微织构自润滑与振荡热管自冷却双重效用的干切削刀具的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据干切削加工的要求,结合表面织构润滑技术与振荡热管冷却技术,提出了自润滑与自冷却双重效用的干切削刀具的概念。研制成功了微织构自润滑与振荡热管自冷却双重效用的干切削刀具,研究了表面织构对硬质合金刀具材料的摩擦磨损特性的影响、振荡热管强化刀具散热的作用效果以及该刀具的切削性能,分析和揭示了该刀具的自润滑与自冷却的作用机理。
     在分析刀具切削的摩擦和润滑机理的基础上,提出了微织构自润滑刀具的设计概念,即:在刀具前刀面的刀-屑接触区加工微织构,并在微织构凹槽中填充固体润滑剂,在切削过程中织构凹槽中的固体润滑剂受摩擦挤压作用拖覆在刀-屑接触界面形成润滑膜,实现刀具的自润滑。建立了微织构自润滑刀具的设计模型,结合微织构对刀具应力分布的影响,确定了微织构自润滑刀具的微织构的最佳结构参数:槽型为双椭圆结构,其外椭圆的长径为0.8mm、短径为0.6mm,织构距切削刃距离L为150μm,凹槽中心间距H为150μm,凹槽宽度B为50μm,槽深为100μm。优选了二硫化钼(MoS2)作为微织构自润滑刀具使用的固体润滑剂。采用激光加工技术制备了微织构自润滑刀具。
     将振荡热管冷却技术应用到刀具散热上,提出了振荡热管自冷却刀具的设计概念,即:在刀具中嵌入振荡热管,切削过程中,振荡热管因具有优良的导热性能而能够加快切削区温度的导出,从而实现刀具的自冷却。建立了振荡热管自冷却刀具的设计方法,根据刀具切削的温度环境和刀片的结构尺寸,确定振荡热管自冷却刀具的振荡热管使用的工质为水,管壁材料为铜,管的外径和内径分别为2mm和1.2mm,工质充液率为60%。采用电火花加工技术制备了四弯道、六弯道和八弯道三种振荡热管自冷却刀具。
     研究了表面织构对硬质合金刀具材料的摩擦磨损特性的影响。将光滑表面试样(SS)、光滑表面抹覆润滑剂的试样(SSL)、表面织构试样(TS)和填充润滑剂的表面织构试样(TSL)与钛合金球对摩进行了对比干摩擦试验,结果表明:与SS试样相比,SSL试样并不能改善硬质合金的摩擦磨损性能,TS试样的摩擦磨损状况更为恶劣,TSL试样能够有效改善硬质合金的摩擦磨损性能;TSL试样相比SS试样降低平均摩擦系数达20-25%,降低摩擦温度达8-15%;硬质合金试样的主要磨损形式为对摩钛合金材料的粘结,TSL试样能够减小磨痕宽度和对摩材料的粘结高度,同时减小对摩球的磨损损失。分析和揭示了TSL试样的减摩润滑机理:摩擦过程中,存储在织构凹槽中的固体润滑剂在摩擦挤压作用下析出,并拖覆在摩擦接触面形成润滑层,拖覆的润滑剂也会被摩擦带走,但凹槽中润滑剂会不断析出补给,从而在摩擦接触面形成连续动态的固体润滑层;织构凹槽同时具有扑捉和存储磨损颗粒的作用,降低摩擦和磨损。
     采用仿真的方法研究了振荡热管强化刀具散热的效果。建立了热流密度反求的目标函数并求解获得了加载在刀-屑接触区的热流密度,研究了刀具温度场分布情况,结果表明:振荡热管自冷却刀具能够有效降低刀具的最高切削温度,同时能够缩短刀具达到稳态切削温度的时间。
     将微织构自润滑刀具(SLT)、振荡热管自冷却刀具(SCT)、微织构自润滑与振荡热管自冷却双重效用的干切削刀具(SLCT)以及传统硬质合金刀具(CT)进行了车削Ti6A14V的对比试验,研究了微织构自润滑与振荡热管自冷却双重效用的干切削刀具的切削性能。结果表明:SLT和SLCT刀具相比CT刀具能够有效降低三向切削力,减小刀-屑平均摩擦系数,增加切屑卷曲并减小切屑剪切变形;SLT、SCT和SLCT三种刀具相比CT刀具均能够降低切削温度,相同切削条件下,SLCT刀具的切削温度最低;SLT、SCT和SLCT刀具相比CT刀具均能够减轻刀具的磨损,其中以SLCT刀具的磨损最为轻微。
     分析和揭示了微织构自润滑与振荡热管自冷却双重效用的干切削刀具改善切削加工的作用机理。一方面,在切削过程中织构凹槽中的固体润滑剂拖覆在前刀面形成固体润滑层,降低了刀-屑摩擦剪切强度和刀-屑实际接触长度,这将有利于降低切削力和切削温度,增加切屑卷曲并减小切屑变形;另一方面,嵌入的振荡热管能够强化刀具的散热,有效降低刀具的切削温度。
The concept of self-lubricating and self-cooling dry cutting tool based on surface texturing and pulsating heat pipe is proposed in this paper. A new micro-texture self-lubricating and pulsating heat pipe self-cooling dry cutting tool has been developed successfully, as well as its tribological behaviors, heat dissipation performance, cutting performance, more over, the self-lubricating and self-cooling mechanisms are studied and analyzed in detail.
