基因重组酒香酵母菌株高产β-葡萄糖苷酶的高密度液态发酵模型及酶学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-葡萄糖苷酶(EC3.2.1.21),又称β-D-葡萄糖苷水解酶,是组成纤维素酶系必不可少的成分。本研究对产β-葡萄糖苷酶菌株B.anomalus PSY-001分别进行紫外诱变和超声波诱变,从诱变菌株中筛选出高产β-葡萄糖苷酶的两亲株U1和V1,进行三次种内基因重组,以p-葡萄糖苷酶活力为指标,筛选出高产β-葡萄糖苷酶的新融合菌株F3-25,对F3-25的发酵条件进行优化,并建立该菌株的高密度液态发酵模型,采用AKTA purifier-900蛋白分离纯化工作站对该菌株生产的β-葡萄糖苷酶进行分离纯化并进行酶性质分析,为工业化生产提供了可靠的依据。
     主要研究内容和结果如下:
     1,以B.anomalus PSY-001为出发菌株,分别进行紫外诱变和超声波诱变,从诱变菌株中筛选出高产β-葡萄糖苷酶的菌株进行三次种内基因重组。通过初筛培养基筛选后,再以β-葡萄糖苷酶活力为指标,筛选出高产β-葡萄糖苷酶的新融合菌株F3-25。融合菌株F3-25产β-葡萄糖苷酶的酶活比原始菌株提高了近8倍。
     2,运用Design-Expert软件对试验数据进行分析,得到融合菌株F3-25的最佳培养基组成:当麸皮浓度为53.15g/L,酵母粉浓度为3.03g/L,KCl浓度为0.204g/L,CaCl2浓度为0.611g/L时,β-葡萄糖苷酶的酶活最高,为4.794U/mL。
     通过单因素试验和正交试验确定了融合菌株F3-25的最佳摇瓶发酵条件:发酵温度为30℃、250mL锥形瓶装液量为20mL、摇床转数为150r/min、接种量为3%、初始pH值为5。
     3,对F3-25的补料分批发酵条件进行了优化。运用Orign8.0软件拟合得到融合菌株F3-25在该条件下的生长动力学模型为:
     4,利用AKTA purifier-900蛋白分离纯化工作站,采用葡聚糖凝胶G-100层析,使β-葡萄糖苷酶的纯化率达到了96.2%,经SDS-PAGE电泳检测为电泳纯,得到两条带,测定其两个亚基的分子量分别为50.3KDa和67.8KDa,运用电泳分析软件BandScan4.3对电泳结果进行分析,得到其亚基的含量分别为40.5%和57.3%。
     融合菌株F3-25发酵产生的β-葡萄糖苷酶,最适反应温度为60℃,在40℃~50℃温度条件下,具有较好的热稳定性;最适pH值为5.0,在pH为5.0~6.0范围内,具有较好的稳定性;Fe3+、Mn2+、Ca2+对β-葡萄糖苷酶酶活有明显的促进作用,而Mg2+、Al3+、Cu2+、Zn2+对β-葡萄糖苷酶酶活有抑制作用。
P-glucosidase(EC3.2.1.21), aslo known as p-D-glucosidase glucohydrolase, which is an essential ingredient of the composition of cellulase. In this study, the two parental strains U1and V1, which were carried out three times genome shuffling, were obtained using P-glucosidase enzyme activity as indicator from B.anomalus PSY-001with UV and ultrasonic as mutagent. By using the screening medium, and P-glucosidase enzyme activity as indicator, a fusion strain F3-25high-yield beta-glucosidase was attained. Optimize the fermentation conditions of the F3-25, and develop the strains of high-density liquid fermentation model. The purification of P-glucosidase produced by F3-25were investigated with AKTA purifier-900protein separation and purification workstation. The properties of β-glucosidase was aslo discussed. This paper provides a reliable basis for the industrial production.
     Main contents and results of the study are as follows:
     1, In this study, the strain producing β-glucosidase B.anomalus PSY-001was UV mutagenesis and ultrasonic mutagenesis, screened from the mutant strains yielding beta-glucosidase from the two parental strains U1and V1, which was carried out three times genome shuffling. By the screening of the screening medium, and then to the P-glucosidase enzyme activity as an indicator, filter out the high-yield P-glucosidase fusion strain F3-25. The strain F3-25produced P-glucosidase activity is nearly eight times larger than the original strain.
