小檗碱衍生物设计、合成及生理活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小檗碱又叫黄连素(Berberine, BBR),是从黄连和黄柏等中药材中提取出来的异喹啉生物碱。在传统中医中被长期用于治疗由细菌感染引起的胃肠道疾病。大量研究表明,小檗碱还有抗心律失常、抗传染性原虫、抗氧化、降糖、调脂、降压和强心等作用。本研究主要以小檗碱抑菌及抗氧化为研究目标,设计合成了8-烷基小檗碱、13-烷基(苄基)小檗碱、8-烷基-13-溴-小檗碱、13-卤代小檗碱、8-13-二烷基小檗碱、8-烷基-13-苄基小檗碱、系列酚类小檗碱及系列8-烷基酚类小檗碱,并进行了抑菌、降糖、抗氧化和对a-淀粉酶等活性作用研究。实验方法与结果如下:
     1.小檗碱衍生物的合成
     1.1 C8烷基及C13卤代小檗碱衍生物的合成
     采用格氏试剂和卤素分别在C8和C13进行取代,生成8-烷基小檗碱、8-烷基-13-溴-小檗碱及13-卤代小檗碱。并对13-卤代小檗碱及8-烷基-13-溴-小檗碱的合成工艺进行优化。其中小檗碱及烷基小檗碱的最佳溴代反应体系为:反应温度为30℃、反应物比例为6:1、冰醋酸为60 mL时最佳添加量为0.5000g,反应顺序是先加溴,后滴加小檗碱及烷基小檗碱。13-氯代小檗碱的最佳反应条件为:反应时间6-10min、反应温度为30℃、氯气制备的温度(用温度来控制氯气流速)60℃、冰醋酸在30 mL时最佳加样量为0.2000g。研究发现反应完成后加入少许三氯化铁,能使产物析出沉淀,这样既简化了产物的回收,又提高产物产率。碘代反应因反应氧化体系不同,碘取代的位置也不同,在HNO3/I2/AcOH体系中取代的是13位,而在KI/KIO4/AcOH/H2O体系中取代的可能是11位。
     1.213-及8,13-二取代小檗碱衍生物的合成
     小檗碱经还原、烷基化和氧化三步生成13烷基小檗碱。具体步骤是先利用硼氢化钠将小檗碱还原成二氢小檗碱,再利用烯胺烷基化生成13烷基或苄基二氢小檗碱取代衍生物,最后用NCS进行氧化。8,13-二取代小檗碱是以8-辛基二氢小檗碱作为先导物,其后的合成方法与13烷基小檗碱的合成相同。
     1.3酚类小檗碱及酚类烷基小檗碱衍生物的合成
     实验采用N,N-二甲基甲酰胺、间苯三酚/硫酸体系、无水三氯化铝/吡啶及三溴化硼/二氯甲烷,分别生成9-羟基-小檗碱衍生物、2,3-二羟基-小檗碱衍生物、2,3,9-三羟基-小檗碱衍生物和2,3,9,10-四羟基-小檗碱衍生物及其相应烷基化酚类小檗碱。
     2.小檗碱衍生物抗菌活性研究
     实验考查了8-烷基小檗碱、13-烷基(或苄基)小檗碱、8-辛基-13-烷基小檗碱、8-辛基-13-苄基小檗碱、8-烷基-13-溴代小檗碱和卤代小檗碱对9种常见微生物的抑菌能力。结果发现8-烷基小檗碱的抗菌规律跟前人报道一致,8-辛基小檗碱活性最强;当C13引入一系列烷基后也能增强其抗菌活性,并且也有与8-烷基小檗碱相同的抗菌规律,即,在八个碳原子内随着碳链的延长抗菌活性增加,只是抗菌活性要小于相应8-烷基小檗碱;当小檗碱C13位引入卤素后也能增强小檗碱的抗菌能力,增加强度与它们吸电子能力有关,只是抗菌活性远不及烷基小檗碱;在8-烷基小檗碱的C13引入溴后,其抗菌活性强于相应的8-烷基小檗碱,说明C8的烷基与C13的溴具有协同增效作用;当C8和C13同时引入烷基时,并不是8,13-二辛基-小檗碱抗菌活性最强,而是13-丁基-8-辛基-小檗碱抗菌活性最强。
     3.小檗碱衍生物对部分酶类作用研究
     用碘-淀粉比色法测定了小檗碱及其衍生物对a-淀粉酶的作用,结果发现小檗碱及其衍生物对a-淀粉酶具有很强的抑制能力,其中氯代小檗碱对a-淀粉酶的IC50值为0.042 mg/mL比小檗碱提高了2倍,2,3,9-三羟基小檗碱和2,3,9,10-四羟基小檗碱的IC50值为0.02 mg/mL,比小檗碱提高了5倍。但所有小檗碱衍生物对ACE酶的作用不明显。
     4.小檗碱衍生物的降糖作用研究
     本文考查了8-烷基小檗碱、8-烷基-13-溴代小檗碱及13-卤代小檗碱对HepG2细胞降糖的影响,结果发现13-氯代小檗碱的降糖作用最强。M'IT细胞毒性实验表明,小檗碱引入烷基后细胞毒性增强,而13-氯代小檗碱的毒性最弱,因此认为氯代小檗碱的降糖可能是通过降低对HepG2细胞的毒性来实现的。
     5.小檗碱及酚类小檗碱抗氧化作用研究
     实验选用DPPH和羟自由基作为研究对象考查多酚类小檗碱对自由基的清除效果,其中2,3,9,10-四羟基小檗碱作用最强,对DPPH的IC50值为0.13 mg/mL,但仍不及BHA,对羟自由基的IC50值为0.27 mg/mL,作用要强于Vc。多酚类小檗碱对已存在的亚硝酸盐并没有太大作用,但能阻断强致癌物亚硝胺的生成,其IC50值为0.46 mg/mL。实验选用8-烷基-2,3,9,10-四羟基小檗碱来考查油脂的抗氧化能力,结果发现,8-烷基-2,3,9,10-四羟基小檗碱均能降低油脂的过氧化值和酸价,起到良好抗油脂氧化效果,其中8-十二烷基-2,3,9,10-四羟基小檗碱衍作用最强。
Berberine is an isoquinoline alkaloids isolated from Chinese herbs Coptidis Rhizoma or Cortex Phellodendri,was initially used as anti-microbial agent, anti-diarrhea, anti-inflammation, and anti-cardiovascular ipid-modulating, antihyperglycemic, antihypertension and antitumor diseases. To increase the pharmaceutica and antioxidant activity, some berberine derivative were synthesized, such as 8-alkyl-berberine,8-alkyl-13-bromo-berberine,13-halogenated-berberine,13-alkyl(or benzyl)-berberine,8,13-dialkyl-berberine,8-alkyl-13-benzyl-berberine, phenol- berberine and 8-alkyl- phenol-berberine. Some pharmacological effects of the berberine derivatives were studied including the antimicrobial activity, antihyperglycemic and antioxidant. The methods and results are as follows:
     1. Synthesis of berberine derivatives
     1.1 Synthesis of 8-alkyl-berberine,8-alkyl-13-bromo-berberine and 13-halogenated- berberine
     8-alkyl on the ring C were synthesized according to the pervious methods. All bromination reaction were performed in the similar way. The optimum conditions of synthesis of 8-alkyl-13-bromo-berberine are that the temperature is 30℃, the ratio of Br2 to 8-alkyl-berberine is 6:1,0.5000 g 8-alkyl-berberine is added in 60 mL glacial acetic acid.The order of reactants addition and the reaction temperature were the tow key factors to synthesize these bromo-substituted compounds. The yield of adding Br2 before adding berberine or alkyl-berberine was far better than reverse order. Adding Br2 before adding berberine or alkyl-berberine was far better than reverse order in terms of the yield.. Chlorination of berberine was comparably easy via chlorinating reagent chlorine. The high yield of chloro-berberine can be accomplished in shorter reaction time and at room temperature. However, in order to improve the yield, the following points must be obeyed. Firstly, all the reagent and solvent must be dried due to the stronger oxidizability of chlorine than the other two. Secondly, berberine must be quickly added after chlorine saturation. Lastly, small amount of FeCl3 must be added at the time when the experiment finished. FeCl3 is prone to cause production precipitation, so high-purity production would be easily obtained through recrystallization instead of column chromatography.Iodinations were more difficult to substitution compared to other halogen due to the lower electrophilicity of iodine.So the oxidant must be added for iodination.The substitute of iodination is different according to oxidant.C13 is iodinated in HNO3/I2/AcOH and C11 is iodinated in KI/KIO4/AcOH/H2O, maybe.
