重组酿酒酵母直接利用木薯转化乙醇的代谢工程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业上木薯乙醇发酵普遍存在工序复杂、耗能大等问题。本研究通过基因工程技术,构建能同时高水平分泌表达α-淀粉酶与糖化酶的重组酿酒酵母菌株,并利用此重组工程菌株,进行了木薯乙醇直接发酵的工艺研究。
     首先提取米曲霉CICC40344和黑曲霉CICC40179的总RNA并反转录制备cDNA。参照NCBI公布的基因序列设计引物,扩增出α-淀粉酶基因amy与糖化酶基因ga。将其依次连入真核多基因表达载体pScIKP得到重组质粒pSc-ga-amy,通过电击转化重组进工业多倍体酿酒酵母AS2.489的基因组。用碘-淀粉水解圈与SDS-PAGE方法筛选出能够同时表达分泌两种酶的重组菌株,测定其α-淀粉酶与糖化酶活性分别为0.865U/ml与34.79U/ml,即酶活组成比例约为1:40。
     设计酶活配比试验,研究两淀粉酶协同作用,发现当α-淀粉酶与糖化酶酶活份数比例为1:5(当α-淀粉酶与糖化酶分别为1U与40U时,即份数比例为1:1)时,其水解淀粉的效果最好。利用Nhe I与Xba I同尾酶酶切位点向pScIKP载体中多次插入首尾相连的糖化酶基因表达盒,使载体上amy与ga表达盒比例为1:5,以此调节两种淀粉酶蛋白表达量比例,进而提高重组菌株的淀粉水解能力。但是构建好1个α-淀粉酶与5个糖化酶基因串联表达的重组酵母后发现,其水解淀粉的能力并未随之增强,分析原因可能与各基因启动子的相互干扰、整合随机性、rDNA功能受到破坏、位置效应、翻译极性等因素有关。
     从已构建的重组酵母菌株中筛选出淀粉水解能力最强菌株AS2.489/pScAG,对其生长特性、酶学性质及遗传稳定性进行研究,并通过正交试验对直接淀粉发酵条件进行优化。利用工程酵母AS2.489/pScAG于5L发酵罐中对200g/l的木薯粉进行直接发酵,4d内发酵液中乙醇体积分数达到8.68%,约为理论值的80.9%。该结果表明,获得的重组酵母发酵性能优越,在无需预处理、不添加任何商业酶的条件下对木薯的直接发酵效果良好,能够大大简化生产工艺与节能降耗、节约成本,具有重要的生产应用价值。
In order to solve problems such as complex processes and large energy consumption in theindustrial alcohol fermentation from cassava, recombinant Sacharomyces cerevisiae strainsco-expressing α-amylase and glucoamylase genes were constructed. Taking advantage of thisengineered amylolytic yeast, the direct production process established showed good effect.
     Firstly, genes encoding α-amylase and glucoamylase were obtained by RT-PCR respectivelyfrom the total RNA of Aspergillus oryzae CICC40344and Aspergillus niger CICC40179. Theamplified genes were cloned into expression vector pScIKP in sequence to generate theco-expression plasmid pSc-ga-amy. It was then transformed into S.cerevisiae by pulse celltransfection. Amylolytic transformants were screened with clear halos by iodine staining onstarch plates, and showed α-amylase and glucoamylase activities of0.865U/ml and34.79U/ml.
     The mixed enzymes tests were carried out, and the cocktails with α-amylase andglucoamylase activity ratio of1:5showed the best starch hydrolysis effects. In order to increasethe starch hydrolysis capacity of the recombinant strain, using isocaudamer enzyme of NheI andXbaI ligation, the glucoamylase gene expression cassette was repeatedly inserted to pScIKPvector to make the α-amylase and glucoamylase expression cassettes reach a ratio of1:5. But theresults showed the recombinant yeasts with one α-amylase gene and five glucoamylase geneswere not of high starch hydrolyzing ability. It may be due to the mutual interference of eachpromoter, randomness of integration, restrain of rDNA function, position effect, translationpolarity and other factors.
