北黄海陆架晚第四纪地层结构与物源环境演变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北黄海独特的地理位置、丰富的陆源物质供应量与多变的沉积环境使其开展晚第四纪以来沉积地层与古环境的研究具有鲜明的区域特色。北黄海晚第四纪以来地层格架及物源环境的研究,有助于深入认识晚第四纪以来中国东部陆架的地质演化史,丰富全球变化区域响应的认识,同时为揭示中小型河流及其影响下的近岸泥质区在陆架海陆相互作用中的意义,深入理解研究区海陆相互作用的机制提供科学依据。
     本论文利用北黄海中西部陆架采集的4916km高分辨率浅地层剖面的声学记录与北黄海目前最深、取芯最完整的DLC70-2孔沉积地层的对比分析,揭示了研究区晚第四纪(MIS6期)以来的地层框架,运用REE地球化学方法,结合DLC70-2孔及辽东半岛东南近岸泥质区3个柱状样的沉积特征的分析,揭示晚第四纪北黄海中西部陆架沉积物物源环境的演化及其对海平面变化的响应过程。
     浅地层剖面上自上而下识别出了研究区可连续或不连续追踪的10个声学地层界面(T0、T1、T2、T3、T4、T5、T6、T7、T8、T9),划定了介于上述界面之间具有层序意义的10个声学地层单元或亚单元(SU11、SU12、SU2、SU3、SU41、SU42、SU51、SU52、SU53、SU6)。DLC70-2孔(结合前人NYS-101/NYS-102孔)沉积特征与过孔浅地层剖面声学记录的对比分析显示,依据浅地层剖面进行的声学地层划分与钻孔岩心的沉积地层划分有良好的对应关系,自上而下划分出了研究区晚第四纪(MIS6期)以来与声学单元相对应10个沉积地层单元或亚单元(DU11、DU12、DU2、DU3、DU41、DU42、DU51、DU52、DU53、DU6)。
     北黄海中西部陆架晚第四纪(MIS6期)以来地层的发育及沉积环境的变化与海平面的波动密切相关。研究区MIS6期以来发育3次沉积旋回,大部分地层形成于MIS5期至MIS4期早期、MIS3期早中期、MIS1期早中期3组海平面相对较高时期,分别对应滨海-浅海相、滨海-河口湾相、滨海-浅海相沉积,内部地层相对连续,为海侵体系域与高水位体系域的沉积;而在MIS6期、MIS4期晚期、MIS2期3组海平面较低时期,分别发育河流-河口充填相、河口充填相、河口充填相及上覆河流泛滥平原相沉积,与下伏地层之间存在明显的沉积间断,为低水位体系域同期的沉积。
     DLC70-2孔沉积物REE组成垂向变化比较复杂,存在明显的阶段性。REE含量主要受控于源岩组成,存在明显的粒级效应,除此之外,Fe-Mn氧化物、化学风化作用对稀土元素组成产生一定的影响,而TOC及重矿物对其影响不明显。DLC70-2孔沉积物REE标准化配分模式及分馏参数判识图解显示,研究区MIS6期晚期(69.23-60.72m段)与MIS4期晚期(35.00-38.90m段)主要为鸭绿江及大洋河源;MIS5期早期(60.72-48.90m段)与MIS4期晚期以来(35.00-0m段)主要来源于黄河物质;而MIS6期中期(70.60-69.23m段)与MIS5期中晚期(38.90-48.90m段)主要受到黄河、鸭绿江及大洋河共同作用;长江与朝鲜半岛河流对研究区影响不明显。海平面的波动与黄河入海口的变化是研究区晚第四纪以来物源变化与物质供应量的主要控制因素。
     北黄海中部晚更新世末低海面时期发育的硬质粘土层形成年龄介于12602~10357cal yr BP之间,年代上与发生在12.9~11.6ka期间的末次冰消新仙女木气候回冷事件相吻合,与不同沉积环境中形成的北黄海泥炭层为同一时期的沉积,可作为新仙女木事件在北黄海陆架响应的一个重要证据。高含量淡水藻类(环纹藻、盘星藻)与香蒲的存在表明北黄海硬质粘土层的形成环境主要为淡水水域,而硬质粘土层中藜科-蒿属的存在指示其形成期间间或受到海水的影响,其上下层段海生沟鞭藻含量的增加说明硬质粘土层沉积初期及形成后期海水作用的增强,淡水藻类与陆生植物孢粉此消彼长的变化规律反映了硬质粘土层形成的阶段性特征。硬质粘土层中蒿属-香蒲-松-禾本科-单缝孢和松-蒿属-禾本科-单缝孢-香蒲孢粉组合表明研究区当时处于寒冷而湿润的环境,低地为以河流湿地为主的平原草甸,周边山地有针阔叶混交林分布。
     高分辨率浅地层剖面资料显示辽东半岛东南近岸海域沿岸分布着一泥质沉积体,剖面上呈现丘状、低倾角向海向陆双向进积,最厚处可达14m,向海向陆双向变薄至<2m,空间上位于大连湾东北和长山群岛西南部海域,延伸至距离鸭绿江河口180-300km,泥质沉积体分布区水深范围20-40m。该泥质沉积是全新世6.5ka BP高海面以来形成的高水位体系域的沉积,物源主要来自鸭绿江&大洋河物质。海洋动力环境(潮流、波浪、辽南沿岸流、黄海暖流等)是控制辽东半岛近岸海域沉积物再悬浮、运移与沉积的主要因素。
     辽东半岛东南近岸泥质沉积区末次冰盛期以来的古环境演化主要受控于海平面变化及物源供应,形成于10383-10396cal yr BP左右的泥炭层,与新仙女事件在北黄海响应的泥炭层为不同时期的沉积,主要为末次冰消以来融水脉冲事件(MWP-1B与MWP-1C)之间海平面相对停滞时期的产物。
