榆树林油田原油集输工艺关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大庆主力油田开发陆续进入高含水阶段,外围零散油田作为不可或缺的接替储量正在不断加大勘探、开发力度。但因产量有限,其采油方式除抽油机机械采油外,还有提捞采油;集油过程除管道输送外,还有定期卸、拉油方式。与此相对应,地面采出液性质变得更加复杂,最终带来地面处理系统能耗上升、处理设施运行不稳、处理剂用量增加等各种制约正常生产的问题。本文针对榆树林油田地面集输、卸油、脱水等若干关键性技术问题,通过理论和试验研究,明确了影响脱水站电-化学脱水电场稳定性的各种因素,制定了适合的脱水工艺方案,设计了一种新型的分队卸油池,开展了降温集输生产运行方案优化研究。主要研究成果如下:
     (1)提捞井采出液的典型特点是聚集了较多的胶质组分、大量的机械类杂质、高含量的无机相硫化物及细菌不断生长繁殖形成的菌胶团,其中各种杂质更易富集于油水界面上形成较厚的界面膜,加之难以避免的长时间曝氧老化,便进一步增强了其乳化稳定性。
     (2)除适当的含水率、适合的温度条件及用剂的匹配性外,避免机械杂质含量较高的落地油、富含铁的酸化井返排液直接进入脱水系统是解决电脱水器频繁“垮电场”的关键。
     (3)脉冲供电方式可在不产生电分散的条件下形成具有破坏高强度乳化液优势的瞬时大功率,同时与超声波预脱水技术相结合,可显著减少破乳剂用量,提高原油净化处理效果。
     (4)研究制定了适合于榆树林油田的脱水工艺流程及脱水技术参数:一段游离水脱除,二段脉冲供电电-化学脱水,脱水温度60℃左右,来液含水率≤30%,处理量30~60m~3/h,操作压力0.2~0.3MPa,脱后油含水率≤0.3%,脱后污水含油量≤1000mg/L。
     (5)设计了一种新型结构卸油池。与原设计方案相比,该方案可显著降低投资,并具有生产运行能耗低、计量准确、清淤方便、输油泵运行工况更加稳定等优点。
     (6)以系统能耗最小为目标研究建立了榆树林油田油气集输系统生产运行方案优化数学模型,给出了分层次优化的求解策略,并对榆树林油田4座转油站系统进行了降温集油输送。结果表明,与优化前相比,吨油耗气平均减少8.0m~3/t,吨油耗电平均减少2.3kW·h/t,综合能耗费用平均减少10.9元/t,年节约生产成本170余万元。
As the development of major oilfields of Daqing enter the high water-cut stages in succession, the scattered periphery oilfields experience the improved exploration and development to provide the indispensable replacement reservoir. But due to the limited output, the oil production mode includes the bailing production in addition to the mechanical oil production by pumping unit; the oil gathering is carried out through the regular oil discharging and drawing methods beside the pipeline transportation. Accordingly, the produced fluid features more complicated properties, which finally results in various problems restricting the normal operation, such as the increase in energy consumption of surface processing system, unstable operation of processing facilities and rise of consumption of treating agents. This paper focuses on the surface gathering and transportation, oil discharging, dehydration and other key technical problems arising in the Yushulin Oilfield, and conducts the research of theory and test to find out various factors affecting the stability of electric field of electrical-chemical dehydration in dehydrating station, prepare the appropriate dehydration process plan, design a new oil discharging pool in groups, and carry out the research on optimization of cooling gathering and transportation operation plan. The main research results are given as bellow:
     (1) The fluid produced from bailing well typically features the accumulation of many gelatine, a lot of mechanical admixture, high-content inorganic sulfide and zoogloea formed due to the successive growing and reproduction of bacteria; of which, various impurities more easily gather on the oil-water interface and form the thick interfacial film, which, together with the unavoidable long-term aging of oxygen exposure, can further improve the emulsion stability.
     (2) In addition to the appropriate water content, proper temperature conditions and dosage fitting, the key points to solve the frequent“field transverse”of electric dehydrator are to prevent the failed oil with high content of mechanical impurity and acidulated returns rich in iron from entering the dehydration system.
     (3) The HCMP can form large transient power with the advantage to damage the high-strength emulsion without generating the electrodispersion; the HCMP, when combined with the ultrasonic pre-dehydration technology, can remarkably reduce the consumption of demulsifying agent and improve the effect of purifying treatment for crude oil.
