苏云金芽胞杆菌YBT-1520热胁迫下的生理变化及差异蛋白质组研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为目前世界上成功商品化的生物杀虫剂,苏云金芽胞杆菌(Bacillus thuringiensis, Bt)已被使用了近50年时间,其在细胞内形成的杀虫晶体蛋白(Insecidal crystal proteins, ICPs)对多种农业害虫和生活害虫具有防治效果。苏云金芽胞杆菌YBT-1520是本室从土壤中分离到的一株对棉龄虫、小菜蛾等鳞翅目害虫具有高毒力的菌株(专利号ZL 95 106749.4)。本研究在生理学基础上结合高通量蛋白质组学技术对菌株YBT-1520在42℃热胁迫下胞内蛋白的变化进行了系统性地描述,对其主要生理特性的变化机理进行了探讨,对其热胁迫下的生存机制进行了揭示。
     热胁迫下Bt胞内蛋白主要发生了如下变化:(1)Ⅰ型和Ⅲ型热应激蛋白DnaK、GroEL、GrpE、ClpC在长时间热胁迫后仍处于诱导表达状态;(2)长时间热胁迫亦造成了BDH1、GuaB、GST非典型热应激蛋白的诱导表达,推测它们可能为长时间热胁迫的特异效应分子;(3)胞内83%的差异蛋白呈下调趋势,包括毒素蛋白、潜在毒素蛋白、蛋白酶以和部分基础代谢酶。蛋白的下调可能缘于胞内ClpC蛋白酶的水解,亦可能缘于细胞的严谨反应;(4)在热胁迫后期,约50%的下调蛋白恢复至正常表达量,表明此时的热胁迫细胞具有了一定的热适应性。
     热胁迫下Bt主要生理特性发生了如下变化:(1)ICPs和其它潜在毒力因子的表达被阻断或显著下调;(2)细胞的粘附性和运动性丧失;(3)芽胞不能形成;(4)细胞持续性地积累PHB。
     长时间热胁迫下Bt的生存策略如下。策略一:诱导非典型热应激蛋白以补充典型热应激蛋白的消退。非典型热应激蛋白分别参与了PHB的合成、严谨反应信号分子的合成、有毒亲电物质的消除。策略二:代谢调控。细胞将代谢维持在较低水平,以减缓代谢可能对细胞造成的氧化压力或其它负担。对代谢的调控可能是通过胞内水解酶或/和严谨反应实现。策略三:持续积累PHB。细胞在长时间热胁迫下通过代谢调整,持续积累PHB。借助PHB的抗逆性,提高细胞对热胁迫的耐受性。
Bacillus thuringiensis (Bt) has been widely used for 50 years as a safe biopesticide for controlling agricultural and sanitary insect pests because of its insecticidal crystal proteins (ICPs). The strain used in this study was B. ihuringiensis subsp. kurstaki YBT-1520, which demonstrates high insecticidal activities against lepidopteran larvae. YBT-1520 was originally isolated and characterized in our laboratory. In this study a proteomic approach conbined with physiological investigation was used to describe the proteomic and physiological changes and to reveal the survival strategies of Bt YBT-1520 under a long-term heat stress condition (42℃).
     The changes of the intracellular proteome under heat stress were as follows:(1) some of the heat shock proteins of class I and II (DnaK, GroEL, GrpE and ClpC) were still induced under long-term heat stress; (2) three non-classical heat shock proteins (BDH1, GuaB and GST) were also induced under long-term heat stress, they could be regarded as the specific factors of long-term heat stress; (3) 83% of the differentially expressed intracellular proteins decreased including toxin proteins, potential toxin proteins, proteases and enzymes involved in the basic metabolic pathways. All these decrease proteins were probably due to the proteolysis process of ClpC and/or the stringent responses triggered by heat stress; (4) about 50% of the decreased proteins were recovered at the late stage of heat stress condition, indicating that the heat stressed cells gained the stresss adaptive ability somehow.
     Heat stress mainly influenced the characteristics of YBT-1520 on four aspects:(1) the ability of synthesis of ICPs and other potential pathogenic factors were lost or significantly decreased; (2) cell adhesion and motility were also lost; (3) the cells did not sporulate, (4) cells kept accumulating poly-β-hydroxybutyrate (PHB).
     The survival strategies of YBT-1520 under long-term heat stress were as follows. The first strategy:the induction of non-classical heat shock proteins was a kind of supplementary for the fadeaway of classical heat induced proteins. The second one: metabolic adjustment. Cells down-regulated metabolic enzymes to reduce the oxidative stress or other metabolic burden. This regulation was probably due to the proteolysis process and/or the stringent responses. The third strategy:PHB accumulation. Bacterium adjusted the metabolism of PHB and kept accumulating PHB. These strategies would help cells to gain more tolerance to heat stress.
