混合桩型复合地基的位移相互作用系数解法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩基础在土木工程中应用非常广泛。但由于在竖向荷载下的群桩基础,桩-桩、桩-土、桩-承台以及承台-土相互作用和影响的复杂性,群桩基础的荷载沉降分析方法的研究还不完善,目前的群桩沉降计算理论在计算精度以及计算速度上仍有欠缺之处。针对这些问题,本文基于积分方程理论建立了群桩的位移相互作用系数法计算理论,并通过参数分析和与实测资料比较,系统地研究了复合桩基及混合桩型复合地基的沉降以及桩土荷载分担等工程特性。
     本文的创新性研究内容主要包括以下几个方面:
     1.建立弹性半空间中求解桩-桩之间位移相互作用系数的第二类Fredholm积分方程。通过Mindlin解积分来求解弹性半空间中圆形荷载的基本解,按虚拟桩法建立桩-土相互作用分析模型。数值计算结果表明,与现有方法解答相比,本文的方法更加合理,能够考虑群桩在土中的“加筋效应”。对桩-桩之间位移相互作用系数进行了参数分析,得出一些具有工程应用价值的结论。
     2.研究了高承台群桩位移相互作用系数解法。利用叠加原理将桩-桩之间位移相互作用系数法推广至高承台群桩的求解,可用于求解桩长、桩径和桩身刚度不相等的混合桩型问题。将本文计算结果与现有弹性理论方法计算结果进行广泛的对比,验证了本文方法和计算程序的正确性,并且讨论了群桩在土中的“加筋效应”和“遮帘效应”对桩基性状的影响。针对高承台的等长群桩和不等长群桩两种情况,研究了桩身刚度、长细比和桩间距对群桩等效刚度以及群桩中各桩桩顶荷载分担特性的影响。
     3.研究了桩筏基础位移相互作用系数解法。根据桩-桩位移相互作用系数,提出桩-土、土-土位移相互作用系数;按虚拟桩法建立分析模型,基于圆形荷载的基本解及弹性理论推导出求解桩-土之间位移相互作用系数的第二类Fredholm积分方程,将高承台群桩位移相互作用系数法推广至桩筏基础的求解,在求解中引入了承台下地基土的共同作用。通过与现有文献结果进行对比,检验了本文方法和计算程序的可靠性。
     4.研究了混合桩型复合地基位移相互作用系数解法。采用Winkler分布弹簧模拟复合地基中的垫层作用,在桩筏基础位移相互作用系数解法基础上,建立了混合桩型复合地基的分析模型,以分析垫层作用下的桩土荷载分担和基础沉降特性。对混合桩型复合地基进行了广泛的参数研究,考察了垫层厚度、垫层弹性模量、桩长、桩间距、桩身刚度和土的泊松比对复合地基等效刚度以及荷载分布规律的影响。
     5.研究了层状地基中高承台群桩位移相互作用系数解法。基于传递矩阵法,推导出求解层状地基中桩-桩之间的位移相互作用系数的第二类Fredholm积分方程。按虚拟桩方法,建立层状地基中高承台群桩位移相互作用系数解法,并且通过与既有文献计算结果进行对比,验证了本文方法和计算程序的正确性。在参数分析中,研究了桩身刚度、桩长细比和桩间距对群桩等效刚度以及群桩中各桩桩顶荷载分担特性的影响。
Pile foundation is widely used in civil engineering, but the study on the load-settlement question of pile group foundations under vertical load is not perfect, due to the complicated characters of the interaction between pile-pile, pile-soil, pile-cap, and cap-soil. It is not perfect for the calculation speed and precision of pile group settlement now. In this paper, the displacement interaction factor approach was deduced based on the integral equation theory, and through the parametric analysis and comparison with the experimental result, a systemic research on the behaviors of composite piled foundations and composite foundations with hybrid piles such as load-settlement characters and load sharing characteristics between piles and soil etc was made.
     The main research work of this paper consists of the following parts:
     1. Solution of the pile-pile interaction factor with Fredholm’s integral equation method. The basic solution corresponding to the circle load in elastic half space was obtained with Mindlin’s solution, and the analysis model was set up using the fictious pile method. Compared with present solutions, the results show that the theory in this paper is more reasonable and the stiffening effect of pile group can be considered. Parametric analyses were made on the pile-pile interaction and some conclusions were valuable for engineering practices.
     2. Solution of pile group with floating cap with the approach of interaction factor for displacement. Based on the principle of superposition, the pile group with floating cap was calculated with the approach of interaction factor. The method can be used to solve problems of different pile lengths, radiuses and stiffnesses. The validity of the present method and program are verified by comparisons with the results obtained using other methods by present theory of elasticity. Also, the strengthening effects of intervening piles on the behavior of pile foundation were discussed. Then, for cases of same or different pile lengths in pile groups with floating cap, the effects of pile stiffness, pile slenderness and pile spacing on pile group equivalent stiffness and load distribution were studied.
     3. Solution of piled raft foundations with displacement interaction factor approach. Based on the interaction factor of pile-pile the interaction factors of pile-soil and soil-soil were put forward. Based on the basic solution corresponding to the circle load, by the method of fictious piles the second kind Fredholm’s integral equation was deduced to solve the interaction factor of pile-soil. The displacement interaction factor approach for pile groups with floating cap were extended to piled raft foundations considering the bearing capacity of the soil below the cap. Comparisons with present literatures verified the reliability of the present method and program.