     (4) Study and specify the dehydration technology parameters for dehydration process flow suitable to the Yushulin Oilfield: for the phase-I dehydration of free water and phase-II HCMP electrical-chemical dehydration, the dehydration temperature shall be about 60℃, water content of incoming fluid not more than 30%, treatment amount 30~60m~3/h, operating pressure 0.2~0.3MPa, water content of oil after dehydration not more than 0.3%, oil content of sewage not more than 1,000mg/L.
     (5) Design an oil discharging pool with new structure. When compared with the original design plan, this one can remarkably decrease the investment and features such advantages as low energy consumption of productive operation, correct measurement, convenient dredging, and more stable operation of oil transportation pump.
     (6) Study and establish the mathematical model for optimization of oil/gas gathering and transportation system operation plan of Yushulin Oilfield in order to minimize the energy consumption of system, work out the solving strategy featuring optimization in levels, and carry out the cooling gathering and transformation for five transferring stations in the Yushulin Oilfield. The results show that in comparison with the operation before optimization, the gas consumption per ton of oil is reduced by 8.0m~3/t averagely, electric consumption per ton of oil by 2.3kW·h/t averagely, comprehensive energy consumption expense by 10.9 Yuan/t averagely, and more than 1.7 million Yuan will be saved each year.
引文
[1]张鸿仁.油田原油脱水[M].北京:石油工业出版社,1990.
    [2]冯叔初,郭揆常等.油气集输与矿场加工[M].北京:中国石油大学出版社,2006.
    [3]肖中华.原油乳状液破乳机理及影响因素研究[J].石油天然气学报(江汉石油学院学报),2008,30(4):165-168.
    [4]胡同亮,杨柯,马良军等.原油脱盐脱水研究进展[J].抚顺石油学院学报,2003,23(3):1-5.
    [5]王端明,李富宽,佘明华.交-直流双重电场电脱盐脱水装置[J].炼油设计,1995,25(3):33-35.
    [6]陈家庆,李汉勇,常俊英等.原油电脱水(脱盐)的电场设计及关键技术[J].石油机械,2007,35(1):53-58.
    [7]李国珍,肖华,董守平.油水分离技术及其进展[J].油气田地面工程,2001,20(2):7-9.
    [8]孙德智,段晓东,徐衍岭等.乳化液膜的润湿聚结破乳研究[J].哈尔滨工业大学学报,1996,28(4):68-71.
    [9] Edward C HSU,Li N N.Membrane Recovery in Liquid Membrane Separation Process[J].Sci Technol,1985,20(2-3):115-130.
    [10] Abal-Nemeh I,et al.Electrostatic Splitting of the Emulsion used in Liquid Surfactant Membranes Process for Metals Separation.Sci Technol,1992,27(10):1319-1335.
    [11]王尚文.新型电极高压脉冲电场破乳试验研究[D].武汉:华中科技大学,2007.
    [12] Sun Dezhi,Jong Shik Chung,Duan Xiaodong,et al.Demulsification of water-in-oil emulsion by wetting coalescence material in stirred-and packed-columns[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,150:69-75.
    [13]骆广生,邹财松,孙永等.微滤膜破乳技术的研究[J].膜科学与技术,2001,21(2):62-68.
    [14] Hlavacek M.Break-up of oil-in-water emulsions induced by permeation through a microfiltration membrane[J].J Membr Sci,1995,102:1-7.
    [15] Srijaroonrat P,Julien E,Aurelle Y.Unstable secondary oil/water emulsion treatment using ultrafiltration:Fouling control by backflushing[J].J Membr Sci,1999,159:11-20.
    [16]孙永,骆广生,蒲煜等.一种新型膜法破乳技术[J].现代化工,2000,3:16-18.
    [17]褚莹,刘沛妍,马占芳等.研磨破乳的规律及其机理[J].高等学校化学学报,1996,8:1285-1288.
    [18]吴子生,褚莹,闰淑荣等.研磨破乳技术及其应用的研究[J].东北师大学报自然科学版,1992,4:60-64.
    [19]严忠,李思芽,李明玉.液膜的电破乳[J].膜科学与技术,1992,12(4):5-11.
    [20] Lee C M,Sams G W,Wagner J P.Power consumption measurements for ac and pulsed dc for electrostatic coalescence of water-in-oil emulsions[J].Journal of Electrostatics,2004,53 (1):1-24.
    [21]李可彬.一种乳状液破乳的新方法——涡旋电场法[J].环境科学学报,1996,16(4):482-487.