引文
1.成海平,钱小红.蛋白质组研究的技术体系及其进展.生物化学与生物物理学进展,2000,27:584-588.
    2.陈国华,冯书亮,曹伟平,王容燕,王勤英,李国勋.温度预处理对苏云金杆菌芽胞萌发的影响.中国生物防治,2004,20:127-130.
    3.郭承亮,胡振飞,刘晓艳,余子全,阮丽芳,孙明,喻子牛.苏云金芽胞杆菌产苏云金素菌株CT-43及其缺失突变株的差异蛋白.微生物学报,2008,48:970-974.
    4.刘超.苏云金芽胞杆菌菌株YBT-1520全基因组序列的初步分析.[博士学位论文].武汉:华中农业大学图书馆,2006.
    5.李林,杨超,刘子铎,李阜棣,喻子牛.苏云金芽胞杆菌无晶体突变株的逐级升温筛选及其转化性能.微生物学报,2000,40:85-90.
    6.廖祥儒,万怡震,朱新产.植物谷胱甘肽转移酶.生命的化学,1996,16:22-23.
    7.任改新,冯喜昌,冯维熊.苏云金杆菌伴胞晶体的形态及抗原特性.微生物学报,1983,23:57-62.
    8.孙明,戴经元,罗曦霞,喻凌,刘子铎,喻子牛.对棉铃虫高毒力的苏云金芽胞杆菌YBT-1520菌株的特性.中国病毒学,1996a,11:42-45.
    9.孙明,喻子牛.苏云金芽胞杆菌中华亚种 CT-43菌株伴胞晶体蛋白的特性.微生物学报,1996b,36,303-306.
    10.孙明,刘子铎,喻子牛.苏云金芽胞杆菌YBT-1520杀虫晶体蛋白基因的属性.微生物学报,2000,40:33-39.
    11.王文军,钱传范,申继忠,杨韶松.活性氧对苏云金芽胞杆菌伴胞晶体的损伤作用.微生物学报,1999,39:469-474.
    12.伍忠銮,余新炳,吴忠道.胞液谷胱甘肽-S-转移酶的研究进展.中国热带医学,2004,4:285-286.
    13.严瑾,陈德局,陈守文,喻子牛.胞内聚β-羟基丁酸酯对苏云金芽胞杆菌营养细胞耐受性的影响.长江大学学报,2010,7:58-62.
    14.袁志明,张用梅.温度对苏云金芽胞杆菌芽胞和毒力的影响.杀虫微生物,1994,4:222-224.
    15.喻子牛,孙明,刘子铎,戴经元,陈亚华,喻凌,罗曦履.苏云金芽胞杆菌的分类及生物活性蛋白基因.中国生物防治,1996,12:85-89.
    16.喻子牛,张杰,庞义,孙明,李林,丁之拴,刘子铎,余建秀,宋福平.重组杀虫细菌.见:黄大防主编,农业微生物基因工程.北京:科学出版社,2001,175-270.
    17.郑大胜,闫建平,罗绍斌,袁志明.新型杀虫蛋白VIPs研究进展.微生物学杂志,2002,22:35-37.
    18.朱莉,苏云金芽胞杆菌γ-氨基丁酸代谢旁路相关基因簇的结构与功能研究.武汉:[博士学位论文].中国农业科学院图书馆,2007.
    19. Agaisse H, Lereclus D. How does Bacillus thuringiensis produce so much insecticidal crystal proteins? J Bacterial,1995,177:6027-6032.
    20. Aronson A. Sporulation and δ-endotoxin synthesis by Bacillus thuringiensis. CMLS-Cell Mol Life Sci,2002,59:417-425.
    21. Bach B, Meudec E, Lepoutre J P, Rossignol T, Blondin B, Dequin S, Camarasa C. New insights into y-aminobutyric acid catabolism:evidence for y-hydroxybutyric acid and polyhydroxybutyrate synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol,2009,75:4231-4239.
    22. Benndorf D, Loffhagen N, Babel W. Protein synthesis patterns in Acinetobacter calcoaceticus induced by phenol and catechol show specificities of responses to chemostress. FEMS Microbiol Lett,2001,200:247.
    23. Benoit T G, Wilson G R and Baugh C L. Fermentation during growth and sporulation of Bacillus thuringiensis HD-1. Lett Appl Microbial,1990,10:15-18.