     Based on the analysis of the mechanism of friction and lubrication in cutting process, the concept and design ideas of micro-texture self-lubricating tool is proposed. Micro-textures are made on the rake face of tool inserts, and solid lubricants are filled into the textured grooves to form micro-texture self-lubricating tools. During cutting process, due to the friction and extrusion of the chip which slides against the tool rake face at high speed, the solid lubricants may be released from the textured grooves and smeared on the tool-chip interface. Then a thin lubricating film, which can be acted to reduce the friction coefficient and adhesion, may be formed between the tool-chip interface. The structure of the micro-textures is studied and optimized. The effect of micro-textures on stress distribution of the cutting tools is analyzed and the appropriate structural parameters of micro-textures are put forward:the micro-textures are with double-elliptic structure, the long diameter and short diameter of the external elliptic are0.8mm and0.6mm respectively, the distance between micro-textures and cutting edge is150μm, the distance between textured grooves is150μm, the width and depth of the textured grooves are50μm and100μm respectively. Molybdenum disulfide solid lubricants(MoS2) are selected as the used lubricating material. The micro-texture self-lubricating tools are fabricated by laser machining.
     The concept and design ideas of pulsating heat pipe self-cooling tool is proposed, namely that by the excellent heat transfer performance of the pulsating heat pipe, enhance the dissipation of cutting heat to achieve the self-cooling tools. Based on the temperature environment of cutting process and the structure size of tool inserts, the pulsating heat pipe is designed and the appropriate parameters are put forward:the working fluid is water, the pipe wall material is copper, the outer diameter and inner diameter of the pipe are2mm and1.2mm respectively, the filling rate of working fluid is60%. Four-bend, six-bend and eight-bend pulsating heat pipe self-cooling tools are fabricated by electrical discharge machining.
     The effect of surface textures on friction properties of cemented carbide tool material is studied. Dry sliding friction and wear tests against titanium alloy balls were carried out with the smooth surface without solid lubricants (SS), the smooth surface burnished with molybdenum disulfide solid lubricants (SSL), the textured surface without (TS) and with solid lubricants (TSL) for comparison. The results show:the SSL sample can not effectively improve the frictional performance of the cemented carbide, the TS sample has a worse tribological behavior compared with the SS sample, however, only the TSL sample shows the benefit in improving the tribological properties. The average friction coefficient and average friction temperature of the TSL sample are reduced by20~25%and8~15%compared with that of the SS sample respectively. Adhesion of titanium alloy materials on the worn cemented carbide surface is the main wear form, the TSL sample can reduce the width of wear scars on the cemented disks and wear loss of titanium alloy balls. The anti-friction mechanism of the TSL sample is put forward:in friction process, the solid lubricants filled in the textured grooves are released and smeared on the worn surface by frictional extrusion, as a result, forms a dynamic thin lubricating film at the ball-disk interface. Meanwhile, the textured grooves can trap wear debris, which is also benefical to the reduction in friction and wear.
     The effect of pulsating heat pipe on cutting heat dissipation is studied by numerical simulation. The heat flux loaded on the tool-chip interface is solved by a method of inverse evaluation, and then the temperature field of cutting tools is analyzed. The results show:the maximum cutting temperatures of the pulsating heat pipe self-lubricating tools are lower than those of the conventional tool, the pulsating heat pipe self-cooling tools can also reduce the time from the beginning of cutting to the steady state of cutting temperature.
     Cutting tests on Ti6A14V alloy are carried out with the micro-texture self-lubricating tool(SLT), the pulsating heat pipe self-cooling tool(SCL), the micro-texture self-lubricating and pulsating heat pipe self-cooling tool(SLCT) as well as the conventional cutting tool(CT). The results show:compared with the CT tool, the SLT and SLCT tools can reduce three direction cutting force, friction coefficient at the tool-chip interface and chip thickness ratio, and increase curly degree of the chip. The SLT, SCT and SLCT tools can reduce cutting temperature and tool wear compared with the CT tool, operation with the SLCT tool could obtain the lowest cutting temperature and tool wear.
     The mechanism of that the micro-texture self-lubricating and pulsating heat pipe self-cooling dry cutting tool improves the cutting performance is analyzed. On the one hand, during cutting process, the solid lubricants filled in the textured grooves are released and smeared on the tool-chip interface and form a lubricating film, which can reduce the frictional shear strength and tool-chip contact length, as a result, the cutting force, cutting temperature and chip thickness ratio are reduced and the curly degree of the chip is improved. On the other hand, the pulsating heat pipe can enhance the dissipation of cutting heat, as a result, reduce the cutting temperature.
引文
[1]艾兴.高速切削加工技术[M].北京:国防工业出版社,2004.
    [2]张世昌,李旦,高航.机械制造技术基础[M].北京:高等教育出版社,2001.
    [3]南京工学院,无锡轻工学院.金属切削原理[M].福州:福建科学技术出版社,1984.
    [4]刘志峰,张崇高,任家隆.干切削加工技术及应用[M].北京:机械工业出版社,2005.