The North Yellow Sea (NYS) can be regarded as a typical key area for studyingsedimentary stratigraphy and paleoenvironment during the late Quaternary because of itsunique Geographic, geological, hydrologic bankgrounds. The research of sedimentarystratigraphic framework and environmental evolution in NYS during the late Quaternary notonly contributes to understanding the geological evolutionary history in the shelf area of theeastern China Seas and enriching the regional response theory to global change, but alsoprovides scientific evidences for revealing the significance of small-medium size rivers andcoastal mud areas to land-sea interaction at the marginal sea and understanding themechanism of land-sea interaction in the study area.
     In this paper, throuth a comparison between4916km high-resolution subbottomseismic profiles, and sedimentary characteristics of the core DLC70-2with the longest lengthand highest recovery rate by far in NYS, the stratigraphic framework in the study area sincethe late Quaternary (MIS6) will be precisely disclosed. In addition, by a geochemical analysisof rare earth element (REE), which will be compared with the sedimentary characteristics ofcore DLC70-2from the central of NYS and three piston cores in the Liaodong Peninsulasoutheast coastal mud area, the provenance environmental evolution in the midwest area ofNYS and their responses to the global sea-level fluctuations since the Late Quaternary will berevealed.
     High-resolution seismic profiles are divided into ten major regionally continuous todiscontinuous seismic bounding surfaces, which are designated T0、T1、T2、T3、T4、T5、T6、T7、T8、T9in descending stratigraphic order. Meanwhile, a total of ten seismic sequenceunits (SU11、SU12、SU2、SU3、SU41、SU42、SU51、SU52、SU53、SU6) are identified amongthe seismic surfaces. The contrastive analysis between sedimentary characteristics of coreDLC70-2(compared with previous cores NYS-101and NYS-102) and core-passing seismicprofile in NYS shows that stratigraphic units in the cores are confidently correlated withseismic units in the profiles, that is ten stratigraphic units (DU11、DU12、DU2、DU3、DU41、DU42、DU51、DU52、DU53、DU6) in the study area during late Quaternary correspond to tenseismic units (SU11、SU12、SU2、SU3、SU41、SU42、SU51、SU52、SU53、SU6), respectively.