     4. Solution of composite foundation with hybrid piles with displacement interaction factor approach. By simulating the cushion with the Winkler spring the cushion of composite foundations was considered. Based on the solution of piled raft foundations with displacement interaction factor approach the model for calculating the composite foundation with hybrid piles was established. The load sharing between piles and soil and the settlement characteristics of the composite foundation were analysed. A wide parametric analysis was made to investigate effects of the cushion thickness, Young’s modulus, pile length, pile spacing, and pile stiffness, and soil Poisson’s ratio on the equivalent stiffness and load distribution of the composite foundation.
     5. Solution of pile group with floating cap in layered soil with displacement interaction approach. With the transfer matrix method the second kind Fredholm’s integral equation was deduced to solve the interaction factor of pile-pile in layered soil. Based on the fictious pile method, the interaction factor approach for the pile group with floating cap in layered soil was obtained. Comparisons with the present literatures verified the accuracy of the present method and program. In the parametric analysis, the effects of the pile stiffness, pile slenderness and pile spacing on the equivalent stiffness and load distribution of pile group characteristics were investigated.
引文
[1] Balaam NP, Poulos HG, Booker JR (1975). Finite element analysis of the effects of installation on pile load-settlement behavior[J]. Geot. Eng., VI(1): 33-48.
    [2] Balaam NP, Booker J (1981).Analysis of rigid rafts supported by granular piles[J]. I. J. Num. Anal. Meth. Geomech, (5): 379-403
    [3] Balaam NP, Booker J (1985). Effect of stone column yield on settlement of rigid foundation in stabilized clay[J]. I. J. Num. Anal. Meth. Geomech, (3): 331-351.
    [4] Banerjee PK (1970). A contribution to the study of axially loaded pile foundations[D]. Ph.D. thesis, University of Southampton.
    [5] Banerjee PK (1978). Analysis of axially and laterally loaded pile groups[M]. In Developments in Soil Mechanics (ed. C.R. Scott). London: Applied Science Publishers.
    [6] Banerjee PK, Davis TG (1978). The behavior of axially and laterally loaded single piles embedded in nonhomogeneous soils. Geotechnique, 28(3): 309-326.
    [7] Boussinesq J (1885). Application des potentials a l’equilibre et des movements des soilids elasticques[M]. Gauthier-Villars, Paris.
    [8] Burland JB, Broms BB, Mello De VFB (1977). Behavior of foundations and structures [C]. In: Proceeding 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, 2: 495-546.
    [9] Burmister DM (1945). The general theory of stresses and displacements in layered systems[J]. Journal of Applied physics, 16: 89-94 ,126-127, 296-302.
    [10] Butterfield R, Banerjee PK (1971a). The elastic analysis of compressible piles and pile groups[J]. Geotechnique, 21(1): 43-60.
    [11] Butterfield R, Banerjee PK (1971b). The problem of pile group-pile cap interaction[J]. Geotechnique, 21(2): 135-142.
    [12] Chan KS, Karasudhi P, Lee SL (1974). Force at a point in the interior of a layered elastic half space[J]. International Journal of Solids and Structures, 10(11): 1179-1199.
    [13] Chin JT, Chow YK (1990). Numerical analysis of axially loaded vertical piles and pie groups[J]. Computers and Geotechnics, 9: 273-290.
    [14] Chow YK (1986b). Analysis of vertically loaded pile goups[J]. Iternational journal for numerical and analytical methods in geomechanics, 10: 59-72.
    [15] Chow YK (1986a).Discrete element analysis of settlement of pile groups[J]. Computers and Geotechnics, 24(1): 157-166.
    [16] Chow YK (1987). Iterative analysis of pile-soil-pile interaction[J]. Geotechnique, 37(3): 321-333.
    [17] Chow YK, Chin JT, Kog YC, et al. (1990). Settlement analysis of socketed pile groups[J]. Journal of Geotechnical Engineering Division, ASCE, 116(8): 1171~1185.
    [18] Clancy P (1993). Numerical analysis of piled raft foundations[D]. University of western Australia.
    [19] Clancy P, Randolph MF (1996). Simple design tools for piled raft foundations[J]. Geotechnique, 46(2): 313-328.
    [20] Clancy P, Randolph MF (1993). An approximate analysis procedure for piled raft foundations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 17(12): 849-869.
    [21] Cooke RW (1974). The settlement of friction pile foundations[C]. Proc. Conf. on Tall Buildings, Kuala Lumpur.
    [22] Cooke RW, Price G, Tarr K (1979). Jacked piles in London clay—A study of load transfer and settlement under working conditions[J]. Geotechnique, 29(2): 113-147.
    [23] Coyle HM, Reese LC (1966). Load transfer for axially loaded piled in clay[J]. Journal of Soil Mechanics Foundation Division, ASCE, 92(2): 1-26.
    [24] Davis EH, Poulos HG (1972). The analysis of piled-raft systems[J]. Aust. Geomechs. Jnl. , 2(1): 21-27.