     1.2 Synthesis of 13-alkyl (or benzyl)-berberine,8-octyl-13-alkyl-berberine,8-octyl-13-benzyl-berberine
     A number of 13-substitued berberine derivatives were thus from berberine in 3steps via dihydroberberine or in 2 steps via 8-acetonyldiydroberberine derivatives.In the first synthetic approach, berberine was reduced with sodium borohydride in pyridine to afford dihydroberberine, followed by enamine alkylation with electrophiles, and subsequent oxidation with NCS(N-chlorosuccinimide) to give the 13-substitued berberine salt derivatives.The target compounds were also prepared with acetone and aqueous sodium hydroxide solution to afford 8-acetonydihydroberberine and subsequent enamine alkylation with electrophiles followed by elimination of acetone to afford the salt derivatives. The synthesis of 8-octyl-13-alkyl-berberine and 8-octyl -13-benzyl-berberine start from 8-octyldiydroberberine.The following steps are according to the first synthetic approach.
     1.3 Synthesis of phenol-berberine and alky- phenol-berberine derivatives
     Berberrubine derivatives,2,3-dihydroxyl-berberine derivatives,2,3,9-trihydroxyl-berberine derivatives and 2,3,9,10-tetrahydroxyl-berberine derivatives were prepared with dimethylform amide, phloroglucol/H2SO4, AlCl3/pyridine, BBr3/dichloromethane, respectively.
     2. Anti-microbial of berberine derivatives
     MICs of 8-alkyl-berberine,8-alkyl-13-bromo-berberine,13-halogenated-berberine,13-alkyl(or benzyl)-berberine,8,13-dialkyl-berberine,8-alkyl-13-benzyl-berberine homologues against 9 microorganisms were determined by turbidimetric method respectively.8-alkyl-berberine and 13-alkyl-berberine share the same result that the antimicrobial activity increased as the length of aliphatic chain elongated, but decreased gradually when the alkyl chain exceeded 8 carbon atoms. 8-octyl-berberine and 13-octyl-berberine showed the highest antimicrobial activity. But the antimicrobial activity of 8-alkyl-berberine was stronger than conrresponding 13-alkyl-berberine. Halogenation could further increase subtlely the antimicrobial activity of 8-alkyl-berberine and berberine,so the the antimicrobial activity of 8-alkyl-13-bromo-berberine and 13-halogenated-berberine were better than 8-alkyl-berberine and berberine. An interesting finding is that the 8,13-dioctyl-berberine did not showed the highest antimicrobial activity among all compounds, but 13-butyl-8-octyl-berberine.
     3. Effect of berberine derivatives on a-Amylase and ACE
     The effect of 13-halogenated-berberine, berberine and phenol-berberine on a-Amylase were determined by iodine-starch colorimetry method. The result showed that berberine and its derivatives strongly inhibited a-Amylase.2,3,9-trihydroxyl-berberine and 2,3,9,10-tetrahydroxyl-berberine showed the best inhibiting a-Amylase activity among all the synthesized compounds, which was over 5-fold higher than its precursor (berberine). But the derivatives had little influence on ACE.
     4. Antihyperglycemic of berberine derivatives
     In our study the glucose-lowering effect of berberine and its derivative was not due to an increment of cell number. On the contrary, they depressed the growth of HepG2 cells. Chloro-berberine and bromo-berberine were better than berberine in promoting glucose consumption. That did not indicate chloro-berberine and bromo-berberine carried out the mechanism different from berberine, but they cause less toxicity in HepG2 cells. The glucose-lowering effect of 8-octyl-berberine would abolished when its concentration increased from 0.5 to 4μg/ml, just because of its remarkably cytotoxicity. So the inhibition of cell proliferation increased by 8-octyl -berberine might has potentially beneficial anticancer effects because HepG2 cells are immortalized cell lines. So chloro-berberine which is less cytotoxicity might have more glucose-lowering effect in vitro than BBR. Therefore we infered that it might also be a good option in treating hyperglycemic patients with liver impairment.
     5. Antioxidant of berberine and its phenol-berberine derivatives
     Antioxidant of berberine and its phenol-berberine derivatives were tested by scavenging free radical, such as DPPH and·OH.2,3,9,10-tetrahydroxyl-berberine showed the best scavenging free radical capacity among all the other phenol-berberine derivatives.The IC50 of 2,3,9,10-tetrahydroxyl-berberine on DPPH was 0.13 mg/mL, but higher than that of BHA. Its IC50 was 0.27 mg/mL on·OH free radical, lower than Vc. These berberine derivatives had little influence on scavenging nitricol, but could block the formation of nitrosamines which was strong carcinogens. Restraining the oxidation of grease of 8-alkyl-2,3,9,10-tetrahydroxyl-berberine derivatives was investigated in the paper. The result showed that 8-alkyl-2,3,9,10-tetrahydroxyl-berberine derivatives could decrease POV and acid value of grease comparing with the placebo group. The activity increased as the length of aliphatic chain elongated and 8-dodecyl-2,3,9,10-tetrahydroxyl- berberine showed the best antioxidative activities on grease.
引文
1. 濮社班,许翔鸿,张宇和等.黄连生长状况及生物碱含量的个体差异[J].中草药,1999,30(5):375-377.
    2. 于俊林,杨文娣.小檗碱的植物资源[J].中草药,2005,36(9):1434-1436.
    3. 潘清平.黄连[M].北京:中国中医药出版社,2001,3-4.
    4. 耿东升,刘发.小檗碱药理作用研究进展[J].解放军药学学报,1997,13(1):26-28.
    5. 任毅,杨静.小檗碱治疗2型糖尿病作用机制的进展[J].中西医结合心脑血管病杂志,2008,6(2):208-210.
    6. 谢培凤,周晖,高彦彬.小檗碱治疗2型糖尿病40例疗效观察[J].中国临床保健杂志,2005,8(5):402-403.