    [22] Moeser G D,Roach K A,Green WH,et al.Water-Based Magnetic Fluids as Extractants for Synthetic Organic Compands[J].Ind Eng Chem Res,2002,41(19):4739-4749.
    [23]祁强,李萍,张起凯等.微波技术在石油加工中的应用研究进展[J].2009,27(2):176-180.
    [24] Fang C S,LaiPM C,ChangB K L,eta1.Oil recovery and waste reduction by microwave radiation[J].Environ Prog,1989,8(4):235-238.
    [25] Fang C S , Lai P M C . Microwave heating and separation of water-in-oil emulsions[J].Journal of Microwave Power and Electromagnetic Energy,1995,30(1):46-57.
    [26]刘惠玲.微波脱水技术[J].油气田地面工程,1992,11(4):22-25.
    [27]孙宝江,颜大椿,乔文孝.乳化原油的超声波脱水研究[J].声学学报,1999,24(3):327-331.
    [28] Henryka Czyz.On the concentration of aerosol particles by means of drift forces in a standing wave field[J].Acoustica,1990,70(1):23-28.
    [29] Fittpaldi F.Particle coagulation by means of ultrasonics[J].Acoustica,1979,41(3):263-266.
    [30]张玉梅,彭飞,吕效平.超声波处理炼油厂污油破乳脱水的研究[J].石油炼制与化工,2004,35(2):67-70.
    [31] Kotyusov . Induced coagulation of small particles under the action of sound[J].Acoustica,1996,82(5):459-463.
    [32]康万利,孙春柳.油田乳状液破乳方法研究进展[J].管道技术与设备,2006,2:1-4.
    [33] Luwf,Kocherginskynm,Zhang C X,et al.Anovel method of breaking water-in-oil emulsions by using micro porous membrane[J].Transactions of Tianjin University,2001,17(3):210-213.
    [34]李思茅,马占芳,褚莹等.原油电破乳新技术[J].油气田地面工程,1995,14(3):21-23.
    [35]孙玉柱.乳状液膜分离技术的研究进展[J].湿法冶金,2005,24(4):10-17.
    [36] Rethwish D G,Subramanian A,Yi G,et al.Enzyme-facilltated Transport and Separation of Organic Acids Through Liquid Membrane[J].Am Chem Soc,1990,112(4):1649-1650.
    [37] Jun Yan,Rajinder Pal.Osmotic Swelling Behavior of Globules of W/O/W Emulsion Liquid Membranes[J].J Membr Sci,2001,190(1):79-91.
    [38]孟庆萍.双频-双电压电脱水新技术[J].油气田地面工程,2008,27(12):40-41
    [39]陈海燕,漆新民.高压原油脉冲电脱水试验[J].油气田地面工程,2000,19(1):28.
    [40]李淑琴,程永清,张绪民.含水原油破乳脱水的声化学法研究[J].天津化工,1997,4:22-24.
    [41]白志山,汪华林,唐良瑞.原油脱盐脱水技术评述[J].化工机械,2004,31(6):384-387.
    [42]祁强,李萍,张起凯等.原油脱水新技术研究进展[J].石化技术与应用,2009,27(6):559-565.
    [43]崔昌峰,杨永军,朱成君等.新型原油生物复合破乳剂的研究与应用[J].石油化工腐蚀与防护,2005,22(4):5-8.
    [44]娄世松,赵德智,范洪波等.高效广谱微生物复合破乳剂的制备及其应用[J].应用化工,2006,35(10):817-820.
    [45] Cheng Haiyan,Qi Xinmin.Experiment on crude dehydration under high pressure pulse electric field[ J]. Oil&Gas Surface Engineering,2000,19(1):28-37.
    [46]张鸿仁.胜利油田原油脱水技术的发展[J].油气田地面工程,1979,4:3-21.
    [47]冯家潮,周希清,何庆奎等.大庆原油脱水[J].油田地面工程,1982,3:52-62.
    [48]王鹤,司士荣.建设和谐小康社会的能源保障——《中华人民共和国可再生能源法》颁布[J].太阳能,2005,3:3-5.
    [49]姜红军.企业节能管理[J].经营管理,2008,17:45-46.
    [50]刘法宪,贾朝蓉.论实施节约优先的能源发展战略[J].资源经济,2008,2:9-11.
    [51]刘金霞,刘家利,白琳等.我国石油进口市场特征分析[J].交通科技与经济,2008,3:116-118.