    [25] D'Appolonia E, Romualdi JP (1963). Load transfer in end-bearing steel H-piles[J]. Journal of Soil Mechanics Foundation Division, ASCE, 89(2): 1-25.
    [26] Desai CS (1974). Numerical design-analysis for piles in sands[J]. Journal of the Geotechnical Engineering Division, ASCE, 100(6): 613-635.
    [27] EL Sharnouby B, Novak M (1985). Static and low frequency response of pile groups[J]. Canadian Geotechnical Journal, 22(1): 79-94.
    [28] EL Sharnouby B, Novak M (1986). Flexibility coefficients and interaction factors for pile group analysis[J]. Canadian Geotechnical Journal, 23: 441-450.
    [29] EL Sharnouby B, Novak M (1990). Stiffness constants and interaction factors for vertical response of pile groups[J]. Canadian Geotechnical Journal, 27: 813-822.
    [30] Ellison RD, D’appolonia E, Theirs GR (1971). Load-deformation mechanism for bored piles[J]. ASCE, 97(4): 661-678.
    [31] Filho RM, Mendon?a AV, Paiva JB (2005). Static boundary element analysis of piles submitted to horizontal and vertical loads[J]. Engineering Analysis with Boundary Elements, 29(3): 195-203.
    [32] Gardner WS (1975). Consideration in the design of drilled piers, Design. Construction and performance of deep foundation.
    [33] Geddes JD (1966). Stress in foundation soils due to vertical subsurface loading[J]. Geotechnique, 16(2): 231-255.
    [34] Griffiths DV,Clancy P, Randolph MF (1991). Piled raft foundation analysis by finite elements[J]. Proc. 7th Int. Conf. Comput. Methods Adv. Geomech. Cairns 2, 1153-1157.
    [35] Giroud JP (1968). Settlement of a linearly loaded rectangular area[J]. J. Soil Mech. Fdn Engng Div. Am. Soc. Civ. Engrs, 94 SM4: 813-831.
    [36] Hain SJ, Lee IK (1978). The analysis of flexible raft-pile systems[J]. Geotechnique, 28(1): 65-83.
    [37] Heydinger AG (1987). Recommendations: load-transfer criteria for piles in clay. AD-A181713.
    [38] Jardine RJ, Potts DM, Fourie AB, etc. (1986). Studies of the influence of non-linear stress-strain characteristics in soil-structure interaction[J]. Geotechnique, 36(3): 377-396.
    [39] Kezdi A (1957). Bearing capacity of piles and pile groups[J]. In: Proceeding 4th International Conference on Soil Mechanics and Foundation Engineering, London, 2: 46-51.
    [40] Kraft LM, Ray RP, Kagawa T (1981). Theoretical t-z curves[J]. Journal of the Geotechnical Engineering Division, ASCE, 107(11): 1543-1561.
    [41] Kuwabara F (1989). An elastic analysis of piled raft foundations in a homogeneous soil[J]. Soils and Foundations, 29(1): 82-92.
    [42] Kü?ükarslan S, Banerjee PK, Bildik N (2003). Inelastic analysis of pile soil structure interaction[J]. Engineering Structures, 25(9): 1231-1239.
    [43] Lee SL, Kog YC, Karunaratne GP (1985). Consolidation induced negative skin friction of piles in layered soils[J]. Geotechnical Engineering, 16(2): 191-212.
    [44] Lee SL, Kog YC, Karunaratne GP (1987). Axially loaded piles in layered soil[J]. Journal of Geotechnical Engineering, ASCE, 113(4): 366-381.
    [45] Lee CY, Small JC (1991). Finite-layer Analysis of axially loaded piles[J]. Journal of Geotechnical Engineering Division, ASCE, 117(11): 1706-1722.
    [46] Lee CY (1993a). Settlement of pile group-practical approach[J]. Journal of Geotechnical Engineering Division, ASCE, 119(9): 1449-1461.
    [47] Lee CY (1993b). Pile group settlement analysis by hybrid layer approach[J]. Journal of Geotechnical Engineering Division, ASCE, 119(6): 984-997.
    [48] Liang FY, Chen LZ, Shi XG (2003). Numerical analysis of composite piled raft with cushion subjected to vertical load[J]. Computers and Geotechnics, 30(6): 443-453.
    [49] Mandolini A, Viggiani C (1997). Settlement of piled foundations[J].Geotechnique, 47(4): 791-816.
    [50] Mattes NS, Poulos HG (1969). Settlement of single compressible pile[J]. Journal of Soil Mechanics Foundation Division, ASCE, 95(1): 189-207.
    [51] Maheshwari BK, Truman KZ, Naggar MHE, et al. (2004). Three-dimensional nonlinear analysis for seismic soil–pile-structure interaction[J]. Soil Dynamics and Earthquake Engineering, 24(4): 343-356.
    [52] Mendon?a A V, Paiva JB (2003). An elastostatic FEM/BEM analysis of vertically loaded raft and piled raft foundation[J]. Engineering Analysis with Boundary Elements, 27(9): 919-933.
    [53] Mendonca AV, de Paiva JB (2000). A boundary element method for the static analysis of raft foundation on piles[J]. Engineering Analysis with Boundary Elements, 24(3): 237-247.