    7. 魏敬,吴锦丹,蒋建东,等.盐酸小檗碱治疗2型糖尿病合并脂肪肝的临床研究[J].中西医结合肝病杂志,2004,14(6):334-336.
    8. Gear, J.R., Spenser, I.D. The biosynthesis of hydrastine and berberine. Can. J. Chem[J].1963,41, 783~803.
    9. Hashimoto T. et al. Annu rev plant physiol mol boil,1994,45:257
    10. Steffens P, et al.Tetrahedron Lett,1984,25:951
    11. Zenk M H,et al.In the chemistry and biology of isoquinoline alkaoids.Phillison J D,et al(eds.Berlin,Springer-Verlag,1985:240
    12. Xiaoli Bian, Langchong He and Guangde Yang. Synthesis and antihyperglycemic evaluation of various protoberberine derivatives. Bioorganic & Medicinal Chemistry Letters,2006,16:1380-1383
    13. Peng Yang, Dan-Qing Song, Ying-Hong Li, Wei-Jia Kong, Yan-Xiang Wang, Li-Mei Gao, Shu-Yu Liu,Rui-Qiang Cao, Jian-Dong Jiang. Synthesis and structure-activity relationships of berberine analogues as a novel class of low-density-lipoprotein receptor up-regulators. Bioorganic & Medicinal Chemistry Letters,2008,18:4675~4677
    14. Li, Ying-Hong; Yang, Peng; Kong, Wei-Jia; Wang, Yan-Xiang; Hu, Chang-Qin; Zuo, Zeng-Yan. Berberine Analogues as a Novel Class of the Low-Density-Lipoprotein Receptor Up-Regulators: Synthesis, Structure-Activity Relationships, and Cholesterol-Lowering Efficacy. Journal of Medicinal Chemistry,2009,52(2):492-501.
    15.黄枕亚,冯玫华,彭司勋等.四氢原小檗碱型季铵化合物的合成及其某些参数的测定[J].中国药科大学学报,1988,19(4):249-252
    16. K Iwasa, M Kamigauchi, M Uek, M Taniguch. Antibacterial activity and structure-activity relationships of berberine analogs[J]. Eur J Med Chem,1996,31,469~478
    17.王瑞芳许国友华维一.四氢小檗碱季铵化合物的合成及其抗心律失常活性.[J]中国药物化学杂志,1996,12(22):243-248
    18.张灿,沈文斌,黄文龙.N-(4-氯苄基)-2,3-亚甲二氧基-9-乙酰氧基-10-甲氧基-7,8,13,13a-四氢-8H-二苯骈[a,g]喹嗪氯化物的结构研究[J].中国药科大学学报,2002,33(1):70-72
    19.张灿,黄文龙.原小檗碱季铵类化合物的合成及抗心律失常活性研究.[J]中国药科大学学报,2003,34(1):7-12
    20.张灿,林云,华维一.手性对氯苄基四氢小檗碱的合成.[J]中国药科大学学报,2004,35(5):393-396
    21. Marek, R., Sec"ka'rova', P., Hulova, D., Marek, J., Dosta'l, J., Sklenar, V. Palmatine and berberine isolation artifacts[J]. Nat. Prod.2003b,66:481~486.
    22. Man, S., Dosta'1, J., Necas, M., Z" a'k, Z., Potacek, M. Berberine and coptisine in liquid ammonia. Heterocyclic Commun.2001a,7:243~248.
    23. Naruto, S., Mizuta, H., Nishimura, H. A novel amination of isoquinolinium salts via nucleophilic substitution reaction. Tetrahedron Lett.,1976,19:1597~1600.
    24. Shamma, M., Rahimizadech, M. The identity of chileninone with berberrubine. The problem of true natural products vs. artifacts of isolation. J. Nat. Prod.,1986,49:398~405.
    25. Mo" hrle, H., Biegholdt, M.. Die Struktur des "Berberinoxims" nach Gadamer. Arch. Pharm.1982, 315:919-925.
    26. Yu, Chen; Zhou, Juzhen; Pan, Junfang; Wang, Yiping; Jia, Jingying. Berberine addition compound, its preparation process and application for treating arrhythmia, heart failure, hyperlipemia and diabetes mellitus:China, CN/2008/10038998 [P].2008-06-16.
    27. K.Iwasa Lee Dong-Ung.Kaug So-In.et al Antimicrobial activity of 8-alkayloid 8-phenyl-substituted berberines and their 12-broro derivatives[J] J Nat Prod,1998,61(9):1150~1153
    28. Yang Yong, Ye Xiao-li, Li Xue-gang, et al. Synthesis and antimicrobial activity of 8-alkyl berberine derivatives with a long aliphatic chain[J]. Planta Medica,2007,73:602~604
    29. Grycova, Lenka; Hulova, Dagmar; Maier, Lukas; Standara, Stanislav; Necas, Marek; Lemiere, Filip; Kares. Covalent bonding of azoles to quaternary protoberberine alkaloids. Magnetic Resonance in Chemistry,2008,46(12):1127~1134
    30. Zhe Cheng, An-Feng Chen, Fang Wu, Li Sheng, Han-Kun Zhang, Min Gu, Yuan-Yuan Li,Li-Na Zhang, Li-Hong Hu, Jing-Ya Li, Jia Li. 8,8-Dimethyldihydroberberine with improved bioavailability and oral efficacy on obese and diabetic mouse models. Bioorganic & Medicinal Chemistry,2010, 18:5915-5924.
    31. Ji-Yan Pang, Yong Qin, Wen-Hua Chen, Guo-An Luoc and Zhi-Hong Jiang. Synthesis and DNA-binding affinities of monomodified berberines. Bioorganic & Medicinal Chemistry,2005,13: 5835~5840
    32. Wen-Hua Chen, Ji-Yan Pang, Yong Qin, Qian Peng Zongwei Cai and Zhi-Hong Jiang. Synthesis of linked berberine dimers and their remarkably enhanced DNA-binding affinities, Bioorganic & Medicinal Chemistry Letters.2005,15:2689~2692.
    33. Yu-Hua Long, Li-Ping Bai, Yong Qin, Ji-Yan Pang, Wen-Hua Chen,Zongwei Cai, Zun-Le Xua and Zhi-Hong Jiang. Spacer length and attaching position-dependent binding of synthesized protoberberine dimers to double-stranded DNA. Bioorganic & Medicinal Chemistry,2006,14: 4670~4676.
    34. Wan-Jin Zhang, Tian-Miao Ou, Yu-Jing Lu, Ying-Yu Huang,Wei-Bin Wu, Zhi-Shu Huang, Jin-Lin Zhou, Kwok-Yin Wong and Lian-Quan Gu.9-Substituted berberine derivatives as G-quadruplex stabilizing ligands in telomeric DNA Bioorganic & Medicinal Chemistry.2007,15:5493~5501.
    35. Yan Ma, Tian-Miao Ou, Jia-Heng Tan, Jin-Qiang Hou, Shi-Liang Huang, Lian-Quan Gu, Zhi-Shu Huang. Synthesis and evaluation of 9-0-substituted berberine derivatives containing aza-aromatic terminal group as highly selective telomeric G-quadruplex stabilizing ligands. Bioorganic & Medicinal Chemistry Letters 19 (2009) 3414~3417
    36. Halimani, Mahantappa; Chandran, S. Prathap; Kashyap, Sudhir. Dendritic Effect of Ligand-Coated Nanoparticles(纳米粒):Enhanced Apoptotic Activity of Silica-Berberine Nanoconjugates. Langmuir,2009,25(4),2339~2347.