     Strata formation and sedimentary sedimentary environment changes in the study area since MIS6are strongly controlled by sea-level fluctuations. There exists three majorsedimentary cycles. Most of the relative continuous successions were formed in threehighstand sea-level stages of MIS5to the early period of MIS4, the early-middle period ofMIS3and MIS1, which correspond to coastal-shallow sea facies, coastal-estuary facies,coastal-shallow sea facies respectively and regarded as Transgressive System Tract andHighstand System Tract. Major erosions and hiatuses happened in three lowstand sea-levelstages of MIS6, the late period of MIS4, MIS2, corresponding to fluvial-estuary filling facies,estuary filling facies, estuary filling and floodplains facies respectively and regarded as thesame period deposit with Lowstand System Tract.
     The vertical variations of REE compositions in core DLC70-2are relativelycomplicated and formed in different stages. The REE complication is mainly controlled bysource rocks and influenced by granularity. Furthermore, Fe-Mn oxides, Chemical Weatheringalso exert some influence on the REE composition. However, the effects of biogenouscarbonate and heavy minerals are not significant. The result of provenance discriminationexhibits that the sediments deposited at the stages of the late period of MIS6(69.23-60.72m)and the late period of MIS4(35.00-38.90m) are mainly derived from Yalu River and DayangRiver, the sediments at the stages of the late period of MIS5(60.72-48.90m) and since thelate period of MIS4(35.00-0m) mainly deriving from Yellow River, whereas the sediments atthe stages of the middle period of MIS6(70.60-69.23m) and the middle-late period of MIS5(38.90-48.90m) are jointly influenced by Yellow River, Yalu River and Dayang River, theeffects of Yangtze River and Korean Peninsula rivers being not clear. The sea-level fluctuationand estuary change of Yellow River are regarded as a dominated factor of provenancevariations and sedimentary fluxes in the study area since late Quaternary.
     AMS14C age data together with lithology analysis suggest that the hard clay in thecentral area of NYS was formed about12563to10330cal yr BP, in the similar period withthe peat layer of the NYS deposited in different sedimentary environment, which is highlycoincident with the age of the Younger Dryas event that was the most significant cold climaticevent during the last deglacial warming and occurred between12.9~11.6ka. The coincidenceindicates that the formation of hard clay in the central NYS possibly related to the YoungerDryas event.The high abundance of freshwater algae (Concentricystis and Pediastrum) andTypha indicates that the hard clay is a freshwater deposit. The presence ofChenopodiaceae-Artemisia in the hard clay indicates that the study area was occasionally affected by seawater during the formation of hard clay. Dinoflagellate occurs in increasingabundance in the upper and lower section of hard clay suggesting the study area had growingmarine influence during the early and late stage of the formation of hard clay. The reciprocalvariation law between freshwater algae and land-flora shows that the hard clay was formed inseveral stages. The sporo-pollen assemblages (Artemisia-Typha-Pinus-Poaceae-Monoletesand Pinus-Artemisia-Poaceae-Monoletes-Typha) from hard clay show that the study area wasin a cold and humid environment during the formation of hard clay, and characterized bymeadow present in the riverine wetlands with coniferous and broadleaved mixed forest.
     High-resolution shallow sub-bottom profiles reveal a prominent moundy low-anglebidirectional (landward and seaward) progradational mud clinoform deposit distributedalongshore off the southeast coast of Liaodong Peninsula, which is up to14m in thicknessand thins seaward and landward to less than2m. The clinoform deposit occurs about180to300km away from the Yalu River mouth between the northeast of the Dalian Bay andsouthwest of the Changshan Islands at a depth of20–40m. The mud deposit represents aHolocene Highstand System Tract sequence formed after the sea-level highstand at6.5ka andis mainly derived from Yalu River and Dayang River. The resuspension, transportation anddeposition of the sediments off the southeast coastal area of Liaodong Peninsula is mostlycontrolled by marine processes, such as tides, waves and the LCC.