     2, The optimum culture medium of fusion strain F3-25was optimized by Design Expert software, which were composed of:the bran concentration of53.15g/L, the concentration of yeast extract of3.03g/L, KC1of0.204g/L, CaCl2of0.611g/L.
     Fusion strains of the F3-25flask fermentation conditions were determined by single factor and orthogonal experiments:the fermentation temperature of30℃,250mL conical bottled liquid volume of20mL, the shaker is150r/min inoculation3%, the initial pH of5.
     3, The fed-batch fermentation conditions of F3-25were optimized. The growth kinetics model of fusion strain F3-25was obtained by Orign8.0software. The model is
     4, The purification of P-glucosidase produced by F3-25were investigated with AKTA purifier-900protein separation and purification workstation using Sephadex G-100 gel filtration chromatography. β-glucosidase purification rate was reached96.2%. Electrophoretic purity of β-glucosidase was detected by SDS-PAGE electrophoresis. Two electrophoresis band were attained, which molecular mass were estimated to be50.3KDa and67.8KD respectively. The content of two subunits were40.5%and57.3%respectively anlalyzed by Bandscan.
     The optimum temperature of F3-25was60℃. The optimal pH was5.0. Theβ-glucosidase has good stability within the range of40℃-50℃and the pH5.0-6.0. Fe3+、Mn2+and Ca2+can promote the activities of β-galactosidase while Mg2+、Al3+、Cu2+、 Zn2+can inhibit the activities of β-galactosidase.
引文
1.蔡谨,孙章辉,王隽.补料发酵工艺的应用及其研究进展.工业微生物,2005,35(1):42-48
    2.陈代杰,朱宝泉.工业微生物菌种选育与发酵控制技术.上海科学技术文献出版社,1994
    3.陈士怡,徐洪基.酵母遗传学,北京;科学出版社,1983
    4.甘志波.微生物原生质体融合.微生物学杂志,1996,1:46-51
    5.顾卫民.β-葡萄糖苷酶的特性及其在食品工业中的应用.江苏食品与发酵,2003(1): 5-7
    6.胡海荚.培养基的组成.江西化工,2004(4):62-63
    7.焦瑞身.细胞工程,北京:化学工业出版社,1989
    8.金建中,胡乔贤,何超刚等.糖化酵母和马克斯克鲁维乳糖变种酵母属间细胞融合的研究.工业微生物,1992,22(2):22-25
    9.金玉娟,刘自熔,任建平.芽孢杆菌和欧文氏菌的原生质体融合的研究.微生物学杂志,2002,22(3):10-11
    10.雷霆.高产L-乳酸菌种的选育及培养基的优化.[硕士学位论文].吉林大学图书馆,2006
    11.黎碧莲,涂桂洪. 酿酒酵母与扣囊拟内孢霉属间原生质体融合的研究.暨南大学学报(自然科学版),1998,19(5):120-124
    12.李桃生,陈士怡.酿酒酵母与糖化酵母的种间原生质体融合及其融合子的鉴定.生物工程学报,1987,3(2):121-129
    13.李华,高丽.葡萄浆果中β-葡萄糖苷酶活性测定方法的研究进展.食品与生物技术学报,2007,26(2):107-114
    14.李兴峰.乳糖酶高产菌株分离筛选发酵产酶及酶学性质研究.[硕士学位论文]保定:河北农业大学图书馆,2004
    15.李寅,高海军,陈坚,高细胞密度发酵技术.北京化学工业出版社,2006,8
    16.林炳芳,陶宁萍.梅果苦杏仁苷酶特性与青梅汁脱苦工艺的研究.南京农业大学学报,1996,33:18-20
    17.林炜铁.酿酒酵母拆合剂数研究.华南理工大学学报(自然科学版),1993(增), 21:45-51
    18.刘晋敏.B型超声波对蚕豆根尖细胞诱变作用的研究.癌变·畸变·突变,1992,6(4): 46-48
    19.刘祖同,陈晔,赵南明.电场诱导酵母菌原生质体融合的研究—原生质体分离、电融合条件及其机制的研究.清华大学学报(自然科学版),1990,30(6):60-66
    20.娄红祥,李饶,左春旭.氰苷类化合物的化学研究.沈阳药学院学报,1990,20(7):653-657
    21.潘利华,罗建平.β-葡萄糖苷酶的研究及应用进展.食品科学,2006,27(12):803-807
    22.彭志英.食品生物技术.北京:中国轻工业出版社,1999
    23.钱存柔,黄仪秀.微生物试验教程.北京:北京大学出版社,1999,117-133
    24.钱俊青,周文武,匡春兰.响应面法优化丁酸缩水甘油酯的酶法拆分工艺.生物工程学报,2008,24(6):1062-1067
    25.孙剑秋,周东坡.微生物原生质体技术.生物学通报,2002,37(7):9-11
    26.孙君社,李雪,李军席.原生质体融合构建耐高温酵母菌株.食品与发酵工业,2002,28(5):1-5
    27.谭蓓英,王花.酿酒酵母和产朊假丝酵母原生质体的形成、再生及属间融合.真菌学报1983,2(2):110-118
    28.唐孝宣,肖信发,徐京宁.工业微生物,1987,(5):23-29
    29.汪和睦,鲁玉瓦,武延宽等.电场诱导营养缺陷型酵母原生质体的融合.生物工程学报,1986,2(3):44-51
    30.汪家政.蛋白质技术手册.北京:科学技术出版社,2002,77-110
    31.王沁,赵学慧.黑曲霉β-葡萄糖苷酶的纯化与性质. 厦门大学学报(自然科学版),1992,31:687-691
    32.王璞,田沈,王丹等.高耐毒性酿酒酵母的紫外诱变选育.可再生能源,2007,25(3): 31-33
    33.王岳五,宇学锋,汪和睦,等.电诱导酵母属与短梗霉属属间融合的研究,真菌学报,1990,9(1):56-63