    37. Ying-Hong Li, Yi Li, Peng Yang, Wei-Jia Kong, Xue-Fu You, Gang Ren, Hong-Bin Deng, Yue-Ming Wang, Yan-Xiang Wang, Jian-Dong Jiang, Dan-Qing Song. Design, synthesis, and cholesterol-lowering efficacy for prodrugs of Berberrubine. Bioorganic & Medicinal Chemistry, 2010,18,1267~1273
    38. Ling Huang, Anding Shi, Feng He, Xingshu Li. Synthesis, biological evaluation, and molecular modeling of berberine derivatives as potent acetylcholinesterase inhibitors. Bioorganic & Medicinal Chemistry,2010,18:1244~1251.
    39. Ling Huang, Zonghua Luo, Feng He, Jing Lu, Xingshu Li.Synthesis and biological evaluation of a new series of berberine derivatives as dual inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorganic & Medicinal Chemistry,2010,18:4475~4484
    40. Huang, Zhishu; Gu, Lianquan; Ma, Yan; Ou, Tianmiao; Hou, Jinqiang. Preparation of 9-N-substituted berberine derivatives as antitumor agents. China, CN/2008/10027095[P]. 2008-03-28.
    41. Ma, Yan; Ou, Tian-Miao; Hou, Jin-Qiang Lu, Yu-Jing 9-N-Substituted berberine derivatives: Stabilization of G-quadruplex DNA and down-regulation of oncogene c-myc. Bioorganic & Medicinal Chemistry,2008,16(16),7582~7591
    42. Ga Eun Lee, Ho-Sung Lee, So Deok Lee, Jung-Ho Kim, Won-Ki Kim, Yong-Chul Kim. Synthesis and structure-activity relationships of novel, substituted 5,6-dihydrodibenzo [a,g]quinolizinium P2X7 antagonists. Bioorganic & Medicinal Chemistry Letters.2009, (2):1~5
    43. Ki Duk Park, Jong Hun Lee, Sung Han Kim,Tae Hoon Kang,Jae Sun Moon and Sung Uk Kim. synthesis of 13-(substituted benzyl) berberine and berberrubine derivatives as antifungal agents. Bioorganic & Medicinal Chemistry Letters.2006 (16):3913~3916
    44. Marco Franceschin, Luigi Rossetti, Anna D'Ambrosio, Stefano Schirripa,Armandodoriano Bianco,Giancarlo Ortaggi, Maria Savino,Christoph Schultesf and Stephen Neidlef. Natural and synthetic G-quadruplex interactive berberine derivatives. Bioorganic & Medicinal Chemistry Letters, 2006(16):1707~1711
    45. John B.Bremner and Siritron Samosorn.8-Allyldihydroberberine as an Alternative Precursor for the Synthesis of 13-Substituted Berberine Derivatives. Aust. J. Chem.2003,56:871~873.
    46. Anthony R. Ball, Gabriele Casadei, Siritron Samosorn, John B. Bremner(?), Frederick M. Ausubel, Terence I. Moy, and Kim Lewis. Conjugating Berberine to a Multidrug Resistance Pump Inhibitor Creates an Effective Antimicrobial. ACS CHEMICAL BIOLOGY.2006,1 (9):594~600
    47. Siritron Samosorn, Bongkot Tanwirat, Nussara Muhamad, Gabriele Casadei, Danuta Tomkiewicz,Kim Lewis, Apichart Suksamrarn, Therdsak Prammananan, Karina C. Gornall,Jennifer L. Beck, John B. Bremner. Antibacterial activity of berberine-NorA pump inhibitor hybrids with a methylene ether linking group. Bioorganic & Medicinal Chemistry,2009,17:3866~3872.
    48. Zejun Li, Yu Wei, Taiwei Chu, Xiangyun Wang, Xinqi Liu, Yi Wang, Shaowen Hu. Radioiodination, biodistribution and pharmacokinetics of berberine in mice. Journal of Radioanalytical and Nuclear Chemistry,2005,265(3):355~359.
    49. Myoung Jin Jang, Miri Jwa, Jung-Ho Kim and Kiwon Song. Selective Inhibition of MAPKK Wisl in the Stress-activated MAPK Cascade of Schizosaccharomyces pombe by Novel Berberine Derivatives. THE JOURNAL OF BIOLOGICAL CHEMISTRY.2002,277(14):12388~12395.
    50. Siritron Samosorn.Development of berberine-based derivatives as novel antimicrobial anents[D].Wollongong.University of Wollongong,2005
    51. Li, Naisan; Wang, Haifeng. Method for preparation 13-hexylberberine salt as antivirus agent and antibacterial agent:Chnia, CN/2003/10112632[P].2003-12-15.
    52. Hu, Lihong; Ye, Jiming; Li, Jingya; James, David E.13,13a-dihydroberberine derivative and their pharmaceutical composition application:China, WO/2007/2882 [P].2007-09-30
    53. Eric Beausoleil, Cedric Chauvignac, Thierry Taverne, Sandrine Lacombe, Laure Pognante, Bertrand Leblond, Diego Pallares, Catherine De Oliveira, Florence Bachelot, Rachel Carton, Helene Peillon, Severine Coutadeur, Virginie Picard, Nathalie Lambeng, Laurent Desire, Fabien Schweighoffer. Structure-activity relationship of isoform selective inhibitors of Rac1/1b GTPase nucleotide binding. Bioorganic & Medicinal Chemistry Letters,2009,19:5594~5598.
    54. Jia, Benzhen. Method for preparation of Berberine ion pair compounds and pharmaceutical composition:Chnia, CN/2005/10136655[P].2005-12-30
    55. Weng, Weiyu; Huang, Jianming; Qiu, Zhuibai; Shen, Teng; Zhang, Jianfang; Xu, Huinan; Guo, Jixian. Berberine alkaloids aliphatic organic acid salts, their preparation method and application as medicine composite:China, CN/2006/10029373[P].2006-07-25.
    56. Wei-Jia Kong, Hao Zhang, Dan-Qing Song, Rong Xue, Wei Zhao, Jing Wei,Yue-Ming Wang, Ning Shan, Zhen-Xian Zhou, Peng Yang, Xue-Fu You, Zhuo-Rong Li,Shu-Yi Si, Li-Xun Zhao, Huai-Ning Pan, Jian-Dong Jiang. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression. Metabolism Clinical and Experimental 2009,58:109~119.
    57. Hao Zhang, Jing Wei, Rong Xue, Jin-Dan Wu, Wei Zhao, Zi-Zheng Wang, Shu-Kui Wang, Zheng-Xian Zhou, Dan-Qing Song, Yue-Ming Wang, Huai-Ning Pan, Wei-Jia Kong, Jian-Dong Jiang. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism Clinical and Experimental 2010,59:285~292.
    58.陈其明,谢明智.小檗碱对正常小鼠血糖调节的影响[J].药学学报,1987,22(3):161-162.