     The paleoenvironment evolution in the Liaodong Peninsula coastal mud area sinceLGM is largely dominated by sea-level changes and sediment supply. The peat layer, formedabout10383to10396cal yr BP, is different from the peat layer related to the Younger Dryasevent in NYS, which results from a few stagnated periods of sea level existed betweenMWP-1B event and MWP-1C event.
引文
[1] Aharon P,Chappel J,Compston W.Stable isotope and sea level date from New Guinea supportAntarctic ice surge theory of ice ages.Nature,1980,283:649-651.
    [2] Alexander C R, DeMaster D J, Nittrouer C A. Sediment accumulation in a modern epicontinental-shelfsetting: the Yellow Sea. Mar. Geol.,1991,98(1):51-72.
    [3] Allison M A, Lee M T, Ogston A S, et al. Origin of Amazon mudbanks along the northeastern coast ofSouth America. Mar. Geol.,2000,163(1-4):241-256.
    [4] Aslan A and Autin W J. Holocene flood-plain soil formation in the southern lower Mississippi Valley:implications for interpreting alluvial paleosols. Bulletin of the Geological Society of America,1998,110:433-449.
    [5] Bard E, Hamelin B, Arnold M, et al. Deglacial sea-level record from Tahiti corals and the timing ofglobal meltwater discharge. Nature,1996,382:241-244.
    [6] Bard E, Hamelin B, Fairbanks R G. U-Th ages obtained by mass spectrometry in corals from Barbados:sea level during the past130000years. Nature,1990,346:456-458.
    [7] Beaudouin C, Suc J P, Escarguel G et al. The significance of pollen signal in present-day marineterrigenous sediments: The example of the Gulf of Lions (western Mediterranean Sea). Geobios,2007,40(2):159-172.
    [8] BernéS, Vagner P, Guichard F, et al. Pleistocene forced regressions and tidal and ridges in the EastChina Sea. Marine Geology,2002,188:293-315.
    [9] Bhatia M R and Crook K A W. Trace element characteristics of graywackes and tectonic settingdiscrimination of sedimentary basins. Contributions to Mineralogy and Petrology,1986,92:181-193.
    [10] Bi N S, Yang Z S, Wang H J, et al., Seasonal variation of suspended-sediment transport through thesouthern Bohai Strait. Estuarine, Coastal and Shelf Science,2011,93:239-247.
    [11] Blanchon P and Shaw J.Reef drowning during the last deglaciation: evidence for catastrophic sea-levelrise and ice-sheet collapse.Geology,1995,23:4-8.
    [12] Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies. Devition of Geoche,1984,2:63-114.
    [13] Broecker W S, Denton G H. The role of ocean2atmosphere reorganizations in glacial cycles.Geochimica et Cosmo-chimica Acta,1989,53:2465-2501.
    [14] Bui V D, Karl S, Daniel U, et al. Late Pleistocene–Holocene seismic stratigraphy of the SoutheastVietnam Shelf. Global and Planetary Change,2013,110:156-169.
    [15] Cabioch G and Ayliffe L K. Raised coral terraces at Malakula, Vanuatu, Southwest Pacific, indicatehigh sea level during marine isotope stage3. Quaternary Research,2001,56(3):357-365.
    [16] Cattaneo A, Correggiari A, Langone L et al. The Late-Holocene Gargano subaqueous delta, Adriaticshelf: sediment pathways and supply fluctuations. Mar. Geol.,2003,193:61-91.
    [17] Chappell J, Omura A, Esat T, et al. Reconciliaion of late Quaternary sea levels derived from coralterraces at Huon Peninsula with deep sea oxygen isotope records. Earth and Planetary Science Letters,1996,141(1-4):227-236.