    34.王岳五,宋林生,周与良.电融合技术选育能利用木糖和纤维二糖生产乙醇的 菌株.生物工程学报,1992,8(1):82-86
    35.王玉树.B型超声波对绒毛细胞的致突变效应.中国超声医学杂志,1992,8(6):422-423
    36.魏华,付金衡,李雁群等.影响乳酸菌产率因素的初步研究. 中国畜产与食品,1998,Vol.5(5):204-206
    37.文铁桥,赵学慧.酵母菌属间原生质体融合构建高温酵母菌株.微生物学报,1999,39(2):141-147
    38.吴定,孙德坤.不同酸性条件对保加利亚乳杆菌存在活性影响.食品科学,2000,Vol.21(6):25-27
    39.无锡轻工大学.微生物学.北京:中国轻工业出版社,1997
    40.熊晓辉,于修鉴,陆利霞.乳酸菌发酵剂高密度培养的研究.中国调味品,2004,(5):17-21
    41.许晶,张永忠,孙艳梅,等.β-葡萄糖苷酶的研究进展.食品研究与开发,2005,26:183-186
    42.亚当斯A,戈特施林D E,凯泽CA等著,刘子铎译.酵母遗传学方法实验指南.科学出版社,2001
    43.姚卫蓉,王佳良. 无花果曲霉β-葡萄糖苷酶的固体发酵工艺初探. 江苏食品与发酵,2000,1:9-11
    44.叶选怡.一株高生物量酵母株紫外线致死率的研究.丽水师范专科学校学报,,2003,25(5):58
    45.勇强,徐勇,宋向阳.分批补料合成纤维素酶扩大试验.南京林业大学学报(自然科学版),2004,28(1):9-12
    46.余晓斌,具润模.分批与流加发酵法生产纤维素酶的研究.食品与发酵工业,1999,25(1):16-19
    47.袁易全,陈思忠.近代超声原理与应用.南京:南京大学出版社.1996,134
    48.曾宇成,张树政.海枣曲霉β-葡萄糖苷酶的提纯与性质.微生物学报,1989,29(3): 195-199
    49.曾云中,左小明,吴雪昌,等.糖化酵母及酿酒酵母原生质体制备若干条件的探索.杭州大学学报(自然科学版),1995,22(2):204-209
    50.章名春.工业微生物诱变育种.北京:科学出版社,1984:101-109
    51.郑铁曾,涂提坤,王建华.产p-半乳糖苷酶菌株的分离和筛选.微生物学通报,1981,8(1):258-260
    52.邹辉,黎锡流,罗明姬.低聚龙胆糖的酶法生产技术.中国食品添加剂,2004,3: 97-101
    53. Abdel-Naby, M A, M Y Osman, A F Abdel-Fattah. Purification and properties of three cellobiases from Aspergillus niger A20. Appl Biochem Biotechnol,1999,76: 33-44
    54. Adikane H V. Isolation and properties of beta-glucosidase from Aspergillus niger Indian J Biochem Biophys,1985,22:97
    55. Akerberg C, Hofvendahl K, Zacchi G, Hahn-Hae gerdal B. Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole wheat flour. Appl Microbiol Biotechnol,1998, Vol.49:682-690
    56. Allen A L, Andreotti R L. Continuous culture of Aspergillus phoenicis QM 329 for the production of cellobiase. Biotechnol Bioeng,1982,24(12):2747-2751
    57. Anne J. Somatic hybridization between Penicillium species after induced fusion of their protoplasts. Agriculture (Heverlee Belg),1977,25:1
    58. Awafo V A, Chahal D S, Simpson B K, et al. Production of cellulase systems by selected mutants of Trichderma reesei in solid state fermentation and their hydrolytic potentials. Biochem Biotechnol,1996,57/58:461-470
    59. Awafo V A, Chahal D S, Simpson B K. Evaluation of combination treatments of sodium xyoxide and steam explosion for the production of cellulase-systems by two Trichderma reesei mutants under solid-state fermentation conditions. Bioresource Technol,2000,73(3):235-245
    60. Bardford M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dry binding. Anal Biochem,1996,72:248
    61. Bauer M W, Bylina E J, Swanson R V. Comparison of a beta-glucoside and a beta-Mannosidase from the Hyperthermophilic Archaeon Pyrococcus furiosus. Purification, characterization, gene cloning, and sequence analysis. J Biol Chem, 1996,271(39):23749-23755
    62. Bauer M W, Kelly R M. The family I beta-glucosidase from Pyrococcus furiosus and Agrobacterium faecalis share a common catalytic mechanism. Biochemistry,1998, 37(49):17170-17178
    63. Bibal B, Vayssier Y, Goma G, Pareilleux A. High-concentration cultivation a) of Lactococcus cremoris in a cell-recycle reactor. Biotechnol Bioeng,1991, Vol. b) 37:746-754
    64. Chang H N, Lee W G, Kim B S. Cell retention culture with an internal filter module: continuous ethanol fermentation. Biotechnol Bioeng,1993, Vol.41:677-681
    65. Chen L, Bastin G, Van Breusegem V. Adaptive nonlinear regulation of fed-batch biological reactors:an industrial application. Decision and Control,1991, Vol.3: 2130-2135
    66. Christakopoulos P, Macris B J, Kekos D. On the mechanism of direct conversion of cellulose to ethanol by Fusariumoxy sporum:effect of cellulose and beta-glucosidase Appl Microbiol Biotechnol,1990,33:18-20
    67. Cochet N. Cellulase of Trichoderma reesei:influence of culture conditions upon enzymatic profile. Enzyme Microb Technol,1993,3:104-109
    68. Daenen L, Saison D, Sterckx F, Delvaux F R, Verachtert H, Derdelinckx G. Screening and evaluation of the glucoside hydrolase activity in Saccharomyces and Brettanomyces brewing yeasts. J Appl Microbiol,2008,104:478-488
    69. Decker C H, Visser J, Schreier P. β-Glucosidase multiplicity from Aspergillus tubingensis CBS 643.92:purification and characterization of four β-glucosidases and their differentiation with respect to substrate specificity, glucose inhibition and acid tolerance. Appl Microbiol Biot,2001,55:157-163
    70. Dekkers R M, Voetter M. Adaptive control of a fed-batch bakers's yeast fermentation. IFAC proceedings series,1986, Vol.10:103-110
    71. Delcroix A, Gunata Z, Sapis J C. Glycosidase activities of three enological yeast strains during wine making:Effect on the terpenol content of Muscat Wine. Am J Enol Viticul,1994,45:291-296
    72. Desrochers M, Jurasek L, Paice M G. High Production of β-glucosidase in Schizophyllus Commune:Islation of the Enzyme and Effect of the Culture Filtrate on a) Cellulose Hydrolysis. Appl Environ Microbiol,1981,41(1):222-228
    73. Desai K M, Akolkar S K, Badhe Y P. Optimization of fermentation media for exopoly- saccharide production from Lactobacillus plantarum using artificial intelligence-based techniques. Process Biochemistry,2006,41:1842-1848
    74. Douglas J, MacNeil. Introduction of plasmid DNA into Streptomyces lividans by electroporation. Fems Microbiol Lett,1987,42:239-244
    75. D Tull, S G Withers, N R Gilkes. Glutamic acid 274 is the nucleophile in the active site of a "retaining" exoglucanase from Cellulomonas fimi. J Biol Chem,1991,266: 15621-15625
    76. Duff S J B, Cooper D G, Fuller O M. Cellulase and beta-glucosidase production by mixed culture of Trichderma reesei RUT C30 and Aspergillus phoenicis. Biotechnol Lett,1985,7(3):185-190
    77. Duff S J B, Cooper D G, Fuller O M. Effect of media composition and growth conditions on production of cellulase and β-glucosidase by a mixed fungal fermentation. Enzyme Microb Tech,1987,9:47-52
    78. Edberg C E, Trepeta R W, Kontnick C M. Measurement of active constitutive β-glucosidase (Esculinase) in the presence of sodium desoxycholate. J Clin Microbiol 1985,21(3):363-365
    79. Engel K H, Tressl R. Formation of aroma components from on volatile precursors in passion fruit. JAgric Food Chem,1983,31:998-1002
    80. Fitzpatrick J J, Ahrens M, Smith S. Effect of manganese on Lactobacillus casei fermentation to produce lactic acid from whey permeate. Process Biochem,2001,36: 671-675
    81. Gondium M D B. The β-galactosidase activity in kluyveromyces marixanus decreese by high concentration of galactose. Current Microbiology,2002,44:379-382
