预应力钢绞线焊接区用低温快速磷化工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强度低松弛预应力钢绞线作为第三代高档建筑材料,被广泛应用于高层建筑、大跨度桥梁等现代化大型建筑。其中1860MPa级PC钢绞线是已商业化的钢绞线中强度级别最高,用量最大的品种。其生产过程是将高碳盘条通过连续7~10道次的连续冷拉拔形变而制成。由于现代化大生产的连续性,不同卷盘条通常采用电阻对焊的方法连接在一起,在生产过程中盘条电阻对焊区域容易出现拉丝断裂。
     通过对焊接区拉丝断口形貌的分析,结果表明,焊接区发生拉丝断裂的主要原因为:焊接引入的氧化夹杂物、焊接温度过高引起的组织过热以及焊接区表面润滑不良产生的表面缺陷。其中,表面缺陷的影响最大,还可能造成后续的绞线过程断丝。针对焊接区易产生表面缺陷的问题,研究采用磷化处理的方法来改善表面润滑性能,减少表面缺陷的产生。
     研究了氧化剂NaNO2和稀土促进剂La(NO3)3对磷化过程的φ-t曲线的影响,及磷化各阶段的磷化膜生长情况。结果表明,氧化剂NaNO2有明显的促进磷化成膜的作用,促进磷化过程的去极化,使成膜阶段的时间缩短;La(NO3)3可促使磷化膜形核;当NaNO2和La(NO3)3共同作用时,能综合二者的促进作用,起到良好的效果。
     研究了表面状态、表面活化处理、磷化处理时间、磷化液的成分对磷化膜膜重和形貌的影响,确定了一种低温快速磷化工艺。采用的磷化液配方:浓H_3PO_4(>85%) 5ml/L,Zn(H_2PO_4)_2 55g/L,Zn(NO_3)2 70g/L,NaNO_2 0.4 g/L,La(NO_3)_3 0.05g/L ,处理温度为40℃,磷化时间为10min。对研制的磷化膜及皂化后磷化膜的摩擦性能进行了研究,结果表明,磷化膜在100N、150N和200N条件下均具有较好的减摩效果,尤其在载荷为100N时,其摩擦系数为0.4左右,而相同条件下未磷化处理样品的摩擦系数约为0.7;磷化膜皂化处理后,其摩擦性能更佳,摩擦系数均在0.2左右。
     生产性磷化试验表明,采用低温快速磷化工艺对盘条焊接区进行磷化处理,能有效地防止表面横向裂纹的产生。
As high-grade structure material, 1860MPa prestressed concrete (PC) steel strand is widely used in modern construction, such as skyscrapers, large span bridges, and so on. It was made of high-carbon steel wires after drawing deformation. The bar to bar are connected by butt resistance welding in order to keep continuous drawing. Fracture often occurrs in the weld joint of the wire during drawing.
     Drawing fractures morphology were investigated and classified. Statistical results showed that the drawing fractures in weld joint were caused by three main reasons: 1) oxide inclusion brought about by welding process; 2) overheat structure caused by high temperature of heat treatment of welling process; 3) last but not lest, surface cracks occurred during drawing because of the destroy of lubricant coated layer in welding process. The surface crakes will also cause the fracture in the process of twisting. Thus a new phosphating process on weld joint surface is studied to improve the lubricant performance and avoid occurrence of surface cracks during drawing process.
     The effect of oxidative accelerant NaNO_2 and La(NO_3)_3 on potential (φ) vs time (t) relationships was studied. The growth process of phosphate coating was also observed. The result showed that NaNO2 can accelerate the growth of phosphate coating, and La(NO3)3 can accelerate the nucleation of phosphate. The better effect is obtained by using NaNO2 and La(NO_3)_3.
     The effect of process parameter on phosphating, such as surface conditions, activation process, time of phosphating and the component of solution on the weight and figure were tested. The experimental results showed that the best composition and process parameters are as follows, at 40℃and 10min, the composition of phosphating solution was H3PO4(>85%) 5ml/L,Zn(H_2PO_4)_255g/L,Zn(NO_3)_270g/L,NaNO2 0.4 g/L,La(NO_3)_3 0.05g/L。
     The friction performance of the phosphate coating is studied as well. The result showed that the friction coefficient of the phosphate coating is about 0.4 when the load is 100N, but the un-phosphating sample is more than 0.7. The phosphate coating combined with sodium stearate and calcium stearate show a better fiction performance, and the friction coefficient is about 0.2.
     When the above phosphating process was used on the weld joint of wire, the result showed that the phosphate coating can eliminate surface transverse cracks.
引文
[1] 新华社多媒体数据库[DB/OL]
    [2] 戴宝昌.重要用途线材制品生产新技术[M].北京:冶金工业出版社;2001.102-138
    [3] 张玉玲.关于 2000MPa 级低松弛钢绞线的研制过程[J].天津冶金,2004(5):24-26
    [4] 张秀凤.我国预应力钢材的现状及发展趋势(续完).金属制品,2002,28(4):1-3
    [5] 线螺钢绞线、钢丝 05 年需求提高.[EB/OL]. http://info.steel.hc360.com/Html/001/014/001/5542.htm, 2004-12-22
    [6] 何德孚主编.焊接与连接工程学导论[M].上海:上海交通大学出版社;1998
    [7] 雷作羬,胡梦珍编译.金属的磷化处理[M].北京:机械工业出版社;1992:
    [8] 李国英主编.表面工程手册[M].北京:机械工业出版社;1998:62-81
    [9] 郭良生,黄霓裳.SL-6A型常温锌系磷化液的研制[J].材料保护,1996,29(12):10-11
    [10] 汪建新.常温锌系快速磷化液的研制[J].齐齐哈尔大学学报,2002,18(4):27-29
    [11] 胡玉亭.新型锌系常温磷化液的研制[J].河北化工,2002(4):32-33
    [12] 罗娟,高保娇,宋军.低温快速磷化液的研制[J].表面技术,2001,30(1):28-30
    [13] 尹建军,邵晖.常温低锌磷化液的研究[J].甘肃工业大学学报,2002,28(3):132-134
    [14] 常青,王健.常温快速磷化工艺的研究[J]. 表面技术,2003,32(3):40-43
    [15] 陈同云,古绪鹏.低温快速磷化添加剂的合成及应用研究[J].华东冶金学院学报,1995,12(12):239-243
    [16] 张景双,王家林,杨哲龙等.含有稀土复合添加剂的中温磷化[J].电镀与环保,2000,20(5):25-27
    [17] 朱立群,王建华,刘峰等.稀土复合作用下常温磷化工艺的研究[J].电镀与精饰,2001,20(4):8-13
    [18] 刘娅莉,鞠正东,李振国.新型内含羟胺促进剂的无亚硝酸盐磷化工艺的研究[J].涂料工业,1998(6):29-31
    [19] 罗青枝,王德松,李发堂.聚丙烯酰胺对室温磷化液磷化性能的影响[J].河北工业科技,2001,18(6):34-36
    [20] 张洪生.常温多功能磷化液的生产[J].四川化工与腐蚀控制,2002,5(4):21-22
    [21] 车喜泉,唐殿文,李永成等.多功能低温磷化液的研制[J].吉林化工学院学报,1999,16(2):4-7
    [22] 梁成浩,孙悦锋.室温多功能磷化液的研制[J].表面技术,2002,31(2):11-13
    [23] 鲁维国,李淑英,郭鹏.刷涂型磷化液的研制[J].电镀与精饰,2003,25(5):1-4
    [24] 王全庭.新的磷化方法-擦拭磷化[J].电镀与精饰,1995,17(2):31-32
    [25] 朱光明.AL-204环保型常温快速磷化液的研制与应用[J].北京两岸三地表面精饰技术交流会论文集,2001:137-140
    [26] 杨喜云,陈范才,赵常就.常温磷化促进剂的研究[J].表面技术,1998,27(4):18-20
    [27] 陈刚.低温快速锌(钙、锰)系磷化工艺[J].表面技术,1998,27(5):41-43
    [28] 杨喜云,龚竹青.低温磷化促进剂的研究[J].涂料工业,2002(1):21-22
    [29] 夏正斌,涂伟萍,杨卓如等.常温磷化技术[J].材料保护,1999,32(8):16-19
    [30] 肖友军. 低温高效钢铁磷化及其成膜机理的研究[J].电镀与涂饰,2000,19(4):32-34
    [31] 高红莉,周文宗.低温高效磷化液的研制[J].河南化工,2001(8):13-14
    [32] 任广军,刘木木.低温高效锌系磷化液的研究[J].沈阳工业学院学报,2001,20(3): 92-94
    [33] 付岩.低温磷化液的研究[J].当代化工,2002,31(3):147-149
    [34] 刘东明,刘健民,李奉春等.低温磷化液的研制及开发[J].化学工程师,2002(2):58-59
    [35] 洪祥乐,欧阳玚,王孝荣.钢铁常温磷化剂的研究[J].佛山大学学报,1996,14(6):60-63
    [36] 周鸿顺,汤发有,万秀琴.高效快速磷化液的研制[J].陕西师大学报(自然科学版),1994,22(3):93-94
    [37] 余取民,禹逸君,黄奇伟.环保型不加热磷化液研究[J].湖南师范大学自然科学学报,2003,26(1):56-59
    [38] 鲁维国,李淑英.磷化促进剂[J].表面技术,2002,31(6):12-15
    [39] 俞敦义,殷宏飞.室温磷化液的研究[J].表面技术,1994,23(1):16-20
    [40] 孟德军.新型室温锌系磷化液的应用[J].电镀与精饰,2002,22(1):34-35
    [41] 赵立杰,汪建新,孙岩.中温快速钢磷化液的研制[J].齐齐哈尔大学学报,2002,18(2)
    [42] 马洪芳.中温磷化工艺及磷化故障分析[J].表面技术,2003,32(1)
    [43] 杨哲龙,何承群,安茂忠等.中温锌系磷化的控制因素 [J].材料保护,1997,30(6):13-15
    [44] 杨占伟,孙涛.中温锌系磷化质量控制与工艺维护[J].电镀与涂饰,2003,22(4):48-50
    [45] 刘姬莉,唐林.锌钙系磷化的最新应用研究[J].电镀与环保,2002,22(4):25-27
    [46] 吴丰顺,张贵锋、王士之等.直流电阻对焊过程的计算机模拟[J].西安交通大学学报. 1998,32(9):28-32.