    [18] Chen Q Q, Li C X, Li P, et al. Late Quaternary palaeosols in the Yangtze Delta, China, and theirpalaeoenvironmental implications. Geomorphology,2008,100:465-483.
    [19] Chen X H, Li T G, Zhang X H, et al. A Holocene Yalu River-derived fine-grained deposit in thesoutheast coastal area of Liaodong Peninsula. Chinese Journal of Oceanology and Limnology.2013,31(3):636-647.
    [20] Chen Z Y and Stanley D J. Alluvial stiff muds (Late Pleistocene) underlying the Lower Nile DeltaPlain, Egypt: Peterology, Stratigraphy and Origin. Journal of Coastal Research,1993,9(2):539-576.
    [21] Choi B H. A Tidal Model of the Yellow Sea and the East China Sea. KOREI1Report8002, KoreanOcean Research and Development Institute,1980,72.
    [22] Chough S K and Kim D C. Dispersal of fine-grained sediments in the southeastern Yellow Sea: asteady-state model. J. Sedi. Petrol,1981,51:721–728.
    [23] Chough S K, Kim J W, Lee S H, et al. High-resolution acoustic characteristics of epicontinental seadeposits, central–eastern Yellow Sea. Mar. Geol.,2002,188:317-331.
    [24] Chough S K, Lee H J, Yoon S H. Marine Geology of Korean Sea. Elsevier, Amsterdam,2000, pp.47-172.
    [25] Clark P U and Mix AC. Ice sheets and sea level of the Last Glacial Maximum. Quat. Sci. Rev.,2002,21:1-7.
    [26] Condie K C. Another look at rare earth elements in shales. Geochimica et Cosmochimica Acta,1991,55(9):2527-2531.
    [27] Cullers R L, Barrett T, Carlson T, et al. Rare earth element and mineralogic changes in Holocene soiland stream sediment: a case study in the Wet Mountains, Colorado, U.S.A. Chem. Geol.,1987,63:275-297.
    [28] Daniels R B, Gamble E E, Cady J G. Some relations among coastal plain soils and geomorphicsurfaces in North Carolina. Soil Science Society of America Proceedings,1970,34:648-653.
    [29] Díaz J I and Ercilla G. Holocene depositional history of the Fluviá-Muga prodelta, northwesternMediterranean Sea. Mar. Geol.,1993,111:83-92.
    [30] Díaz J I, Nelson C H, Barber J R, et al. Late Pleistocene and Holocene sedimentary facies on the Ebrocontinental shelf. Mar. Geol.,1990,95:333-352.
    [31] Díaz J I, Palanques A, Nelson C H, et al. Morphostructure and sedimentology of the Holocene Ebroprodelta mud belt (northwestern Mediterranean Sea). Cont. Shelf Res.,1996,16:435-456.
    [32] Doeglas D J. Interpretation of the result of mechanical analysis. Journal of sedimentary Petrology,1946,16:19-40.
    [33] Dou Y G, Yang S Y, Liu Z X, et al. Clay mineral evolution in the central Okinawa Trough since28ka:Implications for sediment provenance and paleoenvironmental change. PalaeogeographyPalaeoclimatology Palaeoecology,2010,288:108-117.
    [34] Dou Y G, Yang S Y, Liu Z X, et al. Provenance discrimination of siliciclastic sediments in the middleOkinawa Trough since30ka: Constraints from rare earth element compositions. Marine Geology,2010,275:212-220.
    [35] Fairbanks R G. A17000year glacio-eustatic sea level record: influence of glacial melting rates on theYounger Dryas event and deep-ocean circulation. Nature,1989,342:637-642.
    [36] Farnsworth K L and Milliman J D. Effects of climatic and anthropogenic change on smallmountainous rivers: the Salinas River example. Global and Planetary Change,2003,39:53-64.
    [37] Gandhi M S, Solai A. Statistical studies and ecology of benthic foraminifera from the depositionalenvironment: A case study between Mandapam and Tuticorin, South East coast ofIndia, IJRRAS,2010,5(1):86-94.