    [52]刘婷.胜利油田节能降耗管理研究[D].北京:中国石油大学,2009.
    [53]程宗明.依靠科技进步,搞好节电发电工作[J].油气田地面工程,1990,3:1-4.
    [54]马冰雪,乞坤刚.泵用交流电机调速方法及节能分析研究[J].建筑电气,2006,1:41-47.
    [55]南洋.浅谈油田注水系统节能技术[J].内蒙古石油化工,2006,8:35-36.
    [56]刘振强.能源需求侧管理[J].中国电力,1994,9:65-68.
    [57]周长敬.电力需求侧管理对胜利油田的激励作用[J].电力需求侧管理,2004,6(4):8-10.
    [58]朱益飞.利用动态无功补偿技术实现胜利油田的节能改造[J].电力需求侧管理, 2009,11(2):42-44.
    [59]耿莉萍.中国地热资源的地理分布与勘探[J].地质与勘探,1998,34(1):50-54.
    [60]赵媛,赵慧.我国太阳能资源及其开发利用[J].经济地理,1998,18(1):56-61.
    [61]周刚,倪晓阳,李金锋等.不受地理位置限制的地热和太阳能联合发电系统[J].地球科学——中国地质大学学报,2006,31(3):394-398.
    [62] Azpiazu,M.N.,Morquillas,J.M.,Vazquez,A.Heat recovery from a thermal energy storage based on the Ca(OH)2/CaO cycle[J].Applied Thermal Engineering,2003,23:733-741.
    [63] Ge,X.S.Progress of solar energy research and related problems for study[J].Science Foundation in China,1994,3:189-192.
    [64] Kalo,S.A.Solar thermal collectors and applications[J].Progress in Energy and Combustion Science,2004,30:231-295.
    [65] Zheng,X.H.,Wolff,H.,Zheng,W.L.Closed loop geothermal system—One new system of geothermal power generation[J] . Exploration Engineering (Drilling&Tunneling),2004,1:63-64.
    [66]金培孚,沈中宝,张德耀.大庆萨南油田不加热集油配套技术[J].油田地面工程,1991,10(4):7-14.
    [67]罗升荣,杨建展,季寞等.大庆萨南油田不加热集油技术的实践与认识[J].应用能源技术,2001,5:3-5.
    [68]唐海燕,王国丽,黄晓丽.油田集输系统节气技术[J].石油规划设计,2004,15(1):46-49.
    [69]武少国,马良,郝新刚等.减少地面天然气排放损失的实用方法综述[J].国外油田工程,2006,22(7):29-32.
    [70]贾志伟,杨启明.太阳能原油输送系统节能探讨[J].油气田地面工程,2009,28(3):5-7.
    [71]Badran A A,Hamdan M A.Utilization of solar energy for heating fuel oil[J].Energy Conversion and Management,1998,39(1~2):105-111.
    [72] Badran A A,Jubran B A.Fuel oil heating by a trickle solar collector[J].Energy Conversion and Management,2001,42(7) :1637-1645.
    [73]王学生,王如竹,吴静怡等.太阳能加热输送原油系统中新型换热器的设计研究[J].21世纪太阳能新技术——2003年中国太阳能学会学术年会论文集,2003.
    [74] Gentry C C.Rod-baffle heat exchanger technology[J].Chemical Engineering Progress,1990,86(7) :48-56.
    [75]王学生,王如竹,吴静怡等.太阳能加热输送原油系统应用研究[J].油气储运,2004,23(7):41-45.
    [76]王学忠.太阳能辅助采油技术及其可行性[J].中外能源,2009,14:104-107.
    [77]党伟,羊东明.油田含油污水处理现状及综合利用技术[J].2005,石油规划设计,16(4):28-30.
    [78]丁月华,陈渝广,曾宪强.原油集输风光电一体化节能技术[J].油气储运,2006,25(4):43-46.
    [79]陈渝广,丁月华,曾宪强等.原油集输太阳能加热计算机控制节能系统的设计[J].石油工程建设,2006,32(4):60-64.
    [80]钱棣华,陈国璋,刘元虎.大庆油田节能工作十年[J].油田地面工程,1991,10(5):5-11.
    [81]陈中涛.“十一五”期间我国能源市场供需前景研究[J].中国能源,2006,28(5):16-23.
    [82]张有绪.企业节能管理探析[J].中国市场,2005,40:21.
    [83]孙森,李拥军,伍三志等.老化油破乳技术研究[J].新疆石油科技.2009,19(2)40-43.