    59. Jun Yin, Zhanguo Gao, Dong Liu, Zhijun Liu, and Jianping Ye. Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab,2008,294:E148~ E156.
    60.高从容,张家庆,黄庆玲.黄连素增加胰岛素抵抗大鼠模型胰岛素敏感性的实验研究[J].中国中西医结合杂志,1997,17(3):162
    61.殷峻,陈名道,杨颖,等.小檗碱对大鼠脂代谢的影响[J].上海第二医科大学学报,2003,23(1 Suppl):28-30.
    62.宋菊敏
    63. White M.F. Irs proteins and the common path to diabetes [J]. Am J Physiol EndocrinolMetab,2002, 283 (3):413~422.
    64. Sun X.J, Goldberg JL, Qiao L.Y, Mitchell J.J. Insulin-induced insulin receptor substrate-1 degradation is mediated by the proteasome degradation pathway. Diabetes 1999,48:1359~1364
    65. Rui L, Fisher T.L, Thomas J, White MF. Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2. J Biol Chem 2001,276: 40362-40367
    66. Zhande R, Mitchell J.J, Wu J, Sun X.J. Molecular mechanism of insulin-induced degradation of insulin receptor substrate 1.Mol Cell Biol 2002,22:1016~1026
    67. Ping Yi, Fu-Er Lu, Li-Jun Xu, Guang Chen, Hui Dong, Kai-Fu Wang. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKB. World Journal of Gastroenterology.2008,14(6):876~883
    68. Ko B.S., Choi S.B., Park S.K., et al. Insulin sensitizing and insulino2 trop ic action of berberine from Cortidis rhizoma [J]. Biol Pharm Bull,2005,28 (8):1431
    69.周丽斌,杨颖,尚文斌,等.小檗碱改善高脂饮食大鼠的胰岛素抵抗[J].放射免疫学杂志,2005,18(3):198-200.
    70. Pan G.Y.,Huang Z.J.,Wang G.J.,et al. The antihyperglycaemic activity of berberine arises from a decrease of glucose absorption[J]. Planta Med,2003,69 (7):632~633
    71. Libin Zhou, Ying Yang, Xiao Wang, Shangquan Liu. Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism Clinical and Experimental 2007,56 405~412
    72.殷峻,胡仁明,陈名道等.二甲双胍、曲格列酮和小檗碱对HepG2细胞耗糖作用比较[J].中华内分泌代谢杂志,2002,18(6):488-491
    73. Jun Yin, Renming Hu, Mingdao Chen, Jinfeng Tang, Fengying Li, Ying Yang, and Jialun Chen. Effects of berberine on glucose metabolism in vitro[J]. Metabolism,2002,51 (11):1439~1443
    74. Neel J.V. Diabetes mellitus:a thirfty genotype rendered detrimenta 1 by progress [J].Am J Hum Genet,1962,14:353
    75. Zimmer P.Z.The global epidemiology of noninsulin-dependent diabetes mellitus and the metabolie syndrome[M].J Diabetes and its Complieations,1997,11:60~68
    76. Yun S. Lee, Woo S. Kim, Kang H. Kim, Myung J. Yoon, Hye J. Cho, Yun Shen. Berberine, a Natural Plant Product, Activates AMP-Activated Protein Kinase With Beneficial Metabolic Effects in Diabetic and Insulin-Resistant States. DIABETES,2006,8(55):2256~2264
    77. Olof L., Jude T.D., Robert B. etc. Activation of the ATP-sensitive K+ channel by long chain acyl-CoA.A role in modulation of panereatic β-cell glucose sensitivity [J].The Journal of Biological Chemistry,1996,18:10623
    78. Yan Gu, Yifei Zhang, Xianzhe Shi, Xiaoying Li, Jie Hong, Jing Chen, Weiqiong Gu,Xin Lu, Guowang Xu, Guang Ning. Effect of traditional Chinese medicine berberine on type 2 diabetes based on comprehensive metabonomics[J]. Talanta 2010,81:766~772
    79. Cheng Z, Pang T, Gu M, Gao AH, Xie CM, Li JY, Nan FJ, Li J.Berberine-stimulated glucose uptake in L6 myotubes involves bothAMPK and p38 MAPK. Biochim Biophys Acta,2006,1760:1682~ 1689.
    80.潘淮宁,王书奎,王自正,等.盐酸小碱檗对人肝Bel-7402细胞株LDLR表达的影响[J].南京医科大学学报(自然科学版),2005,25(12):865
    81. Kong W., Wei J., Abidi P., et a l. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins.[J]. Nat Med,2004,10 (12):1344
    82. Y.F. Zhang, X.Y. Li, D.J. Zou, W. Liu, J.L. Yang, N. Zhu, L. Huo, M. Wang, J. Hong, P.H. Wu, G.G. Ren, G. Ning, J. Clin. Endocrinol. Metab.93 (2008) 2559~2565.
    83.李素迎,姚运纬,伍忍.盐酸小檗碱对链脲霉素致大鼠离体胰岛β-细胞损伤的影响[J].中国现代医学杂志,2002,12(18):6-10
    84.倪艳霞.黄连素治疗II型糖尿病60例疗效观察及实验研究[J].中西医结合杂志,1988,8(12):711-713.
    85. Yin J., Hu R., Chen M., et a l. Effects of berberine on glucose metabolism in vitro[J]. M etabolism, 2002,51 (11):1439~1442
    86.唐玲光.黄连素巧治糖尿病[J].医药与保健,2005,13(6):40-43.
    87. Bian X.L., He L.C., Yang G.D. Synthesis and antihyperglycemic evaluation of various protoberberine derivatives[J]. Bio. Med. Chem. Lett.,2006,16:1380~1383.
    88. Iwasa K, Nanba H, Lee D-U, etal. Structure-activity relationships of protoberberines having antimicrobial activity[J]. Planta Med.,1998,64:748~751
    89. Yan D, Jin C, Xiao X H, et al. Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry[J]. J. Biochem. Biophys. Methods.要查页码
    90. Iwasa K, Kamiguauchi M, Suglura M, etal. Antimicrobial activity of some 13-alkayl-substituted protoberberinium salts[J]. Planta Med.,1997,63:196~198.
    91. Park K S, Kang K C, Kim K Y, et al. HWY-289, a novel semi-synthetic protoberberine derivative with multiple target sites in Candida albican[J]. S. J. Antimicrob. Chemother.,2001,47(5):513~ 519.
    92. Park K D, Lee J H, Kim S H, et al. Synthesis of 13-(substituted benzyl) berberine and berberrubine derivatives as antifungal agents[J]. Bio. Med. Chem. Lett.,2006,16:3913~3916.
    93. Iwasa K, Nanba H, Lee D-U, etal. Structure-activity relationships of protoberberines having antimicrobial activity[J]. Planta Med.,1998,64:748~751.
    94. Hong S.W., Kim S.H., Jeun J.A., et al. Antimicrobial activity of 9-O-acyl- and 9-O-benzoyl-substituted berberrubines[J]. Planta Med.,2000,66(4):361~363.
    95. Kim S.H, Lee S.J, Lee J.H, et al. Antimicrobial activity of 9-O-acyl- and 9-O-alkylberberrubine derivatives[J]. Planta Med.,2002,68(3):277~281.
    96. Dai D Z, An L F,Wang Y Q, et al. CPU 86017 suppression of arrhythmias induced by ischemia/reperfusion, ouabain, aconitune and elevation of ventricular fibrillatory threshold [J]. Drug Develop. Res.,1996,39:184-189.
    97. Elford B C. L-Glutamine influx in malaria-infected erythrocytes:a target for antimalarials[J]. Parasitol. Today,1986,2(11):309~312.
    98. Vennerstrom J.L., Klayman D.L.. Protoberberine alkaloids as antimalarials[J]. J. Med. Chem.,1988, 31(6):1084~1087.
    99. Deborah L. C. McCall, James A, et al. The first protoberberine alkaloid analogue with in vivo antimalarial activity[J]. Bio. Med. Chem. Lett.,1994,4(14):1663~1666.
    100. Iwasa K, Kim H-S, Wataya Y, etal. Antimalarial activity and structure-activity relationships of protoberberine alkaloids[J]. Eur. J. Med. Chem.1998,33:65~69.
    101. Bordor N, Brewster M E. Improved delivery through biological membranes-sustained brain delivery of berberine[J]. Eur. J. Med. Chem.,1983,18:235~240.
    102. Iwasa K., Nishiyama Y., Ichimaru M., et al. Structure-activity relationships of quaternary protoberberine alkaloids having antimalarial activity [J]. Eur J Med Chem,1999,34:1077~1083.
    103.林菁.小檗碱对K562细胞生长的抑制作用[J].福建医学院学报,1996,30(4):309-311.
    104. Wu S.N., Yu H.S., Jan C.R., et al. Inhibitory effects of berberine on Voltage- and calcium-activated potassium currents in human myeloma cells[J]. Life Sci.,1998,62 (25):2283~2294.
    105. Chi C W, Chang Y F, Chao T W, et al. Flowcytometric analysis of the effect of berberine on the expression of glucocorticoid receptors in human hepatoma HepG2 cells[J]. Life Sci.,1994,54(26): 2099-2107.
    106. Kettmann V, Kostalova D, Jantova S, et al. In vitro cytotoxicity of berberine against HeLa and L1210 cancer cell lines [J]. Pharmazie,2004,59(7):548~551
    107. Kuo C L, Chou C C, Yung B Y. Berberine complexes with DNA in the berberine-induced apoptosis in human leukemic HL-60 cells[J]. Cancer Lett.,1995,93(2):193~200.
    108. Jantova S, Cipak L, Cernakova M, et al. Effect of berberine on proliferation, cell cycle and apoptosis in HeLa and L1210 cells[J]. J. Pharm. Pharmacol.,2003,55(8):1143~1149
    109.陈冠林,谭宇蕙,徐勤,等.盐酸小檗碱诱导人胃癌MGC-803细胞凋亡的研究[J].中药药理与临床,2000,16(5):16-17.
    110.陈蔚文,李燕红,郭淑杰,等.小檗碱对人胃癌MGC-803细胞生长抑制及诱导凋亡的作用[J].中国药理学通报,2001,17(1):40-44.
    111. Wu H.L., Hu C.Y., Liu W.H., et al. Berberine-induced apoptosis of human leukemia HL-60 cells is associated with down-regulation of nucleophosm in/B23 and telomerase activity[J]. Int. J. Cancer, 1999,81(6):923~929
    112. Chang K S. Down-regulation of c-Ki-ras2gene expression associated with morphologic differentiation in human embryonal carcinoma cells treated with berberine[J]. J. Formos. Med. Assoc.,1991,90 (1):10~14
    113. Manohar L.S. Enzyme inhibition:inhibition of reverse transcriptase activity by protoberberine alkaloids and structure-activity relationships[J]. J. Pharm. Sci.,1983,72(5):538~541.
    114. Gatto B, Sanders M M, Yu C, et al. Identification of topoisomerase I as the cytotoxic target of the protoberberine alkaloid coralyne[J]. Cancer Res.,1996,56(12):2795~2800.
    115. Sanders M M, Liu A A, Li T K, et al. Selective cytotoxicity of topoisomerase-directed protoberberines against glioblastoma cells[J]. Biochem. Pharmacol.,1998,56 (9):1157~1166.
    116. Hoshi A., Ikekawa T., Ikeda Y., et al. Antitumor activity of berberrubine derivatives[J]. Gann,1976, 67 (2):321~325.
    117. Ikekawa T., Ikeda Y. Antitumor activity of 13-methyl-berberrubine derivatives[J]. J. Pharmacobiodyn.,1982,5 (7):469~474.
    118.翁尊尧,王肇瀛,业晓明.抗肿瘤物质-恩其明(UNGERMING, AT-1840)及其有关化合物的合成和构效关系[J].药学学报,1982,10:744-748.
    119. Kobayashi Y., Yamashita Y, Fuji N., et al. Inhibitors of DNA topoisomerase and isolated from the coptisrhizomes[J]. Planta Med.,1995,61:414~418.
    120. Luz O., Maria R., Trina C., et al. Structural modification of berberine alkaloids in relation to cytotoxic activity in vitro[J]. J. Ethnopharmacol.,2000,71:449~456.
    121. Yin J.,Hu R. M., Tang J. F., et al. Glucose-lowering effect of berberine in vitro. Acta Univ Med Second Shanghai,2001,21:425~427.
    122. Lin J.P., Ynag J.S., Lee J.H., Hsieh W.T., Chung J.G.Bebrerine inducse cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line. World J. Gastorenteorl.2006 Jan 7;12(1):21~28
    123. Mantena S.K. Sharma S.D., Katiyar S.K. Berberine inhibits growth, induces Gl arrest and apoptosis in human epidemroid carcinoma A431 cells by regulating Cdki-Cdk—eyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase-3 and PARP.Carcinogenesis.2006,18.
    124. Mnatena S.K.,Sharma S.D., Katiyar S.K.Berberine, a natural product, induces Gl-phase cell cyele arrest and caspase-3-dependent apoptosis in human porstate carcinoma cells.Mol Canecr Ther.2006,5:296-308.
    125. Jantova S., Cipak, L. Cemakova M,, Kost, alova D. Effect of behterine on proliferation, cell cycle and apoptosis in HeLa and L1210 cells.J Pharm Pharmaocl.2003,55:1143~1149.
    1. Ying-Hong Li, Yi Li, Peng Yang, Wei-Jia Kong, Xue-Fu You, Gang Ren, Hong-Bin Deng, Yue-Ming Wang, Yan-Xiang Wang, Jian-Dong Jiang, Dan-Qing Song. Design, synthesis, and cholesterol-lowering efficacy for prodrugs of Berberrubine. Bioorganic & Medicinal Chemistry, 2010,18:1267~1273.
    2. Ga Eun Lee, Ho-Sung Lee, So Deok Lee, Jung-Ho Kim, Won-Ki Kim, Yong-Chul Kim. Synthesis and structure-activity relationships of novel, substituted 5,6-dihydrodibenzo[a,g]quinolizinium P2X7 antagonists. Bioorganic & Medicinal Chemistry Letters.2009, (2):1~5
    3. Eric Beausoleil, Cedric Chauvignac, Thierry Taverne, Sandrine Lacombe, Laure Pognante, Bertrand Leblond, Diego Pallares, Catherine De Oliveira, Florence Bachelot, Rachel Carton, Helene Peillon, Severine Coutadeur, Virginie Picard, Nathalie Lambeng, Laurent Desire, Fabien Schweighoffer. Structure-activity relationship of isoform selective inhibitors of Racl/lb GTPase nucleotide binding. Bioorganic & Medicinal Chemistry Letters,2009,19:5594~5598.
    4.钱建华,张庆春,刘琳等.4-氯-1,2-二甲基苯的高选择氯代合成新方法,石油化工高等学校学报[J].2007,20(1):39-41
    5. Kinuko Iwasa,Dong-Ung Lee,So-Im Kang,and Wolfgang Wiegreb.Antimicrobial Activity of 8-Alkyl-and 8-Phenyl-Substituted Berberines and Their 12-Bromo Derivatives, J. Nat. Prod.1998,61:1150~ 1153
    6. Yamaguchi, R.; Moriyasu,M.;Yoshioka, M.; Kawanisi, M.J.Org.Chem.1985,50:287~277
    7. Eto,M.; Nishimoto,S.; Kubota,T.; Matsuoka,K.; Harano,K. Tetrahedron 1996,37:2445
    8. Elliott(Jr),I.W.J. Heterocycl.Chem.1967,4:639~640
    9. Kim,J.H.; Jhong,T.N.; Paik,Y.K.; Park,J.S.; Kim,E.D.; Lee,Y.S.; Kim,S.U.US Patent 6030978 AI 2000.
    10. Siritron Samosorn. Development of berberine-based derivatives as novel antimicrobial anents[D].Wollongong.University of Wollongong,2005
    11. Node M., Hori H., Fujita E., J. Chem. Soc. Perkin. Trans.1976:2237-2243
    12. Dean F.M., Goodchild J., Houghton L.E.,Martin J.A. Tetrahedron Lett.1966,35:4153~4159
    13. Gleim R.D., Trenbeath S., Susuki F., Sib C.J., J.Chem. Soc,1978:242.
    14. Paul E.G. and Wang P.S.C., J. Org. Chem,1979,44:2307.
    15. Parker K.A., Petraitis J.J. Tetrahedron Lett,1981:39.
    16. Node M., Ohta K., Kajimoto T., Nishide K., Fujita E., Chem. Phrm. Bull,1983.31:4178~ 4181
    17. Jones C.D., Jevnikar M.G., Pike A.J., et al. J. Med. Chem,1984,27:1057~1066,
    18. Node M., Ohta K., Kajimoto T., etal. J. Org. Chem.,1980,45:4275,
    19. Node M,, Ohta K., Kajimoto T., et al. C,ham. Lett,1979:97~98.
    20. Sharghi H., Tamaddon F. Tetrahedron,1996,52(43):13623~13640
    21.Hurd C.D. and Winherg H.E., J. Chem. Soc,1942,64:2085
    22. Bycroft B.W., Roberts J.C., J. Chem. Soc,1963,10:4868~4873.
    23. Yamaguchi S., Nedachi M., Hired Y., Tetrahedron Letters,1999,40:7363~7365.
    24. Majetich G., Zhang Y., Wheless K., Tetrahedron Lett,1994,35(47):8727~8730
    25. Hwang K., Park S. Synthetic Commun.1993,23(20):2845~2849.
    26. Li G., Patel D., Hruby V. J., Tetrahedron Lett.1993,34(34):5393
    27. Cannon J.R., Matsuki Y., Patrick V.A., et alAust. J. Chem.,1987,40(7):1191
    28.鄢明,蒋耀忠,宓爱巧.甲基醚脱甲基反应.化学试剂.1996,18(3):151.156
    29.吴凯群,许刘华,翁玲玲.甲基醚的选择性去甲基试剂.化学研究与应用.2004,16(2):435-436
    30.邢其毅,裴伟伟,徐瑞秋等.基础有机化学(第三册上册).高等教育出版社,2006:23
    31.张雪梅,李磊,张川磊等.3,4-二羟基苯甲醛合成工艺的改进.徐州师范大学学报(自然科学版)2006,24(3):500-502
    32.夏春年,陈利民,胡惟孝.高纯度3,4-二羟基笨甲醛的制备.合成化学.2004,12:484-486
    1.季宇彬.中草药有效成分药理与其应用[M].哈尔滨:黑龙江科学技术出版社,1994,69-80.
    2. Amin A H, Subbaiah T V, Abbasi K M. Berberine sulfate:antimicrobial activity, bioassay, and mode of action[J]. Cancer J. Microbiol.,1969,15:1067~1076.
    3. Rabbani G H, Butler T, Knight J, et al. Randomized controlled trial of berberine sulfate therapy for diarrhea due to enterotoxigenic Escherichia coli and Vibrio cholerae[J].J. Infect. Dis.,1987,155:979
    4. Sack R B, Froehlich J L. berberine inhibits intestinal secretory response of Vibrio cholerae and Escherichia coli enterotoxins[J]. Infect. Immun.,1982,35:471
    5. Akhter M H, Sabir M, Bhide N K. Anti-inflammatory effect of berberine in rats injected locally with cholera toxin[J]. Indian. J. Med. Res.,1977,65:133
    6. Zhu B, Ahrens F A. Effect of berberine on intestinal secretion mediated by Escherichia coli heat-stable enterotoxin in jejunum of pigs[J]. Am. J. Vet. Res.,1982,43:1594
    7. Sun D, Abraham S N, Beachey E H. Influence of berberine sulfate on synthesis and expression of Pap fimbrial adhesin in uropathogenic Escherichia coli[J]. Antimicrob. Agents Chemother.,1988,32: 1274
    8. Hoog S W,Kim S H,Jeun J A,et al Antimicrobial activity of 9-O-benzoyl-substitued berberubines[J].Planta Med,2000,66:361
    9. Iwasa K,Kam igauchi M,U eki M,et al. Antimicrobial activity of some 13-alkay-substituted protoberinium salts[J].Planta Med,1997,63:196
    10. Ki Duk Park, Jong Hun Lee, Sung Han Kim,Tae Hoon Kang,Jae Sun Moon and Sung Uk Kim. synthesis of 13-(substituted benzyl) berberine and berberrubine derivatives as antifungal agents. Bioorganic & Medicinal Chemistry Letters.2006 (16):3913-3916
    11.杨勇,8-烷基小檗碱同系物的合成与药理活性.[D]西南大学.2008,40-47
    12..Iwasa K., Kamigauchi M., Uekl M.., et al. Structure-activity relationships of berberine analogs[J]. Eur. J. Med. Chem.,1996,31:469~478.
    1.孙连海,陈红歌.a-淀粉酶结构与功能关系研究[J].河南农业大学
    2.王文君,姚江武.红茶和绿茶多酚与猪胰腺淀粉酶a-淀粉酶相互作用的酶催化动力学和荧光猝灭研究.福建医科大学
    3.潘国宇.小檗碱的吸收和抗糖尿病作用机制[D].中国药科大学.2003,北京
    4.刘增然,何秀萍,龙章富等.a-淀粉酶基因的克隆及其在工业啤酒酵母中的表达[J],食品科学,2004,25(9):78-82.
    5. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities[J]. Biochem J,1991,280(Pt)21:309-316.
    6.张万山,谢金平等.a-淀粉酶抑制剂的特性及亚基组成分析[J].中国生化药物杂志,2000,21(31):121-123.
    7. Van Penninga.D.Van Der Veen,B.a.Knegtel,R The Raw Starch-Binding 32 Domain of Cyclodextrin Glycosyltransferase From Bacillus Circulans Strain[J]. Chem.1996.
    8.孙连海,陈红歌.a-淀粉酶结构与功能关系的研究[D].河南农业大学,2006,3(11):16-33.
    9. LG-CM Furniss CSM, Gunning AP, Kramh-ft B, Morris VJ, Williamson G, Svensson B.The starch binding domainof glucoamylase from AspergiUus niger[J]. Biologia(Bratisl),2002,57:239-245.
    10. Jia, Benzhen. Method for preparation of Berberine ion pair compounds and pharmaceutical composition:Chnia, CN/2005/10136655[P].2005-12-30
    11. Weng, Weiyu; Huang, Jianming; Qiu, Zhuibai; Shen, Teng; Zhang, Jianfang; Xu, Huinan; Guo, Jixian. Berberine alkaloids aliphatic organic acid salts, their preparation method and application as medicine composite:China, CN/2006/10029373[P].2006-07-25.
    1. Wehad H. AI Tourah. Angiotensin-converting enzyme inhibitors and angiotensin-recep tor blockers in p revention of nephropathy and cardio2 vascular disease in diabetics. Diabetes & Metabolic Syndrome [J].Clinical Research & Reviews,2008,2:131.
    2. Libin Zhou, Ying Yang, Xiao Wang, Shangquan Liu. Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism Clinical and Experimental 56 (2007) 405-412
    3. Kuo C L, Chou C C, Yung B Y. Berberine complexes with DNA in the berberine-induced apoptosis in human leukemic HL-60 cells[J]. Cancer Lett.,1995,93(2):193-200
    4. Jantova S, Cipak L, Cernakova M, et al. Effect of berberine on proliferation, cell cycle and apoptosis in HeLa and L1210 cells[J]. J. Pharm. Pharmacol,2003,55(8):1143~1149
    1. Hu, Lihong; Ye, Jiming; Li, Jingya; James, David E.13,13a-Dihydroberberine derivative and their pharmaceutical composition application:China, WO/2007/2882 [P].2007-09-30
    2. Ying-Hong Li, Yi Li, Peng Yang, Wei-Jia Kong, Xue-Fu You, Gang Ren, Hong-Bin Deng, Yue-Ming Wang, Yan-Xiang Wang, Jian-Dong Jiang, Dan-Qing Song. Design, synthesis, and cholesterol-lowering efficacy for prodrugs of Berberrubine. Bioorganic & Medicinal Chemistry 2010,18,1267-1273,
    3. Eric Beausoleil, Cedric Chauvignac, Thierry Taverne, Sandrine Lacombe, Laure Pognante, Bertrand Leblond, Diego Pallares, Catherine De Oliveira, Florence Bachelot, Rachel Carton, Helene Peillon, Severine Coutadeur, Virginie Picard, Nathalie Lambeng, Laurent Desire, Fabien Schweighoffer. Structure-activity relationship of isoform selective inhibitors of Racl/lb GTPase nucleotide binding. Bioorganic & Medicinal Chemistry Letters,2009,19:5594-5598.
    4. Ga Eun Lee, Ho-Sung Lee, So Deok Lee, Jung-Ho Kim, Won-Ki Kim, Yong-Chul Kim. Synthesis and structure-activity relationships of novel, substituted 5,6-dihydrodibenzo[a,g]quinolizinium P2X7 antagonists. Bioorganic & Medicinal Chemistry Letters.2009, (2):1-5
    5.赵保路.氧自由基和天然抗氧化剂[M].北京:科学出版社,1999:77-153.
    6. Cuzzocrea S., Riley D., Caputi A.P., et al. Antioxidant therapy:a new pharmacological app roach in shock, in flammation, and ische2 mia/reperfusion injury [J]. Pharmacol Rev,2001,53:135-139.
    7.吴雪辉,张喜梅,李廷群.板栗花粗提物的抗氧化活性研究[J].现代食品科技,2008,24(1):14-19
    8.中华人民共和国国家标准.食品中亚硝酸盐与硝酸盐的测定方法,GB/T 5009.33—1996
    9.陆曦,王磊,魏红.黄酮类化合物抗氧化活性的构效关系[J].食品科学.2006,27(12):233-237
    10. K. Srinivasa Rao, Pradeep Kumar Chaudhury, Anshuman Pradhan. Evaluation of anti-oxidant activities and total phenolic content of Chromolaena odorata[J]. Food and Chemical Toxicology 2010,48:729-732
    11.袁毅桦,陈忻,陈纯馨,等.柚皮提取物对亚硝化反应抑制作用研究[J].化学世界,2004,(1):27
    12. Knight J.A.,Disease related to oxygen-derived free radicals[J].Annals of Clinical and Laboratory Science,1995,25(2):111-112。
    13. Wang W F,Luo J,Yao S D,et al.Interaction of phenolic antioxidants and hydroxyl radicals[J]. Phytochemistry,1995,39(1):225-229
    14. Husain S R,Cilard J,Cilard P Hydroxyl radical scavenging activity of flavonoids[J]. Phytochemistry,1987,26(9):2489-2491
    15. Ebert M,Keene J P,Swallow A J,et al.Radiolysis.London:Academic Press,1965
    16. Halliwell B,Gutteridge J M C,Aruoma O L Deoxyribose method:A simple"test tube assay"for determination of rate constants for reactions of hydroxyl radicals[J].Analytical biochemistry,1987,165:215-219
    17.袁毅桦,陈忻,陈纯馨,等.柚皮提取物对亚硝化反应抑制作用研究[J].化学世界,2004,(1):27
    18. Farkas J. K., Floros, J.D., Lineh ck, D.S., and Watkins, B.A., J. Food Sci.,1997,62(3):505
    19. Van Acker SABE,Koymans L M H,Bast A.Molecular pharmacology of vitamin E:Structural aspects of antioxidant activity[J].Free Radical Biology and Medicine,1993,15:311-328
    20. Zhao B L,Liu S L,Chen R S,et al.Scavenging effects of catechin on free radicals studied by molecular orbital calculation[J].Acta Pharmacologica Sinica,1992,13:9-13
    21. Tomiyama S,Sakai S,Nishiyama T,et al.Factors influencing the antioxidant activities of phenols by an ab initio study [J].Bulletin Chemical Society Japan,1993,66:299-304
    22. Migliavacca E,Carrupt P A,Testa B.Theoretical parameters to characterize antioxidants,Part 1.The case of vitamin E and analogs[J].Helvetica Chimica Acta,1997,80:1613-1626
    23. Zhang H Y.Selection of the oretical parameter characterizing scavenging activity of antioxidangs on free radicals[J].Journal of the American Oil Chemists Society,1998,75:1705-1709
    24.王延平,赵谋明,张羽航.不同抗氧化剂对油脂抗氧化性能影响的研究[J].中国油脂,1999,24(3):37-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700