    [54] Mindlin RD (1936). Force at a point in the interior of semi-infinite solid[J]. Physics, 7: 195-202.
    [55] Molonakis G, Gazetas G (1998). Settlement and additional internal force of grouped piles in layers soil[J]. Geotechnique, 48(4): 55-72.
    [56] Muki R, Sternberg E (1970). Elastostatic load-transfer to a half-space from a partially embedded axially loaded rod[J]. International Journal of Solids and Structures, 6: 69-90.
    [57] Muqtadir A, Desai CS (1986). Three-dimensional analysis of pile-group foundation[J]. International Journal for Numerical and Analytical Method in Geomechanics, Wiley, 10: 11, 41-58.
    [58] Mylonakis G, Gazetas G (1998). Settlement and additional internal forces of grouped piles in layered soil[J]. Geotechnique, 48(1): 55-72.
    [59] Nogami T, Chen HL (1984). Simplified approach for axial pile group response analysis[J]. Journal of Geotechnical Engineering Division, ASCE, 110(9): 1239-1255.
    [60] Ottaviani M (1975). Three-dimensional finite element analysis of vertically loaded pile groups[J]. Geotechnique, 25(2): 159-174.
    [61] O’Neill MW, Hawkins RS, Mahar LJ (1982). Load transfer mechanisms in pile and pile groups[J]. Journal of the Geotechnical Engineering Division, ASCE, 108(12): 1605-1623.
    [62] Poulos HG (1968). Analysis of the settlement of pile groups[J]. Geotechnique,18: 449-471.
    [63] Poulos HG, Davis EH (1968). The settlement behavior of single axially loaded incompressible piles and piers[J]. Geotechnique, 18(3): 351-371.
    [64] Poulos HG, Mattes NS (1969). The behavior of axially loaded end-bearing piles[J]. Geotechnique, 19(2): 285-300.
    [65] Poulos HG, Mattes NS (1971). Settlement and load distribution analysis of pile groups[J]. Australian Geomechanics Journal , 1(1): 18-28.
    [66] Poulos HG (1972). Load-Settlement Prediction for Piles and Piers[J]. Journal of the Soil. Mechanics and Foundations Division, ASCE, 98(9): 879-897.
    [67] Poulos HG (1979). Settlement of single pile in no homogeneous soil[J]. Journal of the Geotechnical Engineering Division, ASCE, 105(5): 627-642.
    [68] Poulos HG, Davis EH (1980). Pile foundation analysis and design[M]. New York: John Wiley and sons.
    [69] Poulos HG (1993a). Piled Rafts in Swelling or Consolidating Soils[J]. Journal of Geotechnical Engineering, ASCE, 119(2): 374-380.
    [70] Poulos HG (1993b). Settlement prediction for bored pile groups[J]. Proc. 2nd Int. Geotech. Semin. Deep Fdns. Bored Auger Piles, Ghent, 103-117.
    [71] Poulos HG (2001). Pile raft foundations: design and applications[J]. Geotechnique, 51(2): 95-113.
    [72] Pressley JS, Poulos HG (1986). Finite element analysis of mechanism of pile group behaviour[J]. Int. J. Num. Anal. Meth. Geomech. 10: 213-221.
    [73] Rajapakse RKND (1990). Response of an axially loaded elastic pile in Gibson soil[J]. Geotechnique, 40(2): 237-249.
    [74] Randolph MF (1977). A theoretical study of the performance of piles[D]. PhD thesis , University of Cambridge, U.K.
    [75] Randolph MF, Wroth CP (1978). Analysis of deformation of vertically loaded piles[J]. Journal of the Geotechnical Engineering Division, ASCE, 104(12): 1465-1488.
    [76] Randolph MF , Wroth CP (1979). An analysis of the vertical deformation of pile groups[J]. Geotechnique, 29(4): 423-439.
    [77] Randolph MF (1983). Design of piled raft foundations[C]. Proceedings of the international symposium on recent developments in laboratory and field tests and analysis of geotechnical problems, Bangkok, 525-537.
    [78] Richwien W, Wang Z (1999). Displacement of a pile under axial load[J]. Geotechnique, 49(4): 537-541.
    [79] Selvadurai APS (1979). The displacement of a rigid circular foundation anchored to an isotropic elastic half-space[J]. Geotechnique, 29(2): 195-202.
    [80] Shahu JT, Madhav MR, Hayashi S (2000). Analysis of soft ground-granular pile-granular mat system[J]. Computers and Geotechnics, 27(1): 45-62.
    [81] Shen WY, Chow YK, Yong KY (2000). A variational approach for the analysis of pile group-pile cap interaction[J]. Geotechnique, 50(4): 349-357.
    [82] Sheng DC, Eigenbrod KD, Wriggers P (2005). Finite element analysis of pile installation using large-slip frictional contact[J]. Computers and Geotechnics, 32(1): 17-26.
    [83] Seed HB, Reese LC (1957). The action of soft clay along friction piles[J]. Transactions, ASCE, 22: 731-746.
    [84] Small JC, Booker JR (1984). Finite Layer Analysis of Layered Elastic Materials Using a Flexibility Approach Part 1—Strip Loadings[J]. International Journal for Numerical Methods in Engineerin, 20: 1025–1037.