    24. Bernhardt J, Weibezahn J, Scharf C, Hecker M., Bacillus subtilis during feast and famine:visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. Genome Res,2003,13:224-237.
    25. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254.
    26. Brar S K, Verma M, Tyagi R D, Surampalli R Y, Barnabe S, Valero J R, Bacillus thuringiensis proteases:production and role in growth, sporulation and synergism. Process Biochem,2007,42:773-790.
    27. Brody M S, Vijay K, Price C W. Catalytic function of an alpha/beta hydrolase is required for energy stress activation of the sigma(B) transcription factor in Bacillus subtilis. J Bacteriol,2001,183:6422-6428.
    28. Budin-Verneuil A, Pichereau V, Auffray Y, et al. Proteomic characterization of the acid tolerance response in Lactococcus lactis MG1363. Proteomics,2005,5: 4794.
    29. Cashel M, Gallant J. Two compounds implicated in the function of the RC gene of E. coli. Nature,1969,221:838-841
    30. Cashel M, Gentry D R, Hernandez V J, et al. The stringent response in Escherichia coli and Salmonella. Cellular and Molecular Biology, Washington DC:ASM Press,1996,1458-1496.
    31. Castaldo C, Siciliano R A, Muscariello L. CcpA affects expression of the GroESL and DnaK Operons in Lactobacillus Plantarum. Microb Cell Fact,2006,5:35.
    32. Chatterji D, Fujita N, Ishihama A. The mediator for stringent control, ppGpp, binds to the the β-subunit of Escherichia coli RNA polymerase. Genes Cells, 1998,3:279-287.
    33. Chatterji D, Ojha A K. Revisiting the stringent response, ppGpp and starvation signaling. Curr Opin Microbiol,2001,4:160-165.
    34. Chen Fuchu, Shen Lifen, Tsai Mingchu, Chak Kinfu. The IspA protease's involvement in the regulation of the sporulation process of Bacillus thuringiensis is revealed by proteomic analysis. Biochemical and Biophysical Research Communications,2003,312:708-715.
    35. Chen H J, Tsai T K, Pan S C, Lin J S, Tseng C L, Shaw G C. The master transcription factor SpoOA is required for poly(3-hydroxybutyrate) (PHB) accumulation and expression of genes involved in PHB biosynthesis in Bacillus thuringiensis. FEMS Microbiol Lett,2010,304:74-81.
    36. Chevalier F, Martin O, Rofidal V, Devauchelle AD, Barteau S, Sommerer N, Rossignol M.Proteomic investigation of natural variation between Arabidopsis ecotypes[J]. Proteomics.2004 May;4(5):1372-81.
    37. Chhabra SR, He Q, Huang KH, et al. Global analysis of heat shock response in Desulfovibrio vulgaris hildenborough. J Bacteriol,2006,188:1817.
    38. Crickmore N, Zeigler D R, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean D H. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev,1998,62:807-813.
    39. Crickmore N, Zeigler DR, Schnepf E, Van Rie J, Lereclus D, Baum J, Bravo A, Dean D H. "Bacillus toxin nomenclature" (2011) http://www.lifesci. Sussex. ac.uk/Home/Neil_CrickmoreBt/
    40. Darmon E, Noone D, Masson A, Bron S, Kuipers O P, Devine K M, Van Dijl J M. A novel class of heat and secretion stress responsive genes is controlled by the autoregulated CssRS two component system of Bacillus subtilis. J Bacteriol,184: 5661-5671.
    41. De Angelis M, Gobbetti M. Environmental stress responses in Lactobacillus:A review. Proteomics,2004,4:106-122.
    42. Dennis D, Sein V, Martinez E, Augustine B. PhaP is involved in the formation of a network on the surface of polyhydroxyalkanoate inclusions in cupriavidus necator H16. J Bacteriol,2008,190:555-563.
    43. Derre I, Rapoport G, Msadek T. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol Microbiol,1999a,31:117-131.
    44. Derre I, Rapoport G, Devine K, Rose M, Msadek T. ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Mol Microbiol,1999b,32:581-593.
    45. Derre I, Rapoport G, Msadek T. The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37℃. Mol Microbiol,2000.38: 335-347.
    46. Du C, Martin P A, Nickerson K W. Comparison of disulfide contents and solubility at alkaline pH of insecticidal and noninsecticidal Bacillus thuringiensis protein crystals. Appl Environ Microbiol,1994,60:3847-3853.
    47. Duche O, Tremoulet F, Namane A, et al. A proteomic analysis of the salt stress response of Listeria monocytogenes. FEMS Microbiol Lett,2002,215:183.