    [84]王志华,魏立新,王锦秀.不同破乳剂对老化油脱水处理的适应性评价[J].科学技术与工程.2009,9(23).
    [85]施正盼,关江,刘颖等.基于胶体化学和乳状液理论分析乳状液脱稳破乳机理及方法[J].内蒙古环境科学.2009,21(3)66-69.
    [86]包秀萍,郭丽梅.老化油形成机理及处理方法探讨[J].杭州化工.2008,38(4)7-9.
    [87]张建,向问淘,韩明等.乳化原油的化学破乳作用[J].油田化学.2005,22(3)283-287.
    [88]曹晓春,王忠信.原油破乳剂的研制现状及应用[J].大庆石油学院学报.2002,26(4)34-38.
    [89]康万利,李金环,刘桂范.原油破乳剂的研制进展[J].石油与天然气化工.2004,33(6)433-436.
    [90]姜佳丽,苟社全,达建文等.原油破乳研究进展[J].化工进展.2009,28(2)214-219.
    [91]祁强,李萍,张起凯等.原油脱水新技术研究进展[J].石化技术与应用.2009,27(6)599-565.
    [92]张晓华.原油脱水技术研究进展[J].化工科技.2009,17(5)57-62.
    [93]陈峰,杨总.乳状液破乳方法综述[J].石油化工应用.2009,28(2)1-3.
    [94]孙春柳.原油乳状液破乳剂—电场联合作用机理研究[D].大庆石油学院,硕士论文.2007,12-16.
    [95]陈海燕,漆新民.原油脉冲电脱水的研究[J].石油炼制与化工.2000,31(1)65-66.
    [96]寇杰,刘松林.超声波稠油脱水研究[J].油气田地面工程.2009,28(8)1-3.
    [97]杨小刚,谭蔚,谭晓飞.高含水原油的热化学破乳方法[J].化学工业与工程.2007,24(3)236-239.
    [98]曹万岩.新型提捞油卸油点设计[J].油气田地面工程,2004,23(4):45.
    [99]李青,金东明,周洪安.低产油井提捞采油技术研究与应用[J].1999,10(2),20-21.
    [100]孙茂成.大型储罐设计有关问题探讨[J].石油化工设备,2005,34(2),39-41.
    [101]吴粤燊.压力容器安全技术手册[M].机械工业出版社,1999,16-19.
    [102]李云花,骆晓玲.原油储罐的腐蚀与防护[J].机械研究与应用,2005,18(1),28-29.
    [103]张杨波,魏纳,刘安琪,任飞.原油库腐蚀机理分析及对策研究[J].内蒙古石油化工,2008,(10),192-193.
    [104]刘敏燕,李庆祥.大型原油储罐设计中主要安全问题及对策[J].中国安全科学学报,1999,9(5),53-57.
    [105]张莉.油罐防腐涂料的选择和应用中需注意的问题[J].石油工程建设,2004,30(3),30-32.
    [106]耿彦威,戚丁文.当前几种常见建筑保温材料介绍[J].辽宁建材,2009,(9),44-45.
    [107] SH 3046-1992.石油化工立式圆筒形钢储罐设计规范.1992,17-40.
    [108]徐英,杨一凡,朱萍.球罐和大型储罐[M].化学工业出版社,2004,212-223.
    [109] SH 3068-95石油化工企业钢储罐地基与基础设计规范,1995,30-33.
    [110]李生莉,吴太平,邱勇,曹浪波.用于排放沉降罐底部污泥的负压排污器[J].石油机械,2003,31(1),32-33.
    [111]蒋晓蕾,大型储罐液位的测量方法[J].石油化工自动化,2003,(4),22-25.
    [112]李冬梅.国内外液位计量仪表技术发展动向[J].仪器仪表用户,2002,9(3),5-7.
    [113]张小叶.射频导纳液位计在尿素装置中的应用[J].化工设计通讯,2007,33(2),21-24.
    [114]赵春娟,杨海文,王大垒,李永军,王志勇,隋国柱.原油含水分析仪的研究与应用[J].计量装置与应用,2006,47-48.
    [115]傅蕾,杨萍萍.罐外式烟雾自动灭火装置在油田的推广应用[J].消防技术与产品信息,2000,(2),17-18.
    [116]李海峰.微阻缓闭水上底阀的应用[J].矿山机械,2001,(2),71-72.
    [117]刘国俊.计算流体力学的地位、发展情况和发展趋势[J].航空计算技术,1994(1): 15-21.