    [47] 方 峰.小方坯连铸连轧1860MPa级PC钢绞线用热轧盘条组织与性能[D].南京:东南大学材料系,2004.
    [48] 张菊水.钢的过热与过烧[M].上海:上海科学技术出版社.1984
    [49] 陈联满.拉拔钢丝表层白亮带及其形成原因分析[J].金属制品.2001,27(3):47-49.
    [50] 暨调和,黄季煌.常(低温)加速磷化过程 -t 曲线的研究[J].电镀与环保,1994,14(4):11-15
    [51] 魏宝明主编.金属腐蚀理论及应用[M].北京:化学工业出版社,1984:93-102
    [52] 侯彬,周永璋,丁毅等.拉丝磷化膜厚的影响因素研究[J].材料保护,2003,36(8)
    [53] L. Lazzarotto,C. Mare′chal, L. Dubar,et al.The effects of processing bath parameters on the quality and performance of zinc phosphate stearate coatings[J].Surface and Coatings Technology,1999 (122): 94–100
    [54] 王章忠.钢铁材料表面锰磷化膜的耐磨性研究[J].材料与表面处理,2002(7):42-44
    [55] 袁强,李志章.聚四氟乙烯对锰系磷化膜抗磨损性能的影响[J].浙江大学学报 (自然科学版),1998,32(1):39-44
    [56] 周谟银编译.结晶型磷化液中的添加剂(上) [J].电镀与环保,2000,20(1):24-26
    [57] 周谟银编译.结晶型磷化液中的添加剂(下) [J].电镀与环保,2000,20(2):29-32
    [58] 刘复兴,夏正才,刘骏.磷化膜晶形的电镜分析[J].材料保护,1995,28(12):24-26
    [59] 刘宝明,陈靖芯.常温磷化膜的性能及表面形貌研究[J].表面技术,1995,24(2):21-24
    [60] 宋锦福,聂学义.常温磷化膜的组织和膜层质量[J].电镀与环保,1998,18(1):28-30
    [61] 郭延风,朱祖铭,刘慷等.钢丝磷化层质量评定的研究[J].理化检验-物理分册,1995,31(3):17-19
    [62] 康崔荣,孟庆英,杨治安等.钢铁表面锌系磷化膜的研究[J].电子显微学报:350-353
    [63] 韩航向.高碳钢丝(盘条)表面磷化膜膜重的测定[J].金属制品,1997,23(3):35-38
    [64] 左言林.磷化液总酸度的研究[J].金属制品,1998,24(4):23-27
    [65] 孟庆英,杨治安,康翠荣等.锌系磷化膜的电子显微结构分析[J].天津大学学报,1996,29(5):740-744
    [66] André Dubois,Ludovic Lazzarotto,Laurent Dubar et al.A multi-step lubricant evaluation strategy for wire drawing–extrusion–cold heading sequence. Wear,2002,249:951–961
    [67] L. Lazzarotto a, C. Mare′chal b, L. Dubar b, et al.The effects of processing bath parameters on the quality and performance of zinc phosphate stearate coatings.Surface and Coatings Technology[J],1999(12):94-100
    [68] K.Ravichandran ,H.Sivanandh,S.Ganesh,et al. Acceleration of the phosphating process-the utility of galvanic coupling.Metal Finishing, 2000,(9):47-54
    [69] John Donofrio.Zinc Phosphating[J].Metal Finishing,2000,98(6):57-58,60-73
    [70] D.Weng,P.Jokiel,A.Uebleis,et al.Corrosion and protection characteristics of zinc and manganese phosphate coatings[J].Surface and Coatings Technology,1996(88):147-156
    [71] D. Zimmermann,A.G. Munoz,J.W. Schultze.Microscopic local elements in the phosphating process[J].Electrochimica Acta, 2003(48): 3267-3277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700