    [38] Gao S, Collins M B. Analysis of grain size trends for defining sediment transport pathways in marineenvironments. Journal of Coastal Research1994,10:70-78.
    [39] Gao S, Park Y A, Zhao Y Y. Transport and resuspension of fine-grained sediments over thesoutheastern Yellow Sea,1996. In: Proceedings of the Korea-China International Seminar onHolocene and Late Pleistocene Environments in the Yellow Sea Basin, Nov.20-22, Seoul NationalUniversity Press, Seoul,83-98.
    [40] Goldstein S J and Jacobsen S B. Rare earth elements in river waters. Earth and Planetary ScienceLetters,1988,89:35-47.
    [41] Grenfell H R. Probable fossil zygnematacean algal spore genera. Review of Palaeobotany andPalynology,1995,84:201-220.
    [42] Hallsworth C and Chisholm I. Provenance of late Carboniferous sandstones in the Pennine Basin (UK)from combined heavy mineral, garnet geochemistry and palaeocurrent studies. Sedimentary Geology,2008,203:196-212.
    [43] Haskin L A. Rare earth elements in sediments. J Geophys Res,1966,71:6091-6105.
    [44] Heusser L. Direct correlation of millennial-scale changes in western North American vegetation andclimate with changes in the California Current system over the past~60kyr. Paleoceanography,1998,13:252-262.
    [45] Hori K and Saito Y. An early Holocene sea-level jump and delta initiation. Geophysical ResearchLetters,2007,34(18): doi:10.1029/2007GL031029.
    [46] Hu B Q, Li G G, Li J, et al. Provenance and climate change inferred from Sr–Nd–Pb isotopes of lateQuaternary sediments in the Huanghe (Yellow River) Delta, China. Quaternary Research,2012,78(3):561-571.
    [47] Jayaraju N, Reddy B, Reddy K. Deep-sea benthic foraminiferal distribution in south west IndianOcean: implications to paleontology. International Journal of Geosciences,2010,1:79-86.
    [48] Jin J H and Chough S K. Partitioning of transgressive deposits in the southeastern Yellow Sea: asequence stratigraphic interpretation. Mar. Geol.,1998,149:79-92.
    [49] Kim G, Yang H S, Church T M. Geochemistry of alkaline earth elements (Mg, Ca, Sr, Ba) in thesurface sediments of the Yellow Sea. Chemical Geology,1999,153(1-4):1-10.
    [50] Kim J M and Kucera M. Benthic foraminifer record of environmental changes in the Yellow Sea(Hwanghae) during the last15000years. Quaternary Science Reviews,2000,19(11):1067-1085.
    [51] Kong G S and Lee C W. Marine reservoir corrections for southern coastal waters of Korea. The Sea,Journal of the Korean Society of Oceanography,2005,10(2):124-128.
    [52] Lea D W, Martin P A, Pak D K, et al. Reconstructing a350ky history of sea level using planktonicMg/Ca and oxygen isotope records from a Cocos Ridge core. Quaternary Science Reviews,2002,21:283-293.
    [53] Lee H J and Chough S K. Sediment distribution, dispersal and budget in the Yellow Sea. Mar. Geol,1989,87:195–205.
    [54] Lee S G, Kim J K, Yang D Y, et al. Rare earth element geochemistry and Nd isotope composition ofstream sediments,south Han River drainage basin, Korea. Quat Int.,2008,176(177):121-134.
    [55] Lee S H, Lee J H, Jo H R et al. Complex Sedimentation of the Holocene Mud Deposits in a Ria-TypeCoastal Area, Eastern Korea Strait. Mar. Geol.,2005,214:389-409.
    [56] Li C X, Chen Q Q, Zhang J Q, et al. Stratigraphy and paleoenvironmental changes in the YangtzeDelta during late Quaternary. Journal of Asian Earth Sciences,2000,18:453-469.