     The recombinant strain AS2.489/pScAG with the highest starch hydrolyzing ability wasselected to study its growth characteristics, enzyme properties and genetic stability, and directstarch fermentation conditions were optimized by orthogonal test. Direct ethanol fermentationwas also conducted in a5L jar fermenter with200g/l of cassava using this engineered yeast.The ethanol concentration could reach8.68%(v/v), approximate to80.9%of theoretical yield.This result indicated that the strain AS2.489/pScAG could sufficiently produce ethanol directlyfrom cassava without addition of any commercial enzymes. It would significantly simplify theproduction process and reduce energy consumption.
引文
[1]钱莹,段钢.酒精生产新过程的研究[J].酿酒科技,2011,(1):70-72.
    [2]孙陆晶.燃料乙醇产业前景[J].化学工业,2011,29(1):8-12.
    [3]靳胜英.世界燃料乙醇产业态势[J].石油科技论坛,2011,(2):52-54.
    [4]侯丽华.酿酒酵母遗传操作方法研究及乙醇发酵高产菌株构建[D].天津:天津大学,2007:4.
    [5]林海龙,武国庆,罗虎等.我国纤维素燃料乙醇产业发展现状[J].粮食与饲料工业,2011,(1):30-33.
    [6]夏树让.应对全球粮食与能源危机应大力发展我国木本粮食红枣和木薯[J].北京农业,2010,(4):9-10.
    [7]朱坚真,莫澎,叶盛权.中国酒精生产与经营[M].北京:化学工业出版社,2009:4-21.
    [8]靳胜英,孙守峰,宋爱萍等.我国非粮燃料乙醇的原料资源量分析[J].中外能源,2011,(16):10-45.
    [9]柳树海,刘晓峰.木薯非粮燃料乙醇生产技术进展[J].酿酒,2010,37(2):9-11.
    [10]黎贞崇,梁秀明.木薯作为我国燃料乙醇原料的潜力分析[J].酿酒科技,2010,(4):31-33.
    [11]冯献.中国木薯生物燃料产业发展实证分析[D].北京:中国农业科学院,2011:1-8.
    [12]谢铭,李肖.广西木薯生物燃料乙醇产业发展分析[J].江苏农业科学,2010,(3):471-474.
    [13]黎贞崇,梁秀明,黄纪民等.我国木薯乙醇发酵工业节能降耗的问题和出路[J].酿酒科技,2010,(2):121-124.
    [14]陈剑.燃料乙醇的研究与展望[J].广东化工,2011,38(2):233-235.
    [15]陈光伟.淀粉质原料发酵法制燃料乙醇中蒸煮液糖化阶段能耗分析及改进技术的探究[J].广东化工,2011,38(3):261-262.
    [16]蔡柳,曾璐,张婷婷等.薯类原料生物转化燃料乙醇研究进展[J].中国酿造,2011,(3):1-5.
    [17]贾树彪,李盛贤,吴国峰.新编酒精工艺学[M].北京:化学工业出版社,2004.
    [18]徐大鹏,冯英,王俊增等.木薯发酵乙醇工艺的研究进展[J].酿酒科技,2012,(1):93-97.
    [19]常春.酒精生产节能工艺的探讨[J].酿酒,2011,38(2):62-64.
    [20]靳胜英,张礼安,张福琴.不同原料生产乙醇的技术发展趋势[J].化学工业,2008,26(11):17-23.
    [21] Khaw T S, Katakura Y, Koh J, et al. Evaluation of performance of different surface-engineered yeaststrains for direct ethanol production from raw starch[J]. Appl Microbiol Biotechnol,2005,70(5):573-579.
    [22] Shigechi H, Koh J, Fujita Y, et al. Direct production of ethanol from raw corn starch via fermentation byuse of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase[J]. Applied andEnviromental Microbiology,2004,70(8):5037-5040.
    [23] Shigechi H, Uyama K, Fujita Y, et al. Efficient ethanol production from starch through development ofnovel flocculent yeast strains displaying glucoamylase and co-displaying or secreting alpha-amylase[J].Journal of Molecular Catalysis B: Enzymatic2002,(17):179-187.
    [24] Yamada R, Bito Y, Adachi T, et al. Efficient production of ethanol from raw starch by a mated diploidSaccharomyces cerevisiae with integrated alpha-amylase and glucoamylase genes[J]. Enzyme andMicrobial Technology,2009,(44):344-349.
    [25] Liao B, Hill G A and Roesler W J. Amylolytic activity and fermentative ability of Saccharomycescerevisiae strains that express barley alpha-amylase[J]. Biochemical Engineering Journal,2010,(53):63-70.
    [26] Kim J H, Kim H R, Lim M H, et al. Construction of a direct starch-fermenting industrial strain ofsaccharomyces cerevisiae producing glucoamylase, alpha-amylase and debranching enzyme[J].Biotechnol Lett,2010,(32):713-719.
    [27]吴晓萍,李文清,罗进贤等. α-淀粉酶和糖化酶的表达及酿酒酵母工程菌的构建[J].中山大学学报(自然科学版),1999,38(2):80-84.
    [28]郭德军.黑曲霉葡萄糖淀粉酶研究进展[J].黑龙江八一农垦大学学报,2002,14(2):91-96.
    [29] Monfort A, Blasco A, Prieto J A, et al. Combined expression of Aspergillus nidulans endoxylanase x24and Aspergillus oryzae alpha-amylase in industrial baker's yeasts and their use in bread making[J].Applied and Enviromental Microbiology,1996,62(10):3712-3715.
    [30] Randez-Gil F, Prieto J A, Murcia A, et al. Construcion of baker's yeast strains that secrete Aspergillusoryzae alpha-amylase and their use in bread making[J]. Journal of Cereal Science,1995,(21):185-193.
    [31] Gong Y X, Tai Y, Xiao W J, et al. Construction of saccharomyces cerevisiae integrated expression vectorand its application in cellulose bioconvesion[J]. Journal of Shenzhen University Science andEngineering (China),2010,27(1):82-87.
    [32] Ghang D M, Yu L, Lim M H, et al. Efficient one-step starch utilization by industrial strains ofSaccharomyces cerevisiae expressing the glucoamylase and alpha-amylase genes from debaryomycesoccidentalis[J]. Biotechnol Lett,2007,29(8):1203-1208.
    [33]刘增然,何秀萍,龙章富等.淀粉酶基因的克隆及其在工业啤酒酵母中的表达[J].食品科学,2004,25(9):78-82.
    [34]萨姆布鲁克J,拉塞尔D W.分子克隆实验指南[M].黄培堂,王嘉玺,朱厚础等译.北京:科学出版社,2002:1580-1591.
    [35] Thompson J R, Register E, Curotto J, et al. An improved protocol for the preparation of yeast cells fortransformation by electroporation[J]. Yeast,1998,14(6):565-571.
    [36] Filho S A, Galembeck E V, Faria J B, et al. Stable yeast transformants that secrete functional α-amylaseencoded by cloned mouse pancreatic cDNA[J]. Nat Biotechnol,1986,(4):311-315.
    [37] Eksteen J M, Van Rensburg P, Cordero Otero R R, et al. Starch fermentation by recombinantSaccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from Lipomyceskononenkoae and Saccharomycopsis fibuligera[J]. Biotechnol Bioeng,2003,84(6):639-646.
    [38]康明丽.淀粉酶及其作用方式[J].食品工程,2008,(3):11-14.
    [39]张剑,张开诚,田辉等.混合酶水解水溶性淀粉的研究[J].中国酿造,2007,(2):23-26.
    [40]柳辉.枯草杆菌α-淀粉酶基因克隆及其在毕赤酵母中的表达[D].武汉:华中科技大学,2007:28-29.
    [41] Wong D, Robertson G, Lee C, et al. Synergistic action of recombinant alpha-amylase and glucoamylase onthe hydrolysis of starch granules[J]. Protein J,2007,26(3):159-164.
    [42]戴灿,苗聪秀,卢光琇.基于重叠延伸PCR法的定点突变技术[J].现代生物医学进展,2010,10(3):411-412.
    [43]谢涛,王红宁.外源基因在巴斯德毕赤酵母中多拷贝整合的研究进展[J].生物技术通讯,2006,17(3):415-417.
    [44]曹慧青.多基因共表达载体的构建策略[J].国外医学分子生物学分册,2002,24(1):1-4.
    [45]李森.从密码子偏爱性角度分析外源基因在酵母中表达不好的原因[J].科协论坛,2008,(8):43.
    [46]董昧.微生物菌种保藏方法[J].河北化工,2009,32(7):34-35.
    [47]李敏.稳定高效表达木糖还原酶基因工程酿酒酵母的构建及木糖醇发酵的初步研究[D].济南:山东大学,2006:32-33.
    [48]王永刚.马铃薯α-淀粉酶基因和黑曲霉γ-淀粉酶基因的分子克隆及其在毕式酵母中的表达[D].兰州:兰州理工大学,2010:44.
    [49]郭春叶,龚月生,刘林丽等.酵母菌生长曲线的测定及其转葡萄芪合酶基因重组菌遗传稳定性的检测[J].安徽农业科学,2007,35(7):1909-1910.
    [50]应晓屹.酿酒酵母高转化率酒精发酵工艺条件优化研究[D].杭州:浙江大学,2006:9.
    [51]李洪辰,杨秀艳.使用血细胞计数板测定微生物数量实验的改进[J].生物学通报,2007,42(7):22.
    [52]孔祥诚,陈江,李晓聪等.美兰染色法检测酵母活性的优化试验[J].啤酒科技,2006,(12):50-52.
    [53]杨丽英,庞晖,马国顺.正交试验在微生物发酵试验中的应用[J].佳木斯大学学报,2008,26(6):859-861.
    [54]吴素萍.酶解玉米淀粉发酵酒精工艺条件的研究[J].酿酒科技,2007,(11):45-50.
    [55]葛奉娟,王欲晓,周俊等.重铬酸钾氧化比色法和气象色谱法定量分析发酵液中乙醇的比较研究[J].徐州工程学院学报,2011,26(2):64-68.
    [56] Wang J H, Teng D, Yao Y, et al. Expression of Aspergillus niger9891endoinulinase in pichia pastoris[J].High Technol Lett,2004,10(4):51-56.
    [57]王明洪.酒醅淀粉含量两种测定方法的比较[J].酿酒,2011,38(2):72-73.
    [58] Yamakawa S, Yamada R, Tanaka T, et al. Repeated batch fermentation from raw starch using a maltosetransporter and amylase expressing diploid yeast strain[J]. Appl Microbiol Biotechnol,2010,87(1):109-115.
    [59]余炜,伍时华,代周兴等. L-亮氨酸发酵用糖蜜预处理方法研究[J].广西工学院学报,2005,16(3):15-18.
    [60]张穗生,黄日波,周兴等.酿酒酵母乙醇耐受性机理研究进展[J].微生物学通报,2009,36(10):1604-1608.
    [61]张桥,周礼红,康冀川.生物转化淀粉产燃料乙醇的研究进展[J].长江大学学报(自然版)农学卷,2007,4(1):88-91.
    [62]刘增然.利用淀粉的酿酒酵母工程菌的构建[D].成都:四川大学,2004:84-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700