    [85] Small JC, Booker JR (1986). Finite Layer Analysis of Layered Elastic Materials Using a Flexibility Approach, Part 2 Circular and Rectangular Loadings[J]. International Journal for Numerical Methods in Engineering, 23: 959 978.
    [86] Smith IM, Griffiths DV (1988). Programming the finite element method[M], 2nd edn. Chichester: Wiley.
    [87] Southcott PH, Small JC (1996). Finite layer analysis of vertically loaded piles and pile groups[J]. Computers and Geotechnics, 18(1): 47-63.
    [88] Ta LD, Small JC (1996). Analysis of piled raft systems in layered soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 20(1): 57-72.
    [89] Trochanis AM, Bielak J, Christiano P (1991). Three-dimensional nonlinear study of piles[J]. Journal of Geotechnical Engineering Division, ASCE, 117(3): 429-447.
    [90] Thurman AG, D’appolonia E (1965). Computed movement of friction and end-bearing piles embedded in uniform and stratified soils[C]. Proc. 6th Int. Cof. S.M. & F.E. 2: 323-327.
    [91] Valliappan S, Lee IK, Boonlualohr P (1974). Settlement analysis of pile in layered soil[C]. Proceedings of the 7th Biennial Conference of the Australian Road Research Board, Adelaide, Australia, 7: 144-153..
    [92] Vijayvergiya VN (1977). Load-movement characteristics of piles[J]. 4th Symposium of Waterway, Port, Coastal and Ocean Division, ASCE, Long Beach, Calif., 2: 269-284.
    [93] Zhang HH, Small JC (2000). Analysis of capped pile groups subjected to horizontal and vertical load[J]. Computers and Geotechnics, 26: 1-21.
    [94] 安关峰, 徐斌(2000). 柔性桩的三维弹塑性有限元研究[J]. 同济大学学报,28(2): 219-223.
    [95] 艾智勇(1999). 弹性层状理论及其在桩筏基础中的应用研究[D]. 上海: 同济大学博士学位论文.
    [96] 曹汉志(1986). 桩的轴向荷载传递及荷载-沉降的数值计算方法[J]. 岩土工程学报, 8(6): 37-49.
    [97] 陈龙珠, 梁发云, 丁屹(2003a). 变刚度复合地基处理的有限元分析[J]. 工业建筑, 33(11): 1-4.
    [98] 陈龙珠, 梁发云, 黄大治等(2003b). 长-短桩复合地基在高层建筑中的应用研究[C]. 北京: 第 9 届全国土力学与岩土工程会议论文集: 677-682.
    [99] 陈龙珠, 梁发云(2004a). 桩筏基础的积分方程解法及其参数分析[J]. 岩土工程学报, 26(6): 733-738.
    [100] 陈龙珠, 梁发云, 黄大治等(2004b). 高层建筑应用长-短桩复合地基的现场试验研究[J]. 岩土工程学报, 26(2): 167-171
    [101] 陈龙珠, 梁发云, 严平等(2004c). 带褥垫层刚-柔性桩复合地基工程性状的试验研究[J]. 建筑结构学报, 25(3): 125-129.
    [102] 陈龙珠, 梁国钱, 朱金颖等(1994). 桩轴向荷载-沉降曲线的一种解析算法[J]. 岩土工程学报, 16(6): 30-38.
    [103] 陈明中(2000). 群桩沉降计算理论及桩筏基础优化设计研究[D]. 杭州: 浙江大学博士学位论文.
    [104] 陈明中, 龚晓南, 严平(2000). 单桩沉降的一种解析解法[J]. 水利学报, (8): 70-74.
    [105] 陈镕, 唐和生, 王远功等(1999). 层状地基中的单桩沉降分析[J]. 上海力学, 20(3): 276-282.
    [106] 陈善雄(2002). 长短桩相结合的水泥粉喷桩复合地基设计计算方法探讨[J]. 土木工程学报, 35(5): 79-81.
    [107] 陈雨孙, 周红(1987). 纯摩擦桩荷载-沉降曲线的拟合方法及其工作机理[J]. 岩土工程学报, 9(2): 49-61.
    [108] 池跃君, 宋二祥, 高文新等(2002a). 刚性桩复合地基承载及变形试验研究[J]. 中国矿业大学学报, 31(3): 237-241.
    [109] 池跃君, 沈伟, 宋二祥(2002b). 刚性桩桩复合地基桩、土相互作用的解析法[J]. 岩土力学, 23(5): 546-550.
    [110] 池跃君, 宋二祥, 陈肇元(2003a). 刚性桩复合地基竖向承载特性分析[J]. 工程力学, 20(4): 9-14.
    [111] 池跃君, 宋二祥, 陈肇元(2003b). 刚性桩复合地基在不同荷载下的桩土分担特性[J]. 天津大学学报, 36(3): 359-363.
    [112] 池跃君, 宋二祥, 金淮等(2003c). 刚性桩复合地基应力场分布的试验研究[J]. 岩土力学, 24(3): 339-343.
    [113] 邓文龙(1996). 高层建筑与地基基础非线性共同作用研究[D]. 上海: 同济大学博士学位论文.