    [5]邓建新,赵军.数控刀具材料选用手册[M].北京:机械工业出版社,2005.
    [6]Yang F Z, Zhao J, Ai X, et al. Effect of medium temperature on the dispersion of WC/ZrO2/VC composite powders[J]. Journal of Materials Processing Technology,2009, 209(4):2161-2166.
    [7]Deng J X, Liu L L, Yang X F, et al. Self-lubrication of Al2O3/TiC/CaF2 ceramic composites in sliding wear tests and in machining processes[J]. Materials and Design,2007,28(3):757-764.
    [8]Renevier N M, Hamphire J, Fox V C, et al. Advantages of using self-lubricating, hard, wear-resistant MoS2-based coatings[J]. Surface and Coatings Technology,2001,142-144: 67-77.
    [9]Li B, Deng J X. Addition of Zr-O-B compounds to improve the performances of alumina matrix ceramic materials[J]. Journal of Alloys and Compounds,2009,473(1-2):190-194.
    [10]Deng J X, Song W L, Zhang H, et al. Performance of PVD MoS2/Zr-coated carbide in cutting processes[J]. International Journal of Machine Tools and Manufacture,2008,48(14): 1546-1552.
    [11]Lei S T, Devarajan S, Chang Z H. A study of micropool lubricated cutting tool in machining of mild steel [J]. Journal of Materials Processing Technology,2009,209(3):1612-1620.
    [12]宋文龙,邓建新,吴泽,等.镶嵌固体润滑剂的自润滑刀具切削温度研究[J].农业机械学报,2010,41(1):205-210.
    [13]Basnyat P, Luster B, Muratore C, et al. Surface texturing for adaptive solid lubrication[J]. Surface and Coatings Technology,2008,203:73-79.
    [14]Volchok A, Halperin G, Etsion I. The effect of surface regular microtopography on fretting fatigue life[J]. Wear,2002,253(3-4):509-515.
    [15]Etsion I. State of the art in laser surface texturing[J]. Journal of Trobology,2005,127(1): 248-253.
    [16](英)邓恩,(英)雷伊.热管[M].周海云.北京:国防工业出版社,1982.
    [17]邓建新.自润滑刀具及其切削加工[M].北京:科学出版社,2010.
    [18]邓建新,丁泽良,赵军,等.自润滑刀具材料研究综述[J].工具技术,2002,36(12):8-10.
    [19]邓建新,艾兴,冯益华.陶瓷刀具切削加工时的磨损和润滑及其与加工对象的匹配研究[J].机械工程学报,2002,38(4):40-45.
    [20]吴泽,邓建新,连云崧,等.表面织构刀具的研究现状与进展[J].航空制造技术,2012,(10):32-37.
    [21]乔中复,刘建南.热管车刀的研制[J].机械工程学报,1989,25(1):8-12.
    [22]叶伟昌.热管式刀具[J].机械制造,1990,(3):32-34.
    [23]吴启山.热管技术在刀具散热中的应用[J].民营科技,2009,(10):15.
    [24]Chiou R Y, Lu L, Chen J S J, et al. Investigation of dry machining with embedded heat pipe cooling by finite element analysis and experiments[J]. International Journal of Advanced Manufacturing Technology,2007,31(9-10):905-914.
    [25]邓建新,曹同坤,艾兴Al2O3/TiC/CaF2自润滑陶瓷刀具切削过程中的减摩机理[J].机械工程学报,2006,42(7):109-113.
    [26]曹同坤,邓建新,孙军龙Al2O3/TiC/CaF2自润滑陶瓷材料的研究[J].材料工程,2005,(3):37-42.
    [27]曹同坤.自润滑陶瓷刀具的设计开发及其自润滑机理研究[D].山东大学博士学位论文,2005.
    [28]Deng J X, Cao T K, Sun J L. Microstructure and mechanical properties of hot-pressed Al2O3/TiC ceramic composites with the additions of solid lubricants[J]. Ceramics International,2005,31(2):249-256.
    [29]Deng J X, Cao T K, Ding Z L, et al. Tribological behaviors of hot-pressed AI2O3/TiC ceramic composites with the additions of CaF2 solid lubricants[J]. Journal of the European Ceramic Society,2006,26(8):1317-1323.
    [30]Deng J X, Cao T K, Sun J L. Mechanical properties and microstructure of self-lubricating ceramic cutting tool materials[J]. Materials Science Forum,2004,471-472:221-224.
    [31]Deng J X, Cao T K, Yang X F, et al. Wear behavior and self tribofilm formation of hot-pressed Al2O3/TiC/CaF2 ceramic composites sliding against cemented carbide[J]. Ceramics International,2007,33(2):213-220.
    [32]邓建新,艾兴.氧化对Al2O3-TiB2陶瓷刀具材料磨损特性的影响[J].硅酸盐学报,1996,24(2):160-165.
    [33]Yamamoto Y, Ura A. Influence of interposed wear particles on the wear and friction of silicon carbide in different dry atmospheres[J]. Wear,1992,154(1):141-150.
    [34]Jin Y, Kato K, Umehara N. Effects of sintering aids and solid lubricants on tribological behaviours of CMC/Al2O3 pair at 650℃[J]. Tribology Letters,1999,6(1):15-21.
    [35]Taro S, Tatsuhiko A, Shigeo Y, et al. In-situ formation of self-lubricating tribo-films for dry machinability[J]. Surface and Coatings Technology,2005,200(5-6):1797-1803.
    [36]Tatsuhiko A, Atsushi M, Shigeo Y, et al. Dry machining tool design via chlorine ion implantation[J]. Transactions of Materials and Heat Treatment,2004,25(5):879-882.
    [37]Deng J X, Cao T K. Self-lubricating mechanisms via the in-situ formed trobofilm of sintered ceramics with CaF2 additions when sliding against hardened steel[J]. International Journal of Refractory Metals and Hard Materials,2007,25(2):189-197.
    [38]Deng J X, Ai X, Li Z Q. Friction and wear behavior of Al2O3/TiB2 composite against cemented carbide in various atmospheres at elevated temperature[J]. Wear,1996,195(1-2): 128-132.
    [39]Deng J X, Cao T K, Liu L L. Self-lubricating behaviors of Al2O3/TiB2 ceramic tools in dry high-speed machining of hardened steel[J]. Journal of the European Ceramic Society,2005, 25(7):1073-1079.
    [40]李彬.原位反应自润滑陶瓷刀具的设计开发及其减摩机理研究[D].山东大学博士学位论文,2010.
    [41]Li B, Deng J X, Li Y S. Oxidation behavior and mechanical properties degradation of hot-pressed Al2O3/ZrB2/ZrO2 ceramic composites[J]. International Journal of Refractory Metals and Hard Materials,2009,27(4):747-753.
    [42]Li B, Deng J X, Wu Z. Effect of cutting atmosphere on dry machining performance with Al2O3/ZrB2/ZrO2 ceramic tool[J]. International Journal of Advanced Manufacturing Technology,2010,49(5-8):459-467.
    [43]Li B, Wang H, Deng J X. Antifriction characteristics of quasi-nano alumina reinforced with Zr-O-B compounds against cemented carbides[J]. International Journal of Refractory Metals and Hard Materials,2011,29(2):177-183.
    [44]Li B. Chip morphology of normalized steel when machining in different atmospheres with ceramic composite tool[J]. International Journal of Refractory Metals and Hard Materials, 2011,29(3):384-391.
    [45]Li B, Wang H. Prediction and analysis of microstructural effects on fabrication of ZrB2/(Ti,W)C composites[J]. International Journal of Refractory Metals and Hard Materials, 2013,36:167-173.
    [46]李彬,邓建新,赵树椿Al2O3/ZrB2/ZrO2复合陶瓷材料的制备与性能[J].硅酸盐学报,2008,36(11):1595-1600.
    [47]李彬,邓建新.晶粒细化对Al2O3/ZrB2/ZrO2复合陶瓷材料力学性能的影响[J].功能材料,2008,39(11):1863-1866.
    [48]李彬,邓建新Al2O3/ZrB2/ZrO2复合材料物理和化学相容性分析[J].功能材料,2009,40(1):169-172.
    [49]李彬,邓建新.烧结工艺对Al2O3/ZrB2材料性能的影响[J].武汉理工大学学报,2009,31(12):26-29.
    [50]Soderberg S. Advances in metal cutting tool materials[J]. Journal of Metallurgy,1997,26(1): 65-70.
    [51]Klocke F, Krieg T. Coated tools for metal cutting-features and applications[J]. CIRP Annals-Manufacturing Technology,1999,48(2):515-525.
    [52]Klocke F, Krieg T, Gerschwiler K, et al. Improved cutting processes with adapted coating systems[J]. CIRP Annals-Manufacturing Technology,1998,47(1):65-68.
    [53]Klocke F, Krieg T, Lugscheider E, et al. Testing and design of tool coatings with properties adapted to the use of biodegradable cutting fluids[J]. CIRP Annals-Manufacturing Technology, 2001,50(1):57-60.
    [54]Arias D, Devia A, Velez J. Study of TiN/ZrN/TiN/ZrN multilayers coatings grown by cathodic arc technique[J]. Surface and Coatings Technology,2010,204(18-19):2999-3003.
    [55]Atar E, Kayali E S, Cimenoglu H. Sliding wear behaviour of ZrN and (Zr,12wt% Hf)N coatings[J]. Tribology International,2006,39(4):297-302.
    [56]Huang M D, Lee Y P, Dong C, et al. Preparation of TiN films by arc ion plating using dc and pulsed biases[J]. Journal of Vacuum Science & Technology A,2004,22(2):250-254.
    [57]Hainsworth S V, Soh W C. The effect of the substrate on the mechanical properties of TiN coatings[J]. Surface and Coatings Technology,2003,163-164:515-520.
    [58]Yan P, Deng J X, Lian Y S, et al. Effect of depositing parameters on microstructures and properties of multi arc ion plating ZrTiN films[J]. Surface Engineering,2012,28(1):17-23.
    [59]Yan P, Deng J X, Chen Z, et al. Preparation of ZrTiN hard coating and its performance [J]. Advanced Materials Research,2011,189-193:92-95.
    [60]Kao W H. Tribological properties and high speed drilling application of MoS2-Cr coatings[J]. Wear,2005,258(5-6):812-825.
    [61]Rigato V, Maggioni G, Boscarino D, et al. A study of the structural and mechanical properties of Ti/MoS2 coatings deposited by closed field unbalanced magnetron sputter ion plating[J]. Surface and Coatings Technology,1999,116-119:176-183.
    [62]Rigato V, Maggioni G, Boscarino D, et al. Coating characteristics and tribological properties of sputter-deposited MoS2 metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating[J]. Surface and Coatings Technology,2000,127:24-37.
    [63]Rigato V, Maggioni G, Boscarino D, et al. Performance and limitations of MoS2/Ti composite coated inserts[J]. Surface and Coatings Technology,2003,172:13-23.
    [64]Deng J X, Song W L, Zhang H, et al. Friction and wear behaviours of MoS2/Zr coatings against hardened steel[J]. Surface Engineering,2008,24(6):410-415.
    [65]Deng J X, Song W L, Zhang H, et al. Performance of PVD MoS2/Zr-coated carbide in cutting processes[J]. International Journal of Machine Tools and Manufacture,2008,48(14): 1546-1552.
    [66]Fox V C, Hamphire J, Teer D G. MoS2-metal composite coatings deposited by closed-field unbalanced magnetron sputtering:tribological properties and industrial uses[J]. Surface and Coatings Technology,1999,112:118-122.
    [67]Fox V C, Renevier N M, Teer D G, et al. The structure of trobological improved MoS2/metal composite coatings and their industrial applications[J]. Surface and Coatings Technology, 1999,116-119:492-497.
    [68]Fox V C, Jones A, Renevier N M, et al. Hard lubricating coatings for cutting and forming tools and mechanical components[J]. Surface and Coatings Technology,2000,125(1-3): 347-353.
    [69]Renevier N M, Lobiondo N, Fox V C, et al. Performance of MoS2/metal composite coatings used for dry machining and other industrial applications[J]. Surface and Coatings Technology, 2000,123(1):84-91.
    [70]Renevier N M, Oosterling H, Konig U, et al. Performance and limitation of hybrid PECVD (hard coating)-PVD magnetron sputtering (MoS2/Ti composite) coated inserts tested for dry high speed milling of steel and grey cast iron[J]. Surface and Coatings Technology,2003, 163-164:659-667.
    [71]Liu Y R, Liu J J, Du Z. The cutting performance and wear mechanism of ceramic cutting tools with MoS2 coating deposited by magnetron sputtering[J]. Wear,1999,231(2):285-292.
    [72]赵金龙MoS2/Zr"软”涂层自润滑刀具的研究[D].山东大学博士学位论文,2008.
    [73]赵金龙,邓建新,颜培MoS2-Zr复合涂层高速钢刀具的切削性能研究[J].中国机械工程,2008,19(21):2524-2527.
    [74]赵金龙,邓建新,宋文龙MoS2(?)欠涂层刀具的基体材料优选及涂层制备[J].材料工程,2007.(12):30-34.
    [75]赵金龙,邓建新,宋文龙MoS2-Zr复合涂层刀具的切削性能研究[J].武汉理工大学学报,2008,30(10):105-108.
    [76]宋文龙.微池自润滑刀具的研究[D].山东大学博士学位论文,2010.
    [77]Song W L, Deng J X, Wu Z, et al. Cutting performance of cemented carbides based self-lubricated tool embedded with different solid lubricants[J]. International Journal of Advanced Manufacturing Technology,2011,52(5-8):477-485.
    [78]Song W L, Deng J X, Yan P, et al. Experiment and theory of cutting forces for cemented carbides based self-lubricated tool embedded with solid lubricants[J]. Advanced Material Research,2010,97-101:1975-1980.
    [79]Volchok A, Halperin G, Etsion I. The effect of surface regular microtopography on fretting fatigue life[J]. Wear,2002,253(3-4):509-515.
    [80]Etsion I. State of the art in laser surface texturing[J]. Journal of Tribology,2005,127(1): 248-253.
    [81]Pettersson U, Jacobson S. Influence of surface texture on boundary lubricated sliding contacts[J]. Tribology International,2003,36(11):857-864.
    [82]Ronen A, Etsion I, Kligerman Y. Friction-reducing surface-texturing in reciprocating automotive components[J]. Tribology Transactions,2001,44(3):359-366.
    [83]Ryk G, Kligerman Y, Etsion I, et al. Experimental investigation of partial laser surface texturing for piston-ring friction reduction[J]. Tribology Transactions,2005,48(4):583-588.
    [84]Kligerman Y, Etsion I, Shinkarenko A. Improving tribological performance of piston rings by partial surface texturing[J]. Journal of Tribology,2005,127(3):632-638.
    [85]Ryk G, Etsion I. Testing piston rings with partial laser surface texturing for friction reduction[J]. Wear,2006,261(7-8):792-796.
    [86]Etsion I, Sher E. Improving fuel efficiency with laser surface textured piston rings[J]. Tribology International,2009,42(4):542-547.
    [87]Brizmer V, Kligerman Y, Etsion I. A laser textured parallel thrust bearing[J]. Tribology Transactions,2003,46(3):397-403.
    [88]Etsion I, Halperin G, Brizmer V, et al. Experimental investigation of laser surface textured parallel thrust bearings[J]. Tribology Letters,2004,17(2):295-300.
    [89]Tala-lghil N, Fillon M, Maspeyrot P. Effect of textured area on the performances of a hydrodynamic journal bearing[J]. Tribology International,2011,44(3):211-219.
    [90]Fatu A, Maspeyrot P, Hajjam M. Wall slip effects in (elasto) hydrodynamic journal bearings[J]. Tribology International.2011,44(7-8):868-877.
    [91]Etsion I, Kligerman Y, Halperin G. Analytical and experimental investigation of laser-textured mechanical seal faces[J]. Tribology Transactions,1999,42(3):511-516.
    [92]Kligerman Y, Etsion I. Analisis of the hydrodynamic effects in a surface textured circumferential gas seal[J]. Tribology Transactions,2001,44(3):472-478.
    [93]Ryk G, Kligerman Y, Etsion I. Experimental investigation of laser surface texturing for reciprocating automotive components[J]. Tribology Transactions,2002,45(4):444-449.
    [94]Jiho U, Jin L, Yoon H K, et al. Laser engraving of micro-patterns on roll surface[J]. ISIJ International,2002,42(11):1266-1272.
    [95]Du D, He Y F, Sui B, et al. Laser texturing of rollers by pulsed Nd:YAG laser[J]. Journal of Materials Processing Technology,2005,161(3):456-461.
    [96]Hiraoka N, Sasaki A. Effect of discontinuous hard under-coating on the life of solid film lubricant under extreme contact pressure[J]. Tribology International,1997,30(4):429-434.
    [97]Li J L, Xiong D S, Dai J H, et al. Effect of surface laser texture on friction properties of nickel-based composite[J]. Tribology International,2010,43(5-6):1193-1199.
    [98]Suh N P, Saka N. Surface engineering[J]. CIRP Annals,1987,36(2):403-408.
    [99]Suh N P, Mosleh M, Howard P S. Control of friction[J]. Wear,1994,175(1-2):151-158.
    [100]Hamilton D B, Walowit J A, Allen C M. Theory of lubrication by microirregularities[J]. Journal of Basic Engineering,1996,88(1):177-185.
    [101]Wang X L, Kato K, Adachi K, et al. Load carrying capacity map for the surface texture design of SiC thrust bearing sliding in water[J]. Tribology International,2003,36(3):189-197.
    [102]Wang X L, Adachi K, Otsuka K, et al. Optimization of the surface texture for silicon carbide carbide sliding in water[J]. Applied Surface Science,2006,253(3):1282-1286.
    [103]Sinanoglu C. Investigation of load carriage capacity of journal bearings by surface texturing[J]. Industrial Lubrication and Tribology,2009,61(5):261-270.
    [104]Brinksmeier E, Riemer O, Twardy S. Tribological behavior for micro forming tools[J]. International Journal of Machine Tools and Manufacture,2010,50(4):425-430.
    [105]Ma W L, Lu J J. Effect of surface texture on transfer layer formation and tribological behaviour of copper-graphite composite[J]. Wear,2011,270(3-4):218-229.
    [106]Wakuda M, Yamauchi Y, Kanzaki S, et al. Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact[J]. Wear,2003,254(3-4): 356-363.
    [107]Koshy P, Tovey J. Performance of electrical discharge textured cutting tools[J]. CIRP Annals-Manufacturing Technology,2011,60(1):153-156.
    [108]Voevodin A A, Zabinski J S. Laser surface texturing for adaptive solid lubrication[J]. Wear, 2006,261(11-12):1285-1292.
    [109]Kovalchenko A, Ajayi O, Erdemir A, et al. Friction and wear behavior of laser textured surface under lubricated initial point contact[J]. Wear,2011,271(9-10):1719-1725.
    [110]Stephens L S. Deterministic micro asperities on bearings and seals using a modified LIGA process[J]. Journal of Engineering for Gas Turbines and Power,2004,126(1):147-154.
    [111]Obikawa T, Kamio A, Takaoka H, et al. Micro-texture at the coated tool face for high performance cutting[J]. International Journal of Machine Tools and Manufacture,2011, 51(12):966-972.
    [112]张云电,赵峰,黄文剑.摩擦副工作表面微坑超声加工方法的研究[J].中国机械工程,2004,15(14):1280-1282.
    [113]Pettersson U, Jacobson S. Friction and properties of micro textured DLC coated surfaces in boundary lubricated sliding[J]. Tribology Letters,2004,17(3):553-559.
    [114]Sugihara T, Enomoto T. Development of a cutting tool with a nano/micro-textured surface-improvement of anti-adhesive effect by considering the texture patterns[J]. Precision Engineering,2009,33(4):425-429.
    [115]Enomoto T, Sugihara T. Improving anti-adhesive properties of cutting tool surfaces by nano-/micro-textures[J]. CIRP Annals-Manufacturing Technology,2010,59(1):597-600.
    [116]Sugihara T, Enomoto T. Improving anti-adhesion in aluminum alloy cutting by micro stripe texture[J]. Precision Engineering,2012,36(2):229-237.
    [117]Kawasegi N, Sugimori H, Morimoto H, et al. Development of cutting tools with microscale and nanoscale textures to improve frictional behavior[J]. Precision Engineering,2009,33(3): 248-254.
    [118]Xing Y Q, Deng J X, Tan Y Q, et al. Effect of surface textures on friction properties of Al2O3/TiC ceramics[J]. Surface Engineering,2012,28(8):605-611.
    [119]戚宝运,李亮,何宁,等.微织构刀具正交切削Ti-6Al-4V的试验研究[J].摩擦学学报,2011,31(4):346-351.
    [120]马同泽.热管[M].北京:科学出版社,1983.
    [121]池田羲雄,伊藤谨司,槌田.实用热管技术[M].商政宋,李鹏龄.北京:化学工业出版社,1988.
    [122]Zhang Y W, Faghri A. Advances and unsolved issues in pulsating heat pipes[J]. Heat Transfer Engineering,2008,29(1):20-44.
    [123]马永锡,张红,庄骏.振荡热管—一种新型独特的传热元件[J].化工进展,2004,23(9):1008-1013.
    [124]Charoensawan P, Khandekar S, Groll M, et al. Closed loop pulsating heat pipes, Part A: parametric experimental investigations[J]. Applied Thermal Engineering,2003,23(16): 2009-2020.
    [125]Khandekar S, Schneider M, Schafer P, et al. Thermofluid dynamic study of flat plate closed-loop pulsating heat pipes[J]. Microscale Thermophysical Engineering,2002, 6(4):303-317.
    [126]Khandekar S, Charoensawan P, Groll M, et al. Closed loop pulsating heat pipes, Part B: visualization and semi-expirical modeling[J]. Applied Thermal Engineering,2003,23(16): 2021-2033.
    [127]崔晓钰,黄万鹏,翁建华,等.振荡热管研究进展及展望[J].电子机械工程,2009,25(1):6-12.
    [128]Hosoda M, Nishio S, Shirakashi R. Meandering closed loop heat transport tube (propagation phenomena of vapor plug)[C]. Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, California, USA,1999:1-6.
    [129]Zuo Z J, North M T, Wert K L. High heat flux heat pipe mechanism for cooling of electronics[J]. IEEE Transactions on Components and Packaging Technologies,2001,24(2): 220-225.
    [130]Zuo Z J, Gunnerson F S. Numerical modeling of the steady-state two-phase closed thermosyphon[J]. International Journal of Heat and Mass Transfer,1994,37(17):2715-2722.
    [131]Zuo Z J, Faghri A. A network thermodynamic analysis of the heat pipe[J]. International Journal of Heat and Mass Transfer,1998,41(11):1473-1484.
    [132]Zuo Z J, Faghri A. Boundary element approach to transient heat pipe analisis[J]. Numerical Heat Transfer,1997,32(3):205-220.
    [133]Zhang Y W, Faghri A, Shafii M B. Analysis of liquid-vapor pulsating flow in a U-shaped miniature tube[J]. International Journal of Heat and Mass Transfer,2002,45(12):2501-2508.
    [134]Zhang Y W, Faghri A. Oscillatory flow in pulsating heat pipes with arbitrary numbers of turns [J]. Journal of Thermophysics and Heat Transfer,2003,17(3):340-347.
    [135]Krustalev D, Faghri A. Thermal characteristics of conventional and flat miniature axially grooved heat pipes[J]. Journal of Heat Transfer,1995,117(4):1048-1054.
    [136]Krustalev D, Faghri A. Fluid flow effects in evaporation from liquid-vapor meniscus[J]. Journal of Heat Transfer,1996,118(3):725-730.
    [137]Lee W H, Jung H S, Kim J H, et al. Flow visualization of oscillating capillary tube heat pipe[C]. Proceedings of the 11th International Heat Pipe Conference, Tokyo, Japan,1999: 131-136.
    [138]Lee W H, Lee K W, Park K H, et al. Study on working characteristics of loop heat pipe using a sintered metal wick[C]. Proceedings of the 13th International Heat Pipe Conference, Shanghai, China,2004:21-25.
    [139]Tong B Y, Wong T N, Ooi K T. Closed-loop pulsating heat pipe[J]. Applied Thermal Engineering,2001,21(18):1845-1862.
    [140]Kawara Z, Takahashi O, Serizawa A, et al. Visualization of low in heat pipe by proton radiography[C]. Proceedings of the 24th Visualization and Information Symposium, Osaka, Japan,1996:27-33.
    [141]李惊涛.脉动热管流型的电容层析成像识别及换热特性研究[D].中国科学院研究生院博十学位论文,2006.
    [142]李惊涛,刘石,董向元.微型电容层析成像传感器的设计及应用[J].仪器仪表学报,2007,28(8):1410-1415.
    [143]Maezawa S, Gi K, Minamisawa A, et al. Thermal performance of capillary tube thermoeyphon[C]. Proceedings of the 9th International Heat Pipe Conference, Albuquerque, USA,1995:791-795.
    [144]Akachi H. Looped capillary heat pipe[C]. Proceedings of the 71st JSME Spring Aunual Meeting, Tokyo, Japan,1994:606-611.
    [145]Schneider M, Khandekar S, Schafer P, et al. Visualization of thermofluiddynamic phenomena in flat plate closed loop pulsating heat pipes[C]. Proceedings of the 6th International Heat Pipe Symposium, Chiang Mai, Thailand,2000:1-12.
    [146]Schneider M, Yoshida M, Groll M. Investigation of interconnected mini heat pipe arrays for micro electronics cooling[C]. Proceedings of the 11th International Heat Pipe Conference, Tokyo, Japan,1999:7-9.
    [147]Miyazaki Y, Arikawa M. Oscillatory flow in the oscillating heat pipe[J]. Memoirs of the Fukui Institute of Technology,2000,30:151-156.
    [148]Miyazaki Y. Oscillating heat pipe with check valves[J]. Memoirs of the Fukui Institute of Technology,2002,32:389-392.
    [149]Judd R L, Mackenzie H S, Elbestawi M A. An investigation of a heat pipe cooling system for use in turning on a lathe[J]. International Journal of Advanced Manufacturing Technology, 1995,10(6):357-366.
    [150]Judd R L, Aftab K, Elbestawi M A. An investigation of the use of heat pipes for machine tool spindle bearing cooling[J]. International Journal of Machine Tools and Manufacture,1994, 34(7):1031-1043.
    [151]Haq A N, Tamizharasan T. Investigation of the effects of cooling in hard turning operations[J]. International Journal of Advanced Manufacturing Technology,2006,30(9-10):808-816.
    [152]Chou Y K, Liu J. CVD diamond tool performance in metal matrix composite machining[J]. Surface and Coatings Technology,2005,200(5-6):1872-1878.
    [153]Jen T C, Gutierrez G, Eapen S, et al. Investigation of heat pipe cooling in drilling applications, Part I:preliminary numerical analysis and verification[J]. International Journal of Machine Tools and Manufacture,2002,42(5):643-652.
    [154]Zhu L, Jen T C, Yin C L, et al. Experimental analyses to investigate the feasibility and effectiveness in using heat pipe-embedded drills[J]. International Journal of Advanced Manufacturing Technology,2012,58(9-10):861-868.
    [155]Zhu L, Jen T C, Yin C L, et al. Investigation of the feasibility and effectiveness in using heat pipe-embedded drills by finite element analysis[J]. International Journal of Advanced Manufacturing Technology,2013,64(5-8):659-668.
    [156]Zhu L, Jen T C, Yin C L, et al. Experimental analyses to investigate the feasibility and effectiveness in using heat-pipe embedded end-mills[J]. International Journal of Advanced Manufacturing Technology,2012,60(5-8):497-504.
    [157]梁良.面向绿色切削的热管刀具散热性能研究[D].华南理工大学博士学位论文,2011.
    [158]Liang L, Quan Y M, Ke Z Y. Investigation of tool-chip interface temperature in dry turning assisted by heat pipe cooling[J]. International Journal of Advanced Manufacturing Technology, 2011,54(1-4):35-43.
    [159]钱坤,徐九华,傅玉灿,等.热管砂轮的平面磨削温度场有限元分析[J].机械制造与自动化,2010,(3):15-18.
    [160]陈旭.热管式金刚石磨头的研制[D].南京航空航天大学硕士学位论文,2008.
    [161]钱坤.环形热管砂轮设计及其传热性能分析[D].南京航空航天大学硕士学位论文,2010.
    [162]周泽华.金属切削原理[M].上海:上海科学技术出版社,1993.
    [163](英)F.P.鲍登,(英)D.泰伯.固体的摩擦与润滑[M].陈绍澧,袁汉昌,丁雪加.北京:机械工业出版社,1982.
    [164](英)F.P.鲍登,(英)D.泰伯.固体的摩擦与润滑(续篇)[M].袁汉昌,张绪寿,陈绍澧.北京:机械工业出版社,1986.
    [165]肖诗纲.刀具材料及其合理选择[M].北京:机械工业出版社,1990.
    [166]顾晓勤,谭朝阳.材料力学[M].北京:机械工业出版社,2012.
    [167]傅衣鸣,熊慧而.材料力学[M].南京:南京大学出版社,2005.
    [168]王毓民,王恒.润滑材料与润滑技术[M].北京:化学工业出版社,2005.
    [169]陈日曜.金属切削原理[M].北京:机械工业出版社,1985.
    [170]李亭寒.华诚生.热管设计与应用[M].北京:化学工业出版社,1987.
    [171]Shafii M, Faghri A, Zhang Y. Thernel modeling of unlooped and looped pulsating heat pipes[J]. Journal of Heat Transfer,2001,123(6):1159-1172.
    [172]时钧,汪家鼎,余国琮.化学工程手册[M].北京:化学工业出版社,1996.
    [173]Akachi H, Polasek F, Stulc P. Pulsating heat pipe[C]. Proceedings of the 5th International Heat Pipe Symposium, Melbourne, Australia,1996:208-217.
    [174]商福民,刘建红,刘登瀛.振荡流热管内流动及传热特性计算分析[J].长春工程学院学报,2011,12(2):41-47.
    [175]刘培德.切削力学新篇[M].大连:大连理工大学出版社,1991.
    [176](日)中山一雄.金属切削加工理论[M].李云芳.北京:机械工业出版社,1958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700