    82. Gonzalez-Candelas L, Ramon D, Polainal J. Sequences and homology analysis of two genes encoding β-glucosidase from Bacillus polymyxa. Gene,1990,95:31-38
    83. Gonzalez-Candelas L, Gil J V, Lamuela-Raventos R M. The use of transgenic yeasts expressing a gene encodilg a glycosyl hydrolase as a tool to increase resveratrol conteni in wine. Int J Food Microbiol,2000,59:179-183
    84. Grabnitz F, M seiss, Ruknagel K P. Structure of the β-glucosidase gene bgIA of Clostridium thermocellum Sequence analysis Reveals a super family of cellulases and β-glycosidase sincluding human lactase/phlorizinhydrolase. Eur J Biochem,1991, 200:321-327
    85. Grabnitz F, Staudenbauer W L. Characterization of two β-glucosidase genes from Clostridium thermocellum. Biotechnol Lett,1988,10:73-78
    86. Guevas L, Niemeyer H M, Jonsson L M V. Partial purification and characterization of a hydroxamic acid glucoside β-D-glucosidase from maize. Phytochemistry,1992, 131(8):2609-2612
    87. Gunata Y Z, Bayonove C L, Baumes R L. The extraction and determination of free and glycosidically bound fractions of some grape aroma substances. J Chromatogr, 1985,331:83-90
    88. Han K, Lim H C, Hong J. Acetic acid formation in Escherichia coli fermentation. J Biotechnol Bioeng,1992, Vol.39:663-671
    89. Hanjing H, Darin R, Tingyue G. Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy. Biopro Biosyst Eng,2004, Vol.24:67-73
    90. Hartbrich A, Schmitz G.,Weuster-Botz D, De Graaf A A, Wandrey C. Development and application of a membrane cyclone reactor for in vivo NMR spectroscopy with high microbial densities. Biotechnol Bioeng,1996, Vol.51:624-635
    91. Hartnett M, Diamond D, Barker P G. Neural network based recognition of flow-injection patterns. Analyst,1993, Vol.118:347-354
    92. Hayakawa K, Sansawa H, Nagamune T, Endo I. High density culture of a) Lactobacillus casei by a cross-flow culture method based on kinetic properties b) of the microorganism. Journal of Fermentation and Bioengineering,1990, Vol. c) 70(6):404-408
    93. Himmel M E, Adney W S, Fox J W, Mitchell D J, Baker J O. Isolation and characterization of two forms of β-D-glucosidase from Aspergillus niger. Appl Biochem Biotechnol,1993,39:213-225
    94. Hjorleifsdottir S, Seevaratnam S, Holst O, Mattiasson B. Effects of complete a) cell recycling on product formation by Lactobacillus casei ssp.rhamnosus in b) continuous cultures. Curr Microbiol,1990, Vol.20:287-292
    95. Holst O, Manelius A, Krahe M, Markl H, Raven N, Sharp R. Thermophiles and Fermentation technology. Comp BiochemPhysiol,1997, Vol.118:415-422
    96. Hopwood D A, Wright H M. Factors affecting recombinant frequency in protoplast fusion of Streptomyces coelicolor. J Gen Microbiol,1970,111:137-143
    97. Ikeda H, Inoue M, Tanaka H, Omura S. Interspecific protoplast fusion among macrolide-producing streptomycetes. JAntibiot (Tokyo),1984,37:1224-1230
    98. Imada C, Okanishi M, Okami Y. Intergenus protoplast fusion between Streptomyces and Micromonospora with reference to the distribution of parental characteristics in the fusants. J Biosci Bioeng,1999,88:143-147
    99. Inge Pet, Berend Nid. Development an ultra-high-tempertature processs for the enzymatic hydrolysis of lactose. Biotechnol Bioeng,1999,64 (3):322-332