    [118]魏淑贤,沈跃,黄延军.计算流体力学的发展及应用[J].河北理工学院学报,2005,27(2),115-117.
    [119] Courant R., Friedrichs K.O. and Lewy H. On the Partial Difference Equations of Mathematical Physics. IBM Journal, March, 1967: 215-234.
    [120]傅德薰.流体力学数值模拟[M].北京:国防工业出版社, 1993: 3-6.
    [121]侯天相,周荣春.钝体绕流的非定常差分法[M].北京:宇航出版社, 1986.
    [122]张涵信.第四届亚洲计算流体力学会议学术交流情况[J].力学进展, 2001(1): 156-157.
    [123]国家自然科学基金委员会数理科学部.第七届国际计算流体力学尝议简介[J].力学进展, 1998, 28(3): 430-431.
    [124]傅德薰.第二届国际计算流体力学会议简介[J].力学进展, 2003(3): 388.
    [125]蔡荣泉.船舶计算流体力学的发展与应用[J].船舶, 2002(4): 8-13.
    [126]周连第.船舶与海洋工程计算流体力学的研究进展与应用[J].空气动力学学报,1998, 16(1): 122-131.
    [127]尹晔东,王运东,费维场.计算流体力学(CFD)在化学工程中的应用[J].石化技术,2000, 7(3): 166-169.
    [128]肖柯则,夏艺.计算流体力学在铸造过程中的应用[J].内蒙古工业大学学报, 1995, 4(3): 30-38.
    [129]翟晓华,谢晶,徐世琼.计算流体力学在制冷工程中的应用[J].制冷, 2003, 22(1): 17-22.
    [130]傅晓英,刘俊,许剑峰.计算流体力学在城市规划设计中的应用研究[J].四川大学学报(工程科学版), 2002, 34(6): 36-39.
    [131]金杉,庄达民,张向阳.计算流体力学在现代建筑消防设计中的应用[J].消防科学与技术, 2003, 22(3): 194-197.
    [132]常思勤,扈圣刚.计算流体力学进展及其在汽车设计中的应用[J].武汉汽车工业大学学报,1997, 19(4): 12-15.
    [133] Da-Wen Sun. Computers and Electronics in Agricultrue. supplement, Ireland, 2002.
    [134]刘霞,葛新锋. FLUENT软件及其在我国的应用[J].能源研究与利用,2003,(2),36-38.
    [135]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998:25-26.
    [136]张乐天.旋流器和输油管道工作介质的物理场数值模拟[D].大庆石油学院,2006, 3,46-48.
    [137]王福军.计算流体动力学分析——CFD软件原理与应用[M].清华大学出版社,2004,9:216-225.
    [138]柳俊哲.土木工程材料[M].科学出版社,2005,7:330-331.
    [139]莫理京,王致中,刘希和,张其滨.绝热工程技术手册[M].中国石化出版社,1997,8:278-279.
    [140]李岱森.简明供热设计手册[M].中国建筑工业出版社,1998,51-57.
    [141]赵玉华.大庆油田地面工程优化调整改造基本思路[J].石油规划设计,2003,14(1):34-38.
    [142]魏立新,刘扬,赵洪激.油田地面管网系统站内泵的优选方法[J].天然气与石油,2002,20(3):8-9.
    [143]魏立新,刘扬.油气集输系统生产运行方案优化方法[J].大庆石油学院学报,2005,29(3):47-49.
    [144]赵洪激,刘扬,高林森.树状双管掺热水集输系统参数优化技术[J].石油学报,1997,18(1):104-110.
    [145]杨建展,曹云芳,季寞.浅谈萨南油田不加热集油工艺[J].油气田地面工程,1998,17(6):20-22.
    [146]胡博仲,李昌连,宋承毅.大庆高寒地区不加热集油技术回顾与展望[J].石油规划设计,1995,6(2):32-33.
    [147]宋承毅.论“三高”原油不加热集油的影响因素[J].油气田地面工程,1995,14(1):9-12.
    [149]关晓晶,魏立新,杨建军.基于混合遗传算法的油田注水系统运行方案优化模型[J].石油学报,2005,26(3):114-117.
    [150]刘扬,袁振中,魏立新.大型油田注水系统节能降耗与运行方案优化[J].大庆石油学院学报,2006,30(3):43-46.
    [151]刘扬.石油工程优化设计理论及方法[M].北京:石油工业出版社,1994:114-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700