    48. Errington, J. Bacillus subtilis sporulation:regulation of gene expression and control of morphogenesis. Microbiol. Rev.1993,57:1-33.
    49. Fedhila S, Nel P, Lereclus D. The InhA2 metalloprotease of Bacillus thuringiensis strain 407 is required for pathogenicity in insects infected via the oral route. J Bacteriol,2002,184:3296-3304.
    50. Flury T, Adam D. Kreuz D. A 2,4-D-inducible glutathione S-transferases from soybean (Glycine max), purification, characteristion and induction. Physiologia Plantarum,1995,94:312.
    51. Fricke B, Drossler K, Willhardt I, Schierhorn A, Menge S, Rucknagel P. The cell envelope-bound metalloprotease (camelysin) from Bacillus cereus is a possible pathogenic factor. BBA-Mol. Basis Dis,2001,1537:132-146.
    52. Eymann, C, Homuth G, Scharf C, Hecker M. Bacillus subtilis functional genomics:global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol,2002,184:2500-2520.
    53. Gaidenko T A, Yang X F, Lee Y M, Price C W. Threonine phosphorylation of modulator protein RsbR governs its ability to regulate a serine kinase in the environmental stress signaling pathway of Bacillus subtilis. J Mol Biol,1999,288: 29-39.
    54. Georgopoulos C, Welch W J. Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol,1993,9:601-634.
    55. Gerth U, Kruger E, Derre I, Msadek T, Hecker M. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol. Microbiol, 1998,28:787-802.
    56. Gerth U, Kock H, Kusters I, Michalik S, Hecker M. Clp-dependent proteolysis down-regulates central metabolic pathways in glucose starved Bacillus suBtilis. J Bacteriol,2008,190:321-331.
    57. Ghribi D, Zouari N, Jaoua S. Improvement of bioinsecticides production through mutagenesis of Bacillus thuringiensis by u.v. and nitrous acid affecting metabolic pathways and/or delta-endotoxin synthesis. J Appl Microbiol,2004,97:338-346.
    58. Giavalisco P, Nordhoff E, Lehrach H, Gobom J, Klose J. Extraction of proteins from plant tissues for two-dimensional electrophoresis analysis. Electrophoresis, 2003,24:207-216.
    59. Gonzalez J M, Dulmage H T, Carlton B C. Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis. Plasmid,1981,5: 352-365.
    60. Gorg A, Weiss W, Dunn M J. Current two-dimensional electrophoresis technology for proteomics. Proteomics,2004,4:1-21.
    61. Gottesman S. Proteases and their targets in Escherichia coli. Annu Rev Genet, 1996,30:465-506.
    62. Grandvalet C, Gominet M, Lereclus D. Identification of genes involved in the activation of the Bacillus thuringiensis inhA metalloprotease gene at the onset of sporulation. Microbiology,2001,147:1805-1813.
    63. Grass G, Schierhorn A, Sorkau E, Muller H, Rucknagel P, Nies D H, Fricke B. Camelysin is a novel surface metalloproteinase from Bacillus cereus. Infect. Immun,2004,72:219-228.
    64. Griego V M, Spence K D. Inactivation of Bacillus thuringiensis spores by ultraviolet and visible light. Appl Environ Microbiol,1978,35:906-910.
    65. Guchte M, Serror P, Chervaux C. Stress responses in lactic acid bacteria. Antonie Leeuwenhoek,2002,82:187-216.
    66. Haldenwang W G, Losick R. A modified RNA polymerase transcribes a cloned gene under sporulation control in Bacillus subtilis. Nature,1979,282:256-260.
    67. Hecker M, Schumann W, Volker U. Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol,1996,19:417-428.
    68. Herbert B N, Gould H J. Biosynthesis of the crystal protein of Bacillus thuringiensis var. tolworthil Kinetics of formation of the polypeptide components of the crystal protein in vivo. Eur J Biochem,1973,37:441-448.
    69. Herman Ilofte H, Whiteley H R. Insecticidal crystal proteins of Bacilllus thuringiensis. Microbiol. Rev,1989,53:242-255.
    70. Hoftc H, Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev,1989,53:242-255.
    71. Homuth G, Masuda S, Mogk A, Kobayashi Y, Schumann W. The dnaK operon of Bacillus subtilis is heptacistronic. J Bacteriol,1997,179:1153-1164.
    72. Hoper D, Bernhardt J, Hecker M. Salt stress adaptation of Bacillus subtilis:a physiological proteomics approach. Proteomics,2006,6:1550.
    73. Huang Biwang, Huang Zhipeng, Guan Xiong, Advance on research of enterotoxin of Bacillus thuringiensis. Chinese Agricultural Science Bulletin,2008, 24:3.
    74. Hyyrylainen H L, Bolhuis A, Darmon E, et al. A novel twocomponent regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol Microbiol,2001,41:1159-1172.
    75. Icqen Y, Icqen B, Ozcenqiz G. Regulation of crystal protein biosynthesis by Bacillus thuringiensis:Ⅱ. Effects of carbon and nitrogen sources. Res Microbiol, 2002,153:605-60.
    76. Icqen Y, Icqen B, Ozcenqiz G. Regulation of crystal protein biosynthesis by Bacillus thuringiensis:I. Effects of mineral elements and pH. Res Microbiol,153: 599-604.
    77. Juni E, Heym G A. A cyclic pathway for the bacterial dissimilation of 2, 3-butanediol, acetylmethylcarbinol, and diacetyl. I. General aspects of the 2, 3-butanediol cycle. J Bacteriol,1956,71:425-432.
    78. Kadouri D, Jurkevitch E, Okon Y. Involvement of the reserve material poly-beta-hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Appl Environ Microbiol,2003,69:3244-3250.
    79. Kalman S, Duncan M L, Thomas S M, Price C W. Similar organization of the sigB and spoIIA operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase. J Bacteriol,1990,172:5575-5585.
    80. Karin Navarrol A, Farrera Reynold R, Ruth Lopez, Fermin Perez-Guevara. Relationship between poly-β-hydroxybutyrate production and δ-endotoxin for Bacillus thuringiensis var. kurstaki. Biotechnology Letters,2006,28:641-644.
    81. Kathariou S, Kanenaka R, Allen R D, Fok A K, Mizumoto C. Repression of motility and flagellin production at 37℃ is stronger in Listeria monocytogenes than in the nonpathogenic species Listeria innocua. Can J Microbiol,1995,41: 572-577.
    82. Kim HS, Yamashita S, Akao T, Saitoh H, Hiquchi K, Park YS, Mizuki E, Ohba M. In vitro cytotoxicity of non-cyt inclusion proteins of a Bacillus thuringiensis isolate against human cells, including cancer cells. J Appl Microbiol,2000,89: 16-23.
    83. Kominek L A, Halvorson H O. Metabolism of poly-beta-hydroxybutyrate and acetoin in Bacillus cereus. J Bacteriol,1965,90:1251-1259.
    84. Kronstad J W, Schnepf H E, Whiteley H R. Diversity of locations for Bacillus thuringiensis crystal protein genes. J Bacteriol,1983,154:53-428.
    85. Kriiger E, Msadek T, Hecker M. Alternate promoters direct stress-induced transcription of the Bacillus subtilis clpC operon. Mol Microbiol,1996,20: 713-724.
    86. Kriiger E, Msadek T, Ohlmeier S, Hecker M. The Bacillus subtilis clpC operon encodes DNA repair and competence proteins. Microbiology,1997,143: 1309-1316.
    87. Kriiger E, Witt E, Ohlmeier S, Hanschke R, Hecker M. The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J Bacteriol,2000,182:3259-3265.
    88. Kruger E, Zuhlke D, Witt E, Ludwig H, Hecker M. Clp-mediated proteolysis in gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J, 2001,20:852-863.
    89. Kurian D, Phadwal K, Maenpaa P. Proteomic characterization of acid stress response in Synechocystis sp. PCC6803. Proteomics,2006,6:3614.
    90. Kuroda A, Murphy H, Cashel M, et al. Guanosine tetra-and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. J Biol Chem,1997,272:21240-21243.
    91. Kuroda A, Tanaka S, Ikeda T, el al. Inorganic polyphosphate kinase is required to stimulate protein degradation and for adaptation to amino acid starvation in Escherichiacoli. Proc Nail Acad Sci, USA,1999,96:14264-14269.
    92. Li M, Wong S-L. Cloning and characterization of the groESL operon from Bacillus sublilis.J Bacteriol,1992,174:3981-3992.
    93. Liu B L, Tzeng Y M. Characterization study of the sporulation kinetics of Bacillus thuringiensis. Biotechnol Bioeng,2000,68:11-17.
    94. Liu C, Bao Q Y, Song F P, Sun M, Huang D F, Liu G M, Yu Z N. Complete nucleotide sequence of pBMB67, a 67-kb plasmid from Bacillus thuringiensis strain YBT-1520. Plasmid,2007,57:44-54.
    95. Liu X, Zhu S, Ye W, Ruan L, Yu Z, Zhao C, Sun M. Genetic characterization of two putative toxin-antitoxin systems on cryptic plasmids from Bacillus thuringiensis strain YBT-1520. JMicrobiol Biotechnol,2008,18:1630-1633.
    96. LoApez N I, Ruiz J A, MeAndez B S. Survival of poly-3-hydroxybutyrate producing bacteria in soil microcosms. World J Microbiol Biotechnol,1998,14: 681-684.
    97. Magnusson L U, Farewall A, Nystrom T. ppGpp:a global regulator in Escherichia coli. Trends Microbiol,2005,13:236-242.
    98. Martinez-Gomariz M, Hernaez M L, Gutierrez D, Ximenez-Embun P, Prestamo G. Proteomic analysis by two-dimensional differential gel electrophoresis (2D DIGE) of a high-pressure effect in Bacillus cereus. J Agric Food Chem,2009,57: 3543-3549.
    99. Michalik S, Liebeke M, Zuhlke D, Lalk M, Bernhardt J, Gerth U, Hecker M. Proteolysis during long-term glucose starvation in Staphylococcus aureus COL. Proteomics,2009,9:4468-4477.
    100. Mizuki E, Ohba M, Akao T, Yamashita S, Saitoh H, Park YS. Unique activity associated with non-insecticidal Bacillus thuringiensis parasporal inclusions:in vitro cell-killing action on human cancer cells. J Appl Microbiol,1999,86: 477-486.
    101.Molloy M P, Herbert B R, Walsh BJ, Tyler M I, Traini M, Sanchez J C, Hochstrasser D F, Williams KL, Gooley A A. Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis,1998,19:837-844.
    102. Mostertz J, Scharf C, Hecker M, et al. Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology,2004,150:497.
    103. Narberhaus F. Negative regulation of bacterial heat shock genes. Mol Microbiol, 1999,31:1-8.
    104. Navarro A K, Farrera R R, Lopez R, Perez-Guevara F. Relationship between poly-beta-hydroxybutyrate production and delta-endotoxin for Bacillus thuringiensis var kurstaki. Biotechnol Lett,2006,28:641-644.
    105. Nickerson K W, De Pinto J, Bulla L A Jr. Sporulation of Bacillus thuringiensis without concurrent derepression of the tricarboxylic acid cycle. J Bacteriol,1974, 117:321-323
    106. Niu Q, Huang X, Zhang L, Li Y, Li J, Yang J, Zhang K. A neutral protease from Bacillus nematocida, another potential virulence factor in the infection against nematodes. Arch Microbiol,2006,185:439-448.
    107. Noone D, Howell A, Collery R, Devine K M. YkdA and YvtA, HtrA-like serine proteases in Bacillus subtilis, engage in negative autoregulation and reciprocal cross-regulation of ykdA and yvtA gene expression. J Bacteriol,2001,183: 654-663.
    108. Okano S, Shibata Y, Shiroza T, et al. Proteomics-based analysis of a counter-oxidative stress system in Porphyromonas gingivalis. Proteomics,2006,6:251.
    109. Patton W F. A thousand points of light:the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis,2000,21:1123-1144.
    110. Peel, M, Donachie W, Shaw A. Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and Western blotting. J Gen Microbiol,1988,134:2171-2178.
    111. Pena G, Miranda-Rios J, de la Riva G, Pardo-Lopez L, Soberon M, Bravo A. A Bacillus thuringiensis S-layer protein involved in toxicity against Epilachna varivestis (Coleoptera:Coccinellidae). Appl Environ Microbiol,2006,72: 353-360.
    112. Phan-Thanh L, Mahouin F. A proteomic approach to study the acid response in Lisleria monocytogenes. Electrophoresis,1999,20:2214.
    113. Phillips Z E V, Strauch M A. Bacillus subtilis sporulation and stationary phase gene expression. Cell Mol Life Sci,2002,59:392-402.
    114. Pieper-Fiirst U, Madkour M H, Mayer F, Steinbuchel A. Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules. J Bacteriol,1995, 177:2513-2523.
    115. Potter M, Madkour M H, Mayer F, Steinbuchel A. Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology,2002,148:2413-2426.
    116. Price C W. General stress response. In:Bacillus subtilis and its closest relatives: from genes to cells, ed Sonenshein AL, Hoch JA, Losick R. American Society for Microbiology, Washington, DC,2002,369-384.
    117. Ratcliff W C, Kadam S V, Denison R F. Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiol. Ecol,2008,65: 391-399.
    118. Rodriguez-Padilla C, Galan-Wong L, de Barjac H, et al. Bacillus thuringiensis subspecies neoleonensis serotype H-24, a new subspecies which produces a triangular crystal. J Invertebr Pathol,1990,56:280-283.
    119. Rowe G E, Margaritis A. Bioprocess development in the production of bioinsecticides by Bacillus thuringiensis. CRC Crit Rev Biotechnol,1987,6:87-127.
    120. Roxas V P. Stress tolerance in transgenic tobacco seedings that overexpress glutathiones-transferse/glutathione pemxidase. Plant Cell Physiol,2000,41: 1229-1234.
    121. Ruiz J A, Lopez N I, Fernandez R O, Mendez B S. Polyhydroxyalkanoate degradation is associated with nucleotide accumulation and enhances stress resistance and survival of Pseudomonas oleovorans in natural water microcosms. Appl. Environ. Microbiol,2001,67:225-230.
    122. Sakharova Z V, Ignatenko Iu N, Khovrychev M P, Lykov Rabotnova I L. Sporulation and crystal formation in Bacillus thuringiensis during growth limitation via nutrient sources. Mikrobiologiia,1984,53:279-284.
    123. Salamitou S, Ramisse F, Brehelin M, Bourguet D, Gilois N, Gominet M, Hernandez E, Lereclus D. The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology,2000,146:2825-2832.
    124. Santana M A, Moccia-V C C, Gillis A E. Bacillus thuringiensis improved isolation methodology from soil samples.J Microbiol Methods,2008,75: 357-358.
    125. Sara M, Sleytr U B. S-layer proteins. JBacteriol,2000,182:859-868.
    126. Satinder K, Brar M, Verma R D, Tyagi R Y, Surampalli S, Barnabe, Valero J R. Bacillus thuringiensis proteases:production and role in growth, sporulation and synergism. Process Biochemistry,2007,42:773-790.
    127. Scherrer P, Luthy P, Trumpi B. Production of δ-endotoxin by Bacillus thuringiensis as a function of glucose concentrations. Appl Microbiol,1973,25: 644-646.
    128. Schmidt A, Schiesswohl M, Volker U, Hecker M, Schumann W. Cloning, sequencing, mapping, and transcriptional analysis of the groESL operon from Bacillus subtilis. J Bacteriol,1992,174:3993-3999.
    129. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zxigler D R, Dean D H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev,1998,62:775-806.
    130. Schulz A, Schwab S, Versteeg S, Schumann W. The htpG gene of Bacillus subtilis belongs to class III heat shock genes and is under negative control. J Bacteriol,1997,10:3103-3109.
    131. Servant P, Mazodier P. Negative regulation of the heat shock response in Streptomyces. Arch Microbiol,2001,176:237-242.
    132. Sleytr U B, Beveridge T J. Bacterial S-layers. Trends Microbiol,1999,7: 253-260.
    133. Smirnoff W A. The formation of crystals in Bacillus thuringiensis var thuringiensis Berliner before sporulation at low temperature incubation.1963,J Insect Pathol,5:242-250.
    134. Srivatsan A, Wang J D. Control of bacterial transcription, translation and replication by (p)ppGpp. Curr Opin Microbiol,2008,11:100-105.
    135. Steinbiichel A, Aerts K, Babel W, Follner C, Liebergesell M, Madkour M H, Mayer F, Pieper-Furst U, Pries A, Valentin H E, et al. Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Can J Microbiol,1995,41:94-105.
    136. Suzuki I, Simon W J, Slabas A R. The heat shock response of Synechocystis sp. PCC6803 analysed by transcriptomics and proteomics. JExp Bot,2006,57:1573.
    137. Svensater G, Sjogreen B, Hamilton I R. Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins. Microbiology,2000,146:107.
    138. Tam le T, Antelmann H, Eymann C, Albrecht D, Bernhardt J, Hecker M. Proteome signatures for stress and starvation in Bacillus subtilis as revealed by a 2-D gel image color coding approach. Proteomics,2006,6:4565-4585.
    139. Tian B, Yang J, Lian L, Wang C, Li N, Zhang K Q. Role of an extracellular neutral protease in infection against nematodes by Brevibacillus laterosporus strain G4. Appl Microbiol Biotechnol,2007,74:372-380.
    140. Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics,2001,1:377-96.
    141. Topanurak S, Sinchaikul S, Sookkheo B, et al. Functional proteomics and correlated signaling pathway of the thermophilic bacterium Bacillus stearothermophilus TLS33 under cold-shock stress. Proteomics,2005,5:4456.
    142. Toulokhonov Ⅱ, Shulgina Ⅰ, Hernandez V J. Binding of the transcription effector ppGpp to Escherichia coli RNA polymerase is allosteric, modular, and occurs near the N terminus of the beta'-subunit. J Biol Chem,2001,276:1220-1225.
    143. Trach K, Burbulys D, Strauch M, Dhillon N, Kallio P, Perego M, Bird T, et al. Control of the initiation of sporulation in Bacillus subtilis by a phosphorelay. Res Microbiol,1991,142:815-823.
    144. Tsuge T, Fukui T, Matsusaki H, Taguchi S, Kobayashi G, Ishizaki A. Molecular cloning of two (R)-specific enoyl CoA hydratases genes from Pseudomonas aeruginosa and their use for polyhydroxy alkanoates synthesis. FEMS Microbiol Lett,2000,184:193-198.
    145. Tsuge T, Taguchi S, Taguchi K, Doi Y. Molecular characterization and properties of R-specific enoyl CoA hydratases from Pseudomonas aeruginosa:metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid β-oxidation. Int J Biol Macromol,2003,31:195-205.
    146. Versteeg S, Mogk A, Schumann W. The Bacillus subtilis htpG gene is not involved in thermal stress management. Mol Gen Genet,1999,261:582-588.
    147. Versteeg S, Escher A, Wende A, Wiegert T, Schumann W. Regulation of the Bacillus subtilis heat shock gene htpG is under positive control. J Bacteriol,2003, 185:466-474.
    148. Ward E S, Ellar D J. Assignment of the δ-endotoxin gene of Bacillus thuringiensis var israelensis to a specific plasmid by curing analysis. FEBS,1983, 158:45-49.
    149. Wasinger V C, Cordwell S J, Cerpa-Poljak A, et al. Progress with gene-product mapping of the mollicutes:Mycoplasma genitalium. Electrophoresis,1995,16:1090.
    150. Wieczorek R, Pries A, Steinbiichel A, Mayer F. Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J Bacteriol,1995,177:2425-2435.
    151. Wise A A, Price C W. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor SigB in response to environmental signals. J Bacteriol,1995.177:123-133.
    152. Xiao, L., Yi, L., Peng, L., Song, Q., Zi, Y., Microcalorimetric investigation on the growth model and the protein yield of Bacillus thuringiensis. J Biochem Biophys Methods,2004,59:267-274.
    153. Xu C, Ren H, Wang S, et al. Proteomic analysis of salt-sensitive outer membrane proteins of Vibrio parahaemolyticus. Res Microbiol,2004,155:835.
    154. Yousten A A, Rogoff M H. Metabolism of Bacillus thuringiensis in relation to spore and crystal formation. J Bacteriol,1969,100:1229-1236.
    155. Yousten A A, Hanson R S. Sporulation of tricarboxylic acid cycle mutants of Bacillus subtilis. J Bacteriol,1972,109:886-894.
    156. Yura T, Kanemori M, Morita M. The heat shock response:regulation and function. In:Bacterial Stress Response, ed Storz G, Hengge-Aronis R. American Society for Microbiology, Washington, DC,2000,3-18.
    157. Zhao C M, Luo Y, Song C X, Liu Z X, Chen S W, Yu Z N, Sun M. Identification of three Zwittermicin A biosynthesis-related genes from Bacillus thuringiensis subsp. kurstaki strain YBT-1520. Arch Microbiol,2007,187: 313-319.
    158. Zhao C, Song C, Luo Y, Yu Z, Sun M. L-2,3-diaminopropionate:one of the building blocks for the biosynthesis of Zwittermicin A in Bacillus thuringiensis subsp. Kurstaki strain YBT-1520. FEBS Lett,2008,582:3125-3131.
    159. Zhang Q, Sun M, Xu Z, Yu Z. Cloning and characterization of pBMB9741, a native plasmid of Bacillus thuringiensis subsp. kurstaki strain YBT-1520. Curr Microbiol,2007,55:302-307.
    160. Zhao Y H, Li H M, Qin L F, Wang H H, Chen G Q. Disruption of the polyhydroxyalkanoate synthase gene in Aeromonas hydrophila reduces its survival ability under stress conditions. FEMS Microbiol Lett,2007,276:34-41.
    161.Zouari N, Jaoua S. Production and characterization of metalloproteases synthesized concomitantly with δ-endotoxin by Bacillus thuringiensis subsp. kurstaki strain grown on gruel-based media. Enzyme Microb. Technol,1999,25: 364-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700