    100.Johansson G, Reczey K. Concentration and purification of β-glucosidase from Aspergillus niger by using aqueous two-phase partitioning. J Chromatogr B Biomed Sci Appl,1998,711(1-2):61-72
    101.Jones C S, Kosman D J. Purification, properties, kinetics and mechanism of β-N-acetylglucosaminidase from Aspergillas niger. J Biol Chem,1980,255:11 861-11869
    102.John R P, Gangadharan D, Madhavan Nampoothiri K. Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for 1-lactic acid production from starchy wastes. Bioresource Technol,2008,99:8008-8015
    103.Kang B C, Lee S Y, Chang H N. Production of Bacillus thuringiensis spore a) in total cell retention culture and two stage continous culture using an internal ceramic filter system. Biotechnol Bioeng,1993, Vol.42:1107-1112
    104.Keller R, Dunn U. Fed-batch microbial culture:Models, errors and applications. J Appl Chem Biotechnol,1978, Vol.28:508-514
    105.Kleman G L, Strohl W R. Developments in high cell density and high productivity microbial fermentation. Curr Opin Biotechnol,1994, Vol.5:180-186
    106.Krahe M, Antranikian G, Markl H. Fermentation of extremophilic Microorganisms. FEMS Microbiol Rev,1996, Vol.18:271-285
    107.Lee C W, Gu M B, Chang H N. High-density culture of Escherichia coli carrying recombinant plasmid in a membrane cell recycle fermenter. Enzyme Microb Technol, 1989, Vol.11:49-54
    108.Lee W G, Lee Y S, Chang H N, Chang Y K. A cell retention internal filter reactor for ethanol production using tapioca hydrolysates. Biotechnol Tech.,1994, Vol.8:817-820
    109.Lee S Y. High cell-density culture of Escherichia coli. Trends Biotechnol,1996, Vol.14:98-105
    110.Lee S Y, Chang H N. Production of poly (hydroxyalkanoic acid). Adv Biochem Eng Biotechnol,1995, Vol.52:27-58
    111.Lyang J A, Lee W, Bruce M C. Production and regeneration of Lactobacillus casei protoplasts. Appl Environ Microbiol,1984,48:994-1000
    112.MacDonald H L, Neway J O. Effects of medium quality on the expression of human interleukin-2 at high cell density in fermentor cultures of Escherichia coli K-12. Appl Environ Microbiol,1990, Vol.56:640-645
    113.Markl H, Lechner M, Goetz F. A new dialysis fermentor for the production of high concentrations of extracellular enzymes. J Ferment Bio eng,1990, Vol.69:244-249
    114.Masaru M, Sasaki J, Murao S. Studies on β-glucosidase from soy beans that hydrolyze daidzin and genistin, isolation and characterization of an isozyme. Biosci Biotech Biochem,1995,59(9):1623-1627
    115.Mehaia M A, Cheryan M. Production of lactic acid from sweet whey permeate a) Concentrates. Process Biochem,1987, Vol.22:185-188
    116.Mojtaba T Y, Amir A K, Mahboob N, Niloofar D, Vijeh M. Purification and characterization of two intracellular β-glucosidase from the Neurospora crassa mutant cell-1. World J Microb Biot,2003,19 (1):79-84
    117.Mori H. J Ferment Technol,1983,61(4):391-401
    118.Muralidhar R V, Chirumamila R R.A response surface approach for the comparison of lipase production by Candida Cylindracea using two different carbon sources. Biochem Eng,2001(9):17-23
    119.Nakano K, Rischke M, Maerkl H, Sato S. Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor. Appl Microbiol Biotechnol,1997, Vol.48:597-601
    120.Namchuk M N, Withers S G. Mechanism of Agrobacterium β-glucosidase:Kinetic analysis of the role of non-covalent enzyme/substrate interaction. Biochemistry,1995, 34:16194-16202
    121.Ogawa K, Ijima Y, Guo W. Purification of a β-primeverosidase concerned with alcoholic aroma formation in tea leaves. JAgr Food Chem,1997,45:877-882
    122.Parente E, Ricciardi A, Addario G. Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. lactis 140NWC during batch fermentation. Appl Microbiol Biotechnol,1994, Vol.41:388-394
    123.Pennacchia C, Vaughan E E. Potential probiotic Lactobacillus strains from fermented sausages:Further investigations on their probiotic properties. Meat Sci,2006(73): 90-101
    124.Pirt S J. The theory of fed-batch culture with reference to penicillin Fermentation. J App Chem Biotechnol,1974, Vol.24:415-424
    125.Preusting H, Houten R, van Hoefs A, Langenberghe E K, van Favre Bulle O, Witholt B. High cell density cultivation of Pseudomonas oleovorans:growth and a) production of poly (3-hy-droxyalkanoates) in two-liquid phase batch and fed-batch systems. Biotechnol Bioeng,1993, Vol.41:550-556
    126.Pyo Y H, Lee T C, Lee Y C. Enrichment of bioactive is of lavones in soymilk fermented with β-glucosidase producing lactic acid bacteria. Food Res Int,2005,38: 551-559
    127.Rajoka M. Double mutanta of cellulomanas biazotea for production of cellulases and hemicellulases following growth on straw of a perennial grass. World J Microb Biot, 2005,21(6-7):1063-1066
    128.Rashid M H, Siddiqui K S. Purification and characterization of a β-glucosidase from Aspergillus niger NIAB280. Folia Microbiol,1997,42:544-550
    129.Riesenberg D, Guthke R. High-cell-density cultivation of microorganisms. Appl Microbiol Biotechnol,1999, Vol.1:422-430
    130.Riesenberg D. High-cell density cultivation of E.coli. Curr Opin Biotechnol,1991, Vol.2:380-384
    131.Saloheimo M, Panula J K, Ylosmaki E. Enzymatic properties and intracellular localization of the novel Trichoderma reesei β-glucosidase BGLII (cellA). Appl Envion Microb,2002,68(9):4546-4553
    132.Shoseyov O, Bravdo B A, Ikan R. Immobilized endo-β-glucosidase enriches flavor of wine and passion friut juice. JAgr Food Chem,1990,27:973-1976
    133.Shuimizu N. J Ferment Technol,1982,60(6):487-493
    134.Sinnott M L. Catalytic mechanism of enzymic glycosyl trasfer. Chem Rev,1990,90: 1171-1202
    135.Sipiczki M, Ferenczy L. Protoplast fusion of Schizosaccharomyces pombe auxotrophic mutants of identical mating type. Mol Gen Genet,1977,151:77-81
    136.Souza De O M C, Roberto I C. Solidstate fermentation for xylanse production by thermoascus aurantiaus using response surface methodology. Apply Microbiol biotachnol,1999(52):768-772
    137.Stemberg D. β-glucosidase of Trichderma: its biosynthesis and role in saccharification of cellulose. Appl Environ Microb,1976,31(5):648-654
    138.Suzuki T. A dense cell culture system for microorganisms using a stirred ceramic membrane reactor incorporating asymmetric porous ceramic filters. J Ferment Bioeng,1996, Vol.82:264-271
    139.Suzuki T, Kamoshita Y, Ochashi R. A dense cell culture system for a) microorganisms using a shake flask incorporating a porous ceramic filter. J Ferment Bioeng,1997, Vol.84:133-137
    140.Suzuki T, Sato T, Kominami M. A dense cell retention culture system using a stirred ceramic membrane reactor. Biotechnol Bioeng,1994, Vol.44:1186-1192
    141.Suzuki T, Yamane T, Shimizu S. Mass production of thiostrepton by fed-batch culture of Streptomyces laurentii with pH-stat modal feeding of multi-substrate. Appl Microbiol Biotechnol,1987, Vol.25:526-531
    142.Szilvia Jager, Aniko Brumbauer, Erika Feher, Kati Reczey, Laszlo Kiss. Production and characterization of β-glucosidase from Aspergillus strains. World J Microb Biot, 2001,17(5):455-461
    143.Tangnu S K, Blanch H W, Wilke C R. Enhanced production of cellulase, hemicellulase and β-glucosidase by Trichderma reesei (RUT-C30). Biotech Bioengin, 1981,23,1837-1849
    144. Turan Y, Zhang M. Purification and characterization of an intracellular β-glucosidase from the Methylotrophic Yeast Pichia pastoris. Biochemistry,2005, 70(12):1363-1368
    145.Van Dijken W M, Heijnen J J A. Metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnol Bioeng,1995, Vol.48:681-698
    146.Watanabe T, Sato T, Yoshioka S, Koshuima C, Kuwahara M. Purification and properties of Aspergillus niger P-glucosidase. Eur J Biochem,1992,209:651-659
    147.Wijtzes T, de Wit J C, Veld H. vant Ried J H J, Zwietering K. Modelling bacterial growth of Lactobacillus curvatus as a function of acidity and temperature. Appl Environ Microbiol,1995, Vol.61:2533-2539
    148.Williams P J, Christopher R S, Bevan W. Massy-Westropp Studies on the hydrolysis of Vitis vinifera monoterpenne precursor compounds and model monoterpene P-D-glucosidase rationalizing the monoterpene composition of grapes. J Agric Food Chem,1982,30:1219-1223
    149.Yan T R, Liau J C. Synthesis of alkyl β-glucosidase from cellobiose with Aspergillus nigerβ-glucosidase Ⅱ. Biotechnol Lett,1998,20(7):653-657
    150.YAN, Tsong-Rong, LIN, Chun-Lieh. Purification and characterization of a glucose-tolerant β-glucosidase from Aspergillus niger CCRC 31494. Biosci Biotech Bioch,1997,61(6):965-970
    151.Yamane T, Hibino W, Ishihara K, Kadotani Y, Kominami M. Fed-batch culture automated by uses of continuously measured cell concentration and culture volume. Biotechnol Bioen,1992, Vol.39 (5):550-555
    152.Yamane T, Shimizu S. Fed-batch techniques in microbial processes. Adv Biochem Eng,1984, Vol.30:147-194
    153.Yoo I K, Chang H N, Lee E G, Chang Y K, Moon S H. Effect of pH on the production of lactic acid and secondary products in batch cultures of Lactobacillus casei. J Microbiol Biotechnol,1996, Vol.6:482-486
    154.Yoshida F N, Nakamoto K. Fed-batch hydrocarbon fermentation with colloidal emulsion feed. Biotechnol Bioeng,1973, Vol.15:257-270
    155.Yukti Bhatia, Saroj Mishra, Virendra S, Bisaria.Purification and characterization of recombinant Escherichia coli-expressed Pichia etchellsii β-glucosidase II with high hydrolytic activity on sophorose. Appl Biochem Biotech,2005,66 (5):527-535
    156. Zhang Y X, Perry K, Vinci V A. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature,2002,415:644-64
    157.Zimmermann U, Scheurich P. Hrigh frequency fusion of plants protoplasts by electric field. Planta,1981,151:26-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700