    [114] 董平, 秦然(2003).基于剪胀理论的嵌岩桩嵌岩段荷载传递法分析[J]. 岩土力学, 24(2): 215-219.
    [115] 段继伟(1994). 单桩带台复合地基的有限元分析[J]. 地基处理, 5(2): 5-12.
    [116] 段永辉, 肖昭然, 张昭(2006). 刚性桩、柔性桩复合地基力学性状三维有限元分析[J]. 工业建筑, 36(2): 54-57.
    [117] 冯国栋、刘祖德等(1990). 群桩基础德荷载传递参数之确定[C]. 第五届土力学与基础工程学术会议集. 北京:中国建筑工业出版社.
    [118] 伏建林, 沈益锋, 赵锡宏(2005). 桩周土局部软化或强化对群桩性状的影响[J]. 岩土力学, 26(5): 817-820.
    [119] 葛忻声, 龚晓南, 张先明(2003). 长短桩复合地基有限元分析及设计计算方法探讨[J]. 建筑结构学报, 24(4): 91-96.
    [120] 龚晓南(2002). 复合地基理论与工程应用[M]. 北京: 中国建筑工业出版社.
    [121] 贺武斌, 梁仁旺, 王奎华(2003). 关于半刚性桩复合地基若干问题的研究[J]. 水利学报, 5: 92-97.
    [122] 洪毓康,楼晓明(1991). 群桩基础的共同作用分析[C]. 第六届土力学及基础工程学术会议论文集, 上海: 427-430.
    [123] 胡德贵, 罗书学, 赵善锐(2000). 加筋效应对群桩沉降计算的影响[J]. 工业建筑, 30(11): 38-42.
    [124] 胡中雄(1997). 土力学与环境土工学[M]. 上海: 同济大学出版社.
    [125] 黄广军, 张千里, 俞锡健等(2001). 加筋垫层对地基沉降控制效果的多方案比较[J]. 岩土工程学报, 23(5): 598-601.
    [126] 黄绍铭, 王迪民等(1991). 减少沉降量桩基的设计和初步实践[C]. 第六届土力学与基础工程学术会议论文集. 北京: 中国建筑工业出版社: 405-414.
    [127] 金波, 唐锦春(1993). 用积分变换及边界积分方法求解多层地基的静力问题[J]. 计算结构力学及其应用, 10(4): 424-431.
    [128] 金波(1994). 层状地基及其动力基础的计算[D]. 杭州: 浙江大学博士学位论文.
    [129] 金波, 唐锦春, 孙炳楠(1996). 层状地基轴对称问题的 Mindlin 解[J]. 计算结构力学及其应用, 13(2): 187-192.
    [130] 金波, 李志飙, 顾尧章(1997). 层状地基中的单桩沉降分析[J]. 岩土工程学报, 19(5): 35-42.
    [131] 李春灵(1999). 边载作用下 CFG 桩复合地基性状分析[J]. 建筑科学, 15(4): 19-23.
    [132] 李镜培(1990). 竖向承载桩的可靠性研究[D]. 上海: 同济大学博士学位论文.
    [133] 李宁, 韩煊(2001). 褥垫层对复合地基承载机理的影响[J]. 土木工程学报, 34(2): 68-73.
    [134] 梁发云(2004). 混合桩型复合地基工程性状的理论与试验研究[D]. 上海: 上海交通大学大学博士学位论文.
    [135] 梁发云,陈龙珠,李镜培(2005a). 混合桩型复合地基工程性状的近似解法[J]. 岩土工程学报, 27(4): 459-463.
    [136] 梁发云,陈龙珠, 王经雨 (2005b). 长-短桩复合地基性状影响参数弹塑性有限元分析[J].建筑结构, 35(7): 12-16.
    [137] 刘奋勇,杨晓斌,刘学(2003). 混合桩型复合地基试验研究[J]. 岩土工程学报,25(1): 71-75.
    [138] 刘吉福, 周正忠(1999). 沉管灌注桩-深层搅拌桩-褥垫层复合地基工程实例[J]. 岩土工程技术, 2(2): 3-7.
    [139] 刘杰, 何杰, 张可能(2003). 复合地基承载特性的弹塑性分析[J]. 工程地质学报, (3): 243-248.
    [140] 刘杰, 赵明华(2005). 基于双剪统一强度理论的碎石单桩复合地基性状研究[J]. 岩土工程学报, 27(6): 707-711.
    [141] 刘金砺(1990). 桩基础设计与计算[M]. 北京:中国建筑工业出版社.
    [142] 刘金砺, 黄强, 李华等(1995). 竖向荷载下群桩变形性状及沉降计算[J]. 岩土工程学报, 17(6): 1-113.
    [143] 刘开国(2004). 不均匀布桩的桩筏基础分析[J]. 土木工程学报, 37(12): 67-69.
    [144] 刘前曦, 候学渊, 章旭昌(1996). 筏-桩-土共同作用分析方法[J].同济大学学报, 24(6): 625-630.
    [145] 陆建飞(2000). 饱和土中的桩土共同作用问题研究[D]. 上海: 上海交通大学博士学位论文.
    [146] 陆建飞, 王建华, 沈为平(2000). 考虑固结和流变的群桩的积分方程解法[J]. 岩土工程学报, 22(4): 57-67.
    [147] 罗惟德(1990). 单桩沉降机理分析与荷载-沉降曲线的理论推导[J]. 岩土工程学报, 12(1): 35-44.
    [148] 律文田, 王永和, 冷伍明(2005). 预应力混凝土管桩桩土相互作用的有限元分析[J]. 岩土力学, 26: 154-158.
    [149] 马骥, 张东刚, 张震等(2001). 长短桩复合地基设计计算[J]. 岩土工程技术, 2(2): 86-91.
    [150] 裴捷(2001).上部结构与地基基础共同作用理论—工程应用与理论研究[D]. 上海: 同济大学博士学位论文.
    [151] 潘时声(1991). 用分层积分法分析桩的荷载传递[J]. 建筑结构学报, 12(5): 68-78.
    [152] 庞锋, 顾小安, 卢明康(2004). 群桩加筋效应机理研究[J]. 东南大学学报, 34(3): 390-392.
    [153] 彭劼, 施建勇, 娄亮等(2003). 考虑时效作用的桩基承载力计算方法研究[J]. 岩土力学, 24(1): 118-122.
    [154] 岂连生(1999). 低强度混凝土桩与振密砂石桩复合地基试验与应用[J]. 建筑结构, 29(8): 42-44.
    [155] 岂连生, 张兰亭, 黄仙枝等(2006). 软土地基土工带加筋碎石垫层试验研究[J]. 建筑结构, 36(2): 83-85.
    [156] 钱家欢,殷宗泽(1996). 土工原理与计算[M]. 北京:中国水利水电出版社.
    [157] 石旭光(2001). 刚柔组合桩复合地基性状的三维弹性分析[D]. 上海: 浙江大学硕士学位论文.
    [158] 石名磊, 邓学钧, 刘松玉(2003). 群桩间“加筋与遮帘”相互作用研究[J]. 东南大学学报, 33(3): 343-346.
    [159] 石名磊, 战高峰(2005). 群桩荷载位移特性研究[J]. 岩土力学, 26(10): 1607-1611.
    [160] 宋二祥, 沈伟, 金淮等(2003). 刚性桩复合地基-筏板基础体系内力、沉降计算方法[J]. 岩土工程学报, 25(3): 268-72.
    [161] 孙晓立, 杨敏(2006a). 由单桩载荷试验预测桩筏基础沉降的简化分析方法[J]. 岩土工程学报, 28(8): 1013-1018.
    [162] 孙晓立, 杨敏(2006b). 大规模桩筏基础非线性共同作用简化分析方法[J]. 土木工程学报, 39(9): 91-97.
    [163] 田美存, 徐永福(1997). 荷载传递法在群桩分析中种的应用[J]. 河海大学学报, 25(1): 62-66.
    [164] 田管凤, 吴起星(2002). 群桩基础的剪切位移法分析[J]. 东莞理工学院学报, 9(2): 35-39.
    [165] 童翊湘(1979). 上海桩基础的使用经验和设计方法[R]. 上海: 华东电力设计院.
    [166] 王步云, 赵秀芹(1997a). 砂石桩与低强度混凝土桩组合型复合地基在软土地基中的应用(一)[J]. 岩土工程技术, (1): 8-14.
    [167] 王步云, 赵秀芹(1997b). 碎石桩与低强度混凝土桩组合型复合地基在软土地基中的应用(二)[J]. 岩土工程技术, (2): 3-5.
    [168] 王国才, 宋春雨, 陈龙珠(2005). 饱和地基轴对称竖向振动有限元-无限元耦合解[J]. 上海交通大学学报, 39(5): 764-768.
    [169] 王建华, 陆建飞, 沈为平(2001). 层状地基中考虑固结和流变的垂直单桩的理论计算[J]. 水利学报, (4): 57-67.
    [170] 王经雨(2002). 长短桩复合地基性状的三维弹塑性分析[D]. 杭州: 浙江大学硕士学位论文.
    [171] 王琤, 凌道盛(2005). 筏板刚度对桩筏基础下卧层附加应力影响分析[J]. 工业建筑, 35(5): 5-9.
    [172] 王林生(1986). 求解成层地基空间轴对称问题的初参数法. 力学学报[J]. 18(6): 528 -537.
    [173] 王启铜(1991). 柔性桩的沉降特性及荷载传递规律[D]. 上海: 浙江大学博士学位论文.
    [174] 王旭东, 魏道垛(1994). 群桩-土-承台结构共同作用有限层-有限元分析[J].南京建筑工程学院学报, 3: 1-8.
    [175] 徐芝纶(2000). 弹性力学(上册)[M]. 北京: 高等教育出版社(第 3 版).
    [176] 杨军龙, 丁璐, 雷建功(2002a). 长短桩复合地基数值分析[J]. 四川建筑科学研究, 28(4): 38-40, 49.
    [177] 杨军龙, 龚晓南, 孙邦臣(2002b). 长短桩复合地基沉降计算方法探讨[J]. 建筑结构, 32(7): 8-10, 26.
    [178] 葛忻声,龚晓南,张先明(2003). 长短桩复合地基有限元分析及设计计算方法探讨[J]. 建筑结构学报, 24(4): 91-96.
    [179] 马骥, 张东刚, 张震等(2001). 长短桩复合地基设计计算[J]. 岩土工程技术, 2: 86-91.
    [180] 王伟, 杨敏, 杨桦(2006a). 长短桩桩基础与其它类型基础的比较分析[J]. 建筑结构学报, 27(1): 124-129.
    [181] 王伟, 杨敏, 杨桦(2006b). 端承长桩下长短桩基础的垫层特性分析[J]. 同济大学学报, 34(2): 170-174.
    [182] 杨敏, 王树娟, 王伯钧等(1997). 使用 Geddes 应力系数公式求解单桩沉降[J]. 同济大学学报, 25(4): 379-385.
    [183] 杨敏, 杨桦, 王伟(2005a). 长短桩组合桩基础设计思想及其变形特性分析[J]. 土木工程学报, 38(12): 103-108.
    [184] 杨敏, 杨桦, 王伟等(2005b). 某工程长短桩组合桩基础设计方案分析[J]. 岩土力学, 26: 218-222.
    [185] 刘海涛,谢新宇,程 功(2005). 刚-柔性桩复合地基试验研究[J]. 岩土力学, 26(2): 303-306.
    [186] 孙艳林(2004). 长短桩复合地基设计计算的探讨[J]. 岩土工程技术, 18(5): 252-254.
    [187] 袁建新, 钟晓雄(1991). 桩荷载与变位的数值模拟分析[J]. 岩土力学, 12(1): 1-8.
    [188] 宰金珉, 宰金璋(1993).高层建筑基础分析与设计—土与结构物共同作用的理论与应用[M]. 北京: 中国建筑工业出版社.
    [189] 宰金珉(1996). 群桩与土和承台非线性共同作用分析的半解析半数值方法[J].建筑结构学报. 17(1): 63-74.
    [190] 宰金珉, 凌华, 王旭东(2002). 桩筏基础非线性共同作用数值分析[J]. 南京工业大学学报(自然科学版),2002, 24(5): 1-6.
    [191] 宰金珉, 王旭东, 余闯(2005). 复合桩基地基土中附加应力分布特征及沉降计算简化方法[J]. 工业建筑, 35(5): 24-27.
    [192] 桩基工程手册编委会(1995). 桩基工程手册[M]. 北京:中国建筑工业出版社.
    [193] 张保良, 姜洪伟, 赵锡宏(1996). 层状土中群桩沉降分析[J]. 力学季刊, 17(1): 69-75.
    [194] 张保良, 姜洪伟, 赵锡宏(1997). 多桩数桩筏基础沉降分析方法[J]. 同济大学学报, 25(3): 282-286.
    [195] 张世民,魏新江,秦建堂(2005). 长短桩在深厚软土中的应用研究[J]. 岩石力学与工程学报, 24(2): 5426-5431.
    [196] 张耀东, 王晓东, 孙秀杰(2002). CM 长短桩复合地基的设计与应用[J]. 铁道建筑技术, 2: 41-44.
    [197] 张子明, 赵光恒(1985). 用初始函数法计算成层地基轴对称荷载作用下的位移和应力[J]. 华东水利学院学报, 13(4): 40-48.
    [198] 赵明华,邹丹, 邹新军(2005a). 基于荷载传递法的高承台桩基沉降计算方法研究[J]. 岩石力学与工程学报, 24(13): 2310-2314.
    [199] 赵明华,张玲,杨明辉(2005b). 基于剪切位移法的长短桩复合地基沉降计算[J]. 岩土工程学报, 27(9): 994-998.
    [200] 赵明华, 李微哲, 曹文贵(2006). 复杂荷载及边界条件下基桩有限杆单元方法研究[J]. 岩土工程学报, 28(9): 1059-1063.
    [201] 赵锡宏 (1989). 上海高层建筑桩筏和桩箱基础设计理论[M]. 上海: 同济大学出版社.
    [202] 郑刚, 刘双菊, 伍止超(2006a). 不同厚度褥垫层刚性桩复合地基工作特性研究[J]. 岩土力学, 27(8): 1357-1360.
    [203] 郑刚, 张慧东, 刘双菊(2006b). 承台(基础)-桩不同构造形式下桩土相互作用分析[J]. 工业建筑, 36(6): 65-70.
    [204] 郑俊杰, 袁内镇(1997). 石灰桩-粉煤灰桩在深厚软土地基中的应用[J]. 建筑结构, 27(4): 29-30.
    [205] 郑俊杰, 袁内镇(1998). 石灰桩与深层搅拌桩联合加固深厚软土[J]. 岩土工程技术, 2(2): 33-34.
    [206] 钟阳, 王哲人, 郭大智(1992). 求解多层弹性半空间轴对称问题的传递矩阵法[J]. 土木工程学报, 25(6): 37-43.
    [207] 中华人民共和国国家标准(2002). 建筑地基基础设计规范 (GB 50007-2002 ). 北京: 中国建筑工业出版社.
    [208] 佐藤悟(1965). 基桩承载力机理[J]. 土木技术, 20(1): 1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700