    [57] Li C X, Wang P, Sun H P, et al. Late Quaternary incised-valley fill of the Yangtze Delta (China): Itsstratigraphic framework and evolution. Sedimentary Geology,2002,152(1-2):133-158.
    [58] Li F Y, Li X G, Song J M, et al. Sediment flux and source in northern Yellow Sea by210Pb technique.Chinese Journal of Oceanology and Limnology,2006,24(3):255-263.
    [59] Linsley B K. Oxygen-isotope record of sea level and climate variations in the Sulu Sea over the past150,000years. Nature,1996,380:234–237.
    [60] Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelfclinoform deposit in the East China Sea. Continental Shelf Research,2006,26(17-18):2141-2156.
    [61] Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River’s subaqueous delta,North Yellow Sea. Marine Geology,2004,209:45-67.
    [62] Liu J P, Milliman J D, Gao S. The Shandong mud wedge and post-glacial sediment accumulation inthe Yellow Sea. Geo-Marine Letters,2002,21(4):212-218.
    [63] Liu J P, Xu K H, Li A C et al. Flux and fate of Yangtze River sediment delivered to the East China Sea.Geomorphology,2007b,85:208-224.
    [64] Liu J P, Xu K H, Li A C, et al. Flux and fate of small mountainous rivers derived sediments into theTaiwan Strait. Marine Geology,2008,256:65-76.
    [65] Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages3and2in the western South Yellow Sea. Marine Geology,2010,278:54-76.
    [66] Liu J, Saito Y, Kong X H, et al. Geochemical characteristics of sediment as indicators of post-glacialenvironmental changes off the Shandong Peninsula in the Yellow Sea, Continental Shelf Research,2009,29:846-855.
    [67] Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueous clinoform off theShandong Peninsula in the Yellow Sea. Marine Geology,2007a,236:165-187.
    [68] Liu Z F, Trentesaux A, Clemens S C. Clay mineral assemblages in the northern South ChinaSea:implications for East Asian monsoon evolution over the past2million year. Marine Geology,2003,201:133-146.
    [69] Liu Z X, BernéS, Saito Y, et al. Quaternary seismic stratigraphy and paleoenvironments on thecontinental shelf of the East China Sea. J. Asian Earth Sci,2000,18:441-452
    [70] Liu Z X, BernéS, Wang K, et al. Tidal deposition systems of China’s continental shelf, with specialreference to the eastern Bohai Sea. Marine Geology,1998,145(3-4):225-253.
    [71] Lobo F J and Ridente D. Stratigraphic architecture and spatio-temporal variability of high-frequency(Milankovitch) depositional cycles on modern continental margins: An overview. Marine Geology,http://dx.doi.org/10.1016/j.margeo.2013.10.009.
    [72] Lobo F J, Hemandez-Molina F J, Somoza L, et al. The sedimentary record of the post-glacialtransgression on the Gulf of Cadiz continental shelf (Southwest Spain). Marine Geology,2001,178(1-4):171-195.
    [73] Lobo F J, Tesson M, Gensous B. Stratral architectures of late Quaternary regressive–transgressivecycles in the Roussillon Shelf (SW Gulf of Lions, France). Marine and Petroleum Geology,2004,21:1181-1203.
    [74] Marques R, Prudêncio M I, Dias M I. Patterns of rare earth and other trace elements in different sizefractions of clays of Campanian–Maastrichtian deposits from the Portuguese western margin (Aveiroand Taveiro Formations). Chemie der Erde,2011,71:337-347.
    [75] Masuda A Nakamura N, Tanaka T. Fine structures of mutually normalized rare-earth patterns ofchondrites. Geochimica et Cosmochimica Acta,1973,37(2):239-248.
    [76] McLaren P. An interpretation of trends in grain-size measurements. Sed.Petrology,1981,51:611-624.
    [77] McLennan S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentaryprocesses. In: Lipin B R, McKay GA, eds. Geochemistry and mineralogy of rare earth elements. Rev.in Mineralo,1989,21:169-200.
    [78] McManus J. Grain size determination and interpