharma Rajiv Kumar, Kumar Dinesh, Kumar Pradeep. FLM to select suitable maintenancestrategy in process industries using MISO model[J]. Journal of Quality in MaintenanceEngineering.2005,11(4):359-374.
    [27] Al-Najjar Basim, Alsyouf Imad. Selecting the most efficient maintenance approach usingfuzzy multiple criteria decision making[J]. International Journal of Production Economics.2003,84(1):85-100.
    [28] Bashiri Mahdi, Badri Hossein, Hejazi Taha Hossein. Selecting optimum maintenancestrategy by fuzzy interactive linear assignment method[J]. Applied Mathematical Modelling.2011,35(1):152-164.
    [29] Wang Ling, Chu Jian, Wu Jun. Selection of optimum maintenance strategies based on afuzzy analytic hierarchy process[J]. International Journal of Production Economics.2007,107(1):151-163.
    [30]吴波,丁毓峰,黎明发.机械系统可靠性维修机决策模型[M].北京:化学工业出版社,2007.
    [31] Wang Qiang, Zhang Jian, Qin Jun Qi, et al. The modeling method study of fault fuzzyforecast system[J]. Computer Measurement and Control.2002,10(1):23-25.
    [32]袁志坚,孙才新,李爱华,等.模糊多属性决策方法评价变压器状态维修策略[J].高电压技术.2004(8):33-35.
    [33]袁志坚,孙才新,李剑,等.基于模糊多属性群决策的变压器状态维修策略研究[J].电力系统自动化.2004(11):66-70.
    [34]顾煜炯,董玉亮,杨昆.基于模糊评判和RCM分析的发电设备状态综合评价[J].中国电机工程学报.2004(6):193-198.
    [35]陈伟根,吴娅,刘强.基于突变理论的断路器运行状态模糊综合评判方法[J].高压电器.2007(2):127-130.
    [36]吴娅,杨楚明,陈伟根.突变理论在高压断路器运行状态模糊综合评判中的应用[J].广东电力.2007(9):5-7.
    [37]郑钏.用模糊数学方法进行变压器状态评价的探讨[J].电力与电工.2009(4):21-23.
    [38]王有元,周婧婧,陈伟根,等.基于模糊决策的电力变压器风险评估方法[J].仪器仪表学报.2009(8):1662-1667.
    [39]陈伟根,魏延芹,廖瑞金.高压断路器运行状态的变权模糊综合评判方法[J].高压电器.2009(3):73-77.
    [40]骆思佳,廖瑞金,王有元,等.带变权的电力变压器状态模糊综合评判[J].高电压技术.2007(8):106-110.
    [41]熊浩,孙才新,杜鹏,等.基于物元理论的电力变压器状态综合评估[J].重庆大学学报(自然科学版).2006(10):24-28.
    [42]陈伟根,魏延芹,王有元.带变权的高压断路器状态物元评估方法[J].重庆大学学报.2009(2):151-157.
    [43]杨丽徙,于发威,包毅.基于物元理论的变压器绝缘状态分级评估[J].电力自动化设备.2010(6):55-59.
    [44]杜林,袁蕾,熊浩,等.电力变压器运行状态可拓层次评估[J].高电压技术.2011(4):897-903.
    [45]熊浩,孙才新,张昀,等.电力变压器运行状态的灰色层次评估模型[J].电力系统自动化.2007(7):55-60.
    [46]薛敏,韩富春.基于灰色理论的电力变压器运行状态评估[J].电气技术.2010(6):21-23.
    [47]李建坡,赵继印,郑蕊蕊,等.基于灰靶理论的电力变压器状态评估新方法[J].吉林大学学报(工学版).2008(1):201-205.
    [48]李建坡.基于油中溶解气体分析的电力变压器故障诊断技术的研究[D].吉林大学,2008.
    [49]田颖,苑津莎,张卫华.基于改进灰靶理论的变压器状态评估[J].黑龙江电力.2010(6):449-453.
    [50]孙娜,王玉凡,陆戌明.理想点法在变压器状态评估中的应用[J].电力科学与工程.2011(3):32-35.
    [51]朱永利,宫政,武中利,等.正态云模型在电力变压器状态评估中的应用[J].华北电力大学学报(自然科学版).2010(5):27-31.
    [52]何雷,李丽平.基于云模型的电力变压器状态综合评判[J].华北电力大学学报(自然科学版).2009(3):98-103.
    [53]胡庆春,王洋,张继权,等.基于灰熵的变压器绝缘状态评估[J].电力科学与工程.2011(1):16-22.
    [54]袁志坚.电力变压器状态维修决策方法的研究[D].重庆:重庆大学,2004.
    [55]郑蕊蕊,赵继印,赵婷婷,等.基于遗传支持向量机和灰色人工免疫算法的电力变压器故障诊断[J].中国电机工程学报.2011(7):56-63.
    [56]尚勇,闫春江,严璋,等.基于信息融合的大型油浸电力变压器故障诊断[J].中国电机工程学报.2002(7):115-118.
    [57]吴莉琳,蔡玉广.分层式信息融合在变压器状态评估中的应用[J].广东电力.2007(2):29-32.
    [58]朱承治,郭创新,孙旻,等.基于改进证据推理的变压器状态评估研究[J].高电压技术.2008(11):2332-2337.
    [59]齐振忠,刘建新,张卫华,等.多信息融合的变压器实时状态评估[J].电气时代.2009(2):72-74.
    [60]吴米佳,卢锦玲.基于改进粒子群算法与支持向量机的变压器状态评估[J].电力科学与工程.2011(3):27-31.
    [61]张哲,赵文清,朱永利,等.基于支持向量回归的电力变压器状态评估[J].电力自动化设备.2010(4):81-84.
    [62] M. Morais R., A. Mannheimer W., M. Carballeira, et al. Furfural analysis for assessingdegradation of thermally upgraded papers in transformer insulation [J]. IEEE Transactions onDielectrics and Electrical Insulation.1999,6(2):159-163.
    [63]国家质量监督检验检疫总局. GB/T7252-2001变压器油中溶解气体分析和判断导则
    [Z].20021-16.
    [64] Sun Huo-Ching, Huang Yann-Chang, Huang Chao-Ming. A Review of Dissolved GasAnalysis in Power Transformers[J]. Energy Procedia.2012,14(0):1220-1225.
    [65]潘翀.电力变压器绝缘故障诊断技术及热状态参量预测模型研究[D].重庆大学,2009.
    [66] Halstead W. D. A thermodynamic assessment of the formation of gaseous hydrocarbons infaulty transformers[J]. J. Inst. Petroleum.1973,59(9):239-241.
    [67] E Dornenburg, W Strittmatter. Monitoring oil-cooled transformers by gas analysis[J].Brown Boveri Review.1974,61:238-247.
    [68] Rr Rogers. IEEE and IEC codes to interpret incipient faults in transformers using gas in oilanalysis[J]. IEEE Transactions on Electrical Insulation.1978,13:349-354.
    [69]操敦奎.变压器油色谱分析与故障诊断[M].北京:中国电力出版社,2010.
    [70]胡青.基于电力变压器故障特征气体分层特性的诊断与预测方法研究[D].重庆大学,2010.
    [71]孙才新,陈伟根,李俭等.电气设备油中气体在线监测与故障诊断技术[M].北京:科学出版社,2003.
    [72]张军.计算智能[M].北京:清华大学出版社,2009.
    [73] Sun Huo-Ching, Huang Yann-Chang, Huang Chao-Ming. Fault Diagnosis of PowerTransformers Using Computational Intelligence: A Review[J]. Energy Procedia.2012,14(0):1226-1231.
    [74]徐文,王大忠,周泽存.基于模糊理论的变压器故障诊断专家系统[J].电力系统自动化.1995(6):32-37.
    [75]关杰林,徐国禹.模糊神经网络在变压器故障诊断中的应用[J].重庆大学学报(自然科学版).1997(6):75-78.
    [76]王大忠,徐文,周泽存,等.模糊理论、专家系统及人工神经网络在电力变压器故障诊断中应用──基于油中溶解气体进行分析诊断[J].中国电机工程学报.1996(5):349-353.
    [77]张鸣柳,孙才新.变压器油中气体色谱分析中以模糊综合评判进行故障诊断的研究[J].电工技术学报.1998(1):52-55.
    [78]杨莉,尚勇,周跃峰,等.基于概率推理和模糊数学的变压器综合故障诊断模型[J].中国电机工程学报.2000(7):20-24.
    [79]孙才新,郭俊峰,廖瑞金,等.变压器油中溶解气体分析中的模糊模式多层聚类故障诊断方法的研究[J].中国电机工程学报.2001(2).
    [80]熊浩,李卫国,畅广辉,等.模糊粗糙集理论在变压器故障诊断中的应用[J].中国电机工程学报.2008(7):141-147.
    [81] Huang Y. C., Yang H. T., Huang. C. L. Developing a new transformer fault diagnosissystem through evolutionary fuzzy logic[J]. IEEE Transactions on Power Delivery.1997,12(2):761-767.
    [82] Yang H. T., Liao. C. C. Adaptive fuzzy diagnosis system for dissolved gas analysis ofpower transformers[J]. IEEE Transactions on Power Delivery.1999,14(4):1342-1350.
    [83]丁晓群,林钟云.神经网络应用于电力变压器故障诊断[J].电力系统自动化.1996(2):32-35.
    [84]李永丽,顾福海,刘志华,等.神经网络理论在变压器故障诊断中的应用[J].电力系统自动化.1999(24):20-22.
    [85]刘娜,高文胜,谈克雄.基于组合神经网络模型的电力变压器故障诊断方法[J].电工技术学报.2003(2):83-86.
    [86] Guardadao J. L., Naredo J. L., Moreno. P. A comparative study of neural network efficiencyin power transformer diagnosis using dissolved gas analysis[J]. IEEE Transactions on PowerDelivery.2001,16(4):643-647.
    [87]周建华,胡敏强.自构形神经网络在变压器故障诊断中的应用[J].电工技术学报.2004(9):77-81.
    [88]章剑光,周浩,项灿芳.基于Super SAB神经网络算法的主变压器故障诊断模型[J].电工技术学报.2004(7):49-52.
    [89]金明,吴新振,邓忠.基于Kohonen网络的电力变压器故障诊断方法[J].变压器.1997,34(8):28-30.
    [90]董明,孟源源,徐长响,等.基于支持向量机及油中溶解气体分析的大型电力变压器故障诊断模型研究[J].中国电机工程学报.2003(7):88-92.
    [91]贾嵘,徐其惠,李辉,等.最小二乘支持向量机多分类法的变压器故障诊断[J].高电压技术.2007(6):110-113.
    [92] Fei Sheng-Wei, Zhang Xiao-Bin. Fault diagnosis of power transformer based on supportvector machine with genetic algorithm[J]. Expert Systems with Applications.2009,36(8):11352-11357.
    [93] Bacha Khmais, Souahlia Seifeddine, Gossa Moncef. Power transformer fault diagnosisbased on dissolved gas analysis by support vector machine[J]. Electric Power SystemsResearch.2012,83(1):73-79.
    [94]汪楚娇.语义环境下提升机故障人工免疫诊断方法研究[D].徐州:中国矿业大学,2010.
    [95]陈江波,文习山,彭宁云,等.进化规划算法在变压器故障诊断中的应用[J].高电压技术.2003(12):10-11.
    [96]余杰,周浩.变压器油气分析故障的免疫算法诊断模型[J].高电压技术.2006(3):49-50.
    [97]熊浩,孙才新,陈伟根,等.电力变压器故障诊断的人工免疫网络分类算法[J].电力系统自动化.2006(6):57-60.
    [98]周爱华,张彼德,张厚宣.基于人工免疫分类算法的电力变压器故障诊断[J].高电压技术.2007(8):77-80.
    [99]莫娟,王雪,董明,等.基于粗糙集理论的电力变压器故障诊断方法[J].中国电机工程学报.2004(7):166-171.
    [100]何智强,文习山,陈旭.基于粗糙集理论的变压器故障的诊断方法[J].高电压技术.2006(6):28-30.
    [101]王楠,律方成,刘云鹏,等.基于决策表约简的变压器故障诊断Petri网络模型及其应用研究[J].电工技术学报.2003(6):88-92.
    [102]王楠,律方成,刘云鹏,等.基于粗糙集理论与模糊Petri网络的油浸电力变压器综合故障诊断[J].中国电机工程学报.2003(12):130-135.
    [103]朱永利,吴立增,李雪玉.贝叶斯分类器与粗糙集相结合的变压器综合故障诊断[J].中国电机工程学报.2005(10):159-165.
    [104]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002.
    [105]宋斌,文习山,于萍,等.灰关联分析用于变压器热性故障诊断[J].高电压技术.2002(3):11-13.
    [106]李俭,孙才新,陈伟根,等.基于灰色聚类分析的充油电力变压器绝缘故障诊断的研究[J].电工技术学报.2002(4):80-83.
    [107]李俭,孙才新,陈伟根,等.灰色聚类与模糊聚类集成诊断变压器内部故障的方法研究[J].中国电机工程学报.2003(2):116-119.
    [108]费胜巍,苗玉彬,刘成良,等.基于粒子群优化支持向量机的变压器故障诊断[J].高电压技术.2009(3):509-513.
    [109]郭创新,朱承治,张琳,等.应用多分类多核学习支持向量机的变压器故障诊断方法[J].中国电机工程学报.2010(13):128-134.
    [110]蒋延军,倪远平.基于粗糙集与支持向量机的变压器故障诊断法[J].高电压技术.2008(8):1755-1760.
    [111]王凌.维修决策模型和方法的理论与应用研究[D].浙江大学信息科学与工程学院浙江大学,2007.
    [112]许允之,宗剑.变电设备管理信息与决策支持系统[J].高电压技术.2005(6):85-86.
    [113]许允之,张军国.基于状态维修的变电设备信息管理与决策支持系统[J].电气应用.2005(9):87-89.
    [114]周云波.电力设备状态检修管理系统的建设与实践[J].电力设备.2003(6):50-53.
    [115] Ertugrul Karsak E., Tolga Ethem. Fuzzy multi-criteria decision-making procedure forevaluating advanced manufacturing system investments[J]. International Journal ofProduction Economics.2001,69(1):49-64.
    [116] Mechefske Chris K., Wang Zheng. Using fuzzy linguistics to select optimum maintenanceand condition monitioring strategies[J]. Mechanical Systems and Signal Processing.2001,15(6):1129-1140.
    [117] John Moubray. Reliability-centered maintenance.[M]. Second Edition ed. New York:Industrial Press,2001.
    [118]刘坚.设备e-维护模式的体系理论与关键技术研究[D].长沙:湖南大学,2005.
    [119]刘培德.基于模糊多属性决策的企业信息化水平评价方法与应用研究[D].北京交通大学,2010.
    [120] Saaty Thomas L., Vargas Luis G., Saaty Thomas L., et al. The Seven Pillars of the AnalyticHierarchy Process[M]. International Series in Operations Research&Management Science,Springer US,2001:34,27-46.
    [121] Mikhailov L., Tsvetinov P. Evaluation of services using a fuzzy analytic hierarchyprocess[J]. Applied Soft Computing.2004,5(1):23-33.
    [122] Yuen Kevin Kam Fung. Membership maximization prioritization methods for fuzzy analytichierarchy process[J]. Fuzzy Optim Decis Making.2012,11:113-133.
    [123] Mikhailov L. A fuzzy programming method for deriving priorities in the analytic hierarchyprocess.[J]. Journal of the Operational Research Society.2000,51:341-349.
    [124] Liao Ruijin, Zheng Hanbo, Grzybowski S., et al. An Integrated Decision-Making Model forCondition Assessment of Power Transformers Using Fuzzy Approach and EvidentialReasoning[J]. IEEE Transactions on Power Delivery.2011,26(2):1111-1118.
    [125]廖瑞金,王谦,骆思佳,等.基于模糊综合评判的电力变压器运行状态评估模型[J].电力系统自动化.2008(3):70-75.
    [126]王谦.基于模糊理论的电力变压器运行状态综合评估方法研究[D].重庆大学,2005.
    [127]程文清,李新叶.基于改进理想点解法的电力变压器状态综合评估[J].高压电器.2009(6):120-123.
    [128]熊浩,孙才新,杜鹏,等.基于物元理论的电力变压器状态综合评估[J].重庆大学学报(自然科学版).2006(10):24-28.
    [129]杨丽徙,于发威,包毅.基于物元理论的变压器绝缘状态分级评估[J].电力自动化设备.2010(6):55-59.
    [130]廖瑞金,黄飞龙,杨丽君,等.多信息量融合的电力变压器状态评估模型[J].高电压技术.2010(6):1455-1460.
    [131] Yager R. R. On ordered weighted averaging aggregation operators in multicriteriadecisionmaking[J]. IEEE Transactions on Man and Cybernetics Systems.1988,18(1):183-190.
    [132]柳毅,高晓光,卢广山,等.基于OWA算子的加权属性信息融合[J].仪器仪表学报.2006(3):322-325.
    [133] Yager Ronald. Prioritized OWA aggregation[Z]. Springer Netherlands,2009:8,245-262.
    [134] Yager R. R. Criteria importances in OWA aggregation: an application of fuzzy modeling[C].Proceedings of the Sixth IEEE International Conference on Fuzzy Systems,1997:1677-1682.
    [135]廖玉祥.一种电力变压器运行状态综合评估模型的研究[D].重庆大学,2006.
    [136]骆思佳.电力变压器运行状态分级评估模型的研究[D].重庆大学,2008.
    [137]中华人民共和国电力工业部.电力设备预防性试验规程[Z].1996.
    [138]廖瑞金,王谦,骆思佳,等.基于模糊综合评判的电力变压器运行状态评估模型[J].电力系统自动化.2008(3):70-75.
    [139] Saaty Thomas L. Analytic Hierarchy Process[Z]. John Wiley&Sons, Ltd,2005.
    [140]贾敏娜,宋光兴.群决策中专家权重确定方法研究综述[J].时代金融.2008(01).
    [141] Shannon C. E. A mathematical theory of communication[J]. ACM SIGMOBILE MobileComputing and Communications Review.2001,5(1):3-55.
    [142]周辉仁,郑丕谔,秦万峰,等.基于熵权与离差最大化的多属性群决策方法[J].软科学.2008(3):20-22.
    [143] Holbrook Morris B. The Millennial Consumer in the Texts ofOur Rimes:Experience andEntertainment[J]. Journal of Macro Marketing.2002,20(2):178-192.
    [144]李洁.基于自然计算的模糊聚类新算法研究[D].西安电子科技大学,2004.
    [145]朱剑英.应用模糊数学方法的若干关键问题及处理方法[J].模糊系统与数学.1992(2):57-63.
    [146]高新波.模糊聚类分析及其应用[M].西安电子科技大学出版社,2004.
    [147] Bezdek James C., Ehrlich Robert, Full William. FCM: The fuzzy c-means clusteringalgorithm[J]. Computers& Geosciences.1984,10(2–3):191-203.
    [148] Cai Weiling, Chen Songcan, Zhang Daoqiang. Fast and robust fuzzy c-means clusteringalgorithms incorporating local information for image segmentation[J]. Pattern Recognition.2007,40(3):825-838.
    [149] Ozer Muammer. Fuzzy c-means clustering and Internet portals: A case study[J]. EuropeanJournal of Operational Research.2005,164(3):696-714.
    [150] Futschik M. E., Kasabov N. K. Fuzzy clustering of gene expression data[C]. Proceedings ofthe2002IEEE International Conference on Fuzzy Systems, USA: IEEE CONFERENCEPUBLICATIONS,2002:414-419.
    [151] Eslamloueyan Reza. Designing a hierarchical neural network based on fuzzy clustering forfault diagnosis of the Tennessee–Eastman process[J]. Applied Soft Computing.2011,11(1):1407-1415.
    [152] Krishna K., Narasimha Murty M. Genetic K-means algorithm[J]. IEEE Transactions onSystems, Man, and Cybernetics, Part B: Cybernetics.1999,29(3):433-439.
    [153] Maulik Ujjwal, Bandyopadhyay Sanghamitra. Genetic algorithm-based clusteringtechnique[J]. Pattern Recognition.2000,33(9):1455-1465.
    [154]刘晓龙,张佑生,谢颖.模拟退火与模糊C-均值聚类相结合的图像分割算法[J].工程图学学报.2007(1):89-93.
    [155]刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践.2005(6):54-58.
    [156]王子建,何俊佳,尹小根.基于改进模糊ISODATA算法的变压器故障诊断[J].高压电器.2006(1):11-13.
    [157]张冠军,钱政,严璋.变压器绝缘诊断中的模糊ISO DATA法[J].高电压技术.1999(1):1-3.
    [158]宋斌,于萍,廖冬梅,等.变压器故障诊断中溶解气体的模糊聚类分析[J].高电压技术.2001(3):69-71.
    [159]杨廷方,刘沛,李景禄,等. FCM结合IEC三比值法诊断变压器故障[J].高电压技术.2007(8):66-70.
    [160]田质广,张慧芬.基于遗传聚类算法的油中溶解气体分析电力变压器故障诊断[J].电力自动化设备.2008(2):15-18.
    [161] Karakasis V. K., Stafylopatis A. Efficient Evolution of Accurate Classification Rules Usinga Combination of Gene Expression Programming and Clonal Selection[J]. IEEE Transactionson Evolutionary Computation.2008,12(6):662-678.
    [162] K Jerne N. The immune system[J]. Scientific American.1973,229(1):51-60.
    [163] Farmer J. Doyne, Packard Norman H., Perelson Alan S. The immune system, adaptation,and machine learning[J]. Physica D: Nonlinear Phenomena.1986,22(1–3):187-204.
    [164] de Castro Leandro Nunes, Timmis Jon. Artificial immune systems as a novel soft computingparadigm[J]. Soft Comput.2003:526-544.
    [165]焦李成,尚荣华,马文萍,等.人工免疫系统基础[M].多目标优化免疫算法、理论和应用,科学出版社,2010,43-48.
    [166]杨海东,郭建华,邓飞其.人工免疫系统分析及其设计框架[M].人工免疫系统集成与应用,科学出版社,2010,19-26.
    [167] Ishida. Fully distributed diagnosis by PDP learning algorithm: towards immune networkPDP model[C]. Proc International joint conference on neural networks, San Diego, CA,USA:1990:777-782.
    [168] Ishiguro A., Kuboshiki S., Ichikawa S., et al. Gait coordination of hexapod walking robotsusing mutual-coupled immune networks[C]. IEEE International Conference On Computation,1995:672-677.
    [169]崔立志.灰色预测技术及其应用研究[D].南京航空航天大学,2010.
    [170]蒋辉.经济预测的灰色支持向量回归方法[D].中南大学,2010.
    [171]郑蕊蕊.智能信息处理理论的电力变压器故障诊断方法[D].吉林大学,2010.
    [172]李天云,应鸿,张宇辉.变压器的灰色故障诊断研究[J].电力系统自动化.1996(11):29-33.
    [173]张彤,王宏伟,王子才.变尺度混沌优化方法及其应用[J].控制与决策.1999(3):94-97.
    [174]杨久俊,邓辉文,滕姿.基于混沌免疫进化算法的聚类算法分析[J].计算机科学.2008(8):154-157.
    [175]程博,王峰,曹秉刚,等.自适应并行混沌免疫进化规划[J].哈尔滨工程大学学报.2006,27(B07):294-297.
    [176]薛文涛,吴晓蓓,徐志良.一种基于双变异算子的免疫网络算法[J].控制与决策.2008,23(12):1417-1422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700