光电式几何量测量系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电式几何量测量是规则几何物体多种测量方法中应用较广的一种,特别是基于线阵CCD的光电式几何量测量由于具有结构简单,成本低等特点,广泛应用于规则几何物体的尺寸测量中。
     本文设计的光电式几何量测量系统采用平行光成像法对规则几何物体进行测量。系统中的平行光源用于射物体,将物体的尺寸信息变成光信号,光线经过光接收系统投影到线阵CCD上,硬件部分对CCD输出的电信号进行滤波放大以及数据采集,经过软件处理后得到被测物体的尺寸。
     光源发出的平行光由LED点光源转换形成,具有大口径、高精度的特点。其直径可达40mm,最大平行度误差小于0.2度。平行光射被测物体后,光线被线阵CCD接收。在被测物体和线阵CCD之间加入光接收系统,同时将透镜中某些曲面选用非球面结构,进一步提高了测量的精度。光学系统的设计基于基本的像差理论,采用ZEMAX软件进行优化。线阵CCD接收的光信号通过线阵CCD的光电转换后需要进行硬件处理,硬件电路实现了CCD视频信号的接收、预处理和采集,整个硬件电路的运行通过CPLD进行控制。经过硬件处理后的CCD视频信号通过USB总线送入上位机。采用EasyUSB动态库实现USB设备与PC机的通信,省去了固件程序的编写,缩短了设计周期。被测物体尺寸信息的提取通过在上位机编程实现。使用亚像元细分技术和直线拟合算法两种方法进行物体尺寸信息的提取,通过计算可求出被测物体尺寸的大小。
     光学系统的像差、CCD自身噪声和分辨率的局限性、硬件系统的误差和软件算法精度的有限性都会影响测量的精度,再加上外界环境等一些不确定因素的影响,测量系统误差相对较大。测量系统的软件设计应用了误差补偿的方法,提高了系统测量的精度。
     本文设计的光电式几何量测量系统可以实现中等尺寸物体的微米级精度测量,相对于传统的测量系统具有精度高、体积小等优点。
Photoelectric geometrical parameter measuring is a kind of regular geometrical object measuring methods, and it is widely used. With simple structure and low cost, the photoelectric geometrical parameter measurement based on linear CCD is widely used in measuring regular geometrical object.
     In this paper, geometrical parameter measuring system based on CCD is designed. The system uses parallel-ray imaging method to measure regular geometrical object. In the measuring system, parallel light is used to irradiate object and turn the object size information into optical signals. Through the receiving system, the optical signals are projected onto CCD. Hardware component is used to filtering, amplification and data collection of the CCD output. The size of object can be available after processed by software.
     The parallel light is formed by LED, and has large-caliber, high-precision characteristics. Its diameter is 40mm, and the maximum error of Parallelism is less than 0.2 degree. After irradiating the object, the parallel light is received by linear CCD. By inserting a receiving system between the linear CCD and the measured object, and setting non-spherical surface for some surface of the lens, the accuracy of measuring is enhanced. The optical system is designed according to aberration theory, and optimized by ZEMAX. The optical signals received by linear CCD will be processed by hardware after photoelectric conversion. Hardware which is controlled by CPLD is used to receive, pre-process and collect the signals. After processed by hardware, the video signals of CCD are sent to the host computer through USB. EasyUSB is used to achieve the communication between USB and PC, eliminating the program of firmware and the design cycle was shortened. Through programming at host computer, the size of measured object could be extracted. Sub-pixel technology and linear fitting algorithm are both used to extract the size information of object, and the size of object can be available by calculating.
     There are many factors can affect the accuracy of measurement, such as the aberrations of optical system, the noise and the resolving power of CCD, the errors of hardware and the accuracy of the algorithm in software. Some uncertain factors of external environment can also make the error of measuring system relatively large. In the software part of the measuring, error compensation is used to improve the accuracy of the measurement
     The Photoelectric geometrical parameter measuring system designed in this paper can measure middle size object with micron-level accuracy, having high accuracy and small size advantage.
引文
[1]吴福田,冯书文.CCD尺寸测量光学系统设计原理[J].应用光学,1994,15(5):20-24.
    [2]孙学珠,付维乔,刘庆等.高精度CCD尺寸白动检测系统的光学系统设计[J].光学技术,1995,5:4-6.
    [3]苏波,王纪龙,王云才.CCD高精度测径系统的研究[J].太原理工大学学报,2002,33(5):506-509.
    [4]张强,黄道君.CCD光电测径仪的在线应用[J].仪器仪表与分析监测,2003,3:8-9.
    [5]李新秋,徐光,龚杰等.CCD外径测量及控制[J].橡胶工业,1999,46:238-240.
    [6]余震,文艺.基于线阵CCD的尺寸测量研究及误差分析[J].计量技术,2004,8:12-14.
    [7]李浩宇.基于线阵CCD的高精度测量系统设计及测量隙测径方法研究[D].长沙:中南大学,2004
    [8]ALVAREZ ISRAEL,CAMPO JUAN C.,FERRERO FRANCISCO,et al.Length measurement of plates using CCD' s[C].Instrumentation and Measurement technology Conference,Hungray:Budapest,2001:941-944.
    [9]胡家升.光学工程导论[M].大连:大连理工大学出版社,2005.
    [10]刘钧,高明.光学设计[M].西安:西安电子科技大学出版社,2006.
    [11]袁立银,郝沛明,周森林.非球面齐明透镜的设计[J].量子电子学报,2006,23(2):159-163.
    [12]周雷.CCD非接触儿何量测量系统的设计与实现[D].大连:大连理工大学,2007.
    [13]王以铭.电荷耦合器件原理与应用[M].北京:科学出版社,1987.
    [14]安毓英,刘继芳,李庆辉.光电子技术[M].北京:电子工业出版社,2002.
    [15]TOSHIBA.TOSHIBA CCD LINEAR IMAGE SENSOR CCD TCD1500C.Datasheet,1997.
    [16]康华光等.电子技术基础-模拟部分(第四版)[M].北京:高等教育出版社,1996.
    [17]TI.TLC5510 8-Bit High-Speed Analog-To-Digital Converters.Datasheet,1999.
    [18]李彩,王安,刘勇.8位高速A/D转换器TLC5510的应用[J].国外电子元器件,2003,7:59-61.
    [19]CYPRESS.CY7C199 32K Static RAM.Datasheet,2003.
    [20]XILINX.XC9500 In-System Programmable CPLD Family.Product specification,1999:1-16.
    [21]XILINX.XC95108 In-System Programmable CPLD.Datasheet,1998.
    [22]王幸之,钟爱琴,王雷等.AT89系列单片机原理与接口技术[M].北京:北京航天航空大学出版社,2004.
    [23]周立功.PDIUSBD12 USB固件编程与驱动开发[M].北京:北京航天航空大学出版社.2003.
    [24]王诚,薛小刚,钟信潮.FPGA/CPLD设计工具[M].北京:人民邮电出版社,2003.
    [25]张文革,段晨东,董革平.线阵CCD检测技术中二值化方法的研究[J].现代电子技术,2003,17:92-93.97.
    [26]朱新亚,田爱玲.Matlab与VC接口在图像及数据处理中的应用[J].国外电子测量技术,2006,25(11):44-47.
    [27]邓红涛,赵庆晨.基于Matlab的图像处理的研究[J].信息技术,2008,4:17.
    [28]雷志勇,刘群华,姜寿山等.线阵CCD图像处理算法研究[J].光学技术,2002,28(5):475-477.
    [29]王庆河,王庆山.数据处理中的几种常用数字滤波算法[J].计量技术,2003,4:53-53.
    [30]谷林,胡晓东,陈良益等.基于FPGA的线阵CCD亚像元边缘检测片上系统[J].光子学报,2004,33(5):617-621.
    [31]苏翼雄,贺忠海,徐可欣等.利用二次曲线拟合的CCD图像亚像素提取算法[J].计量技术,2003.7:3-7。
    [32]KOZO OHTANI,MITSURU BABA.A Fast Location Measurement with Subpixel Accuracy Using a CCD Image[C].Instrumentation and Measurement technology Conference,Hungray:Budapest,2001:2087-2092.
    [33]朱庆,于殿泓.掩膜立体成型中平行光边缘衍射问题分析[J].工具技术,2005,39(6):74-76.
    [34]LUHONG DIAO,BIN YU,HUA LI.A new edge detector based on Fresnel diffraction[J].Pattern Recognition Letters,2007,28:859-864.
    [35]刘奋飞,赵辉,陶卫.改进的直线拟合线阵CCD图像边缘检测方法[J].光电工程,2005,32(3):40-43.
    [36]吴健,严高师.光学原理教程[M].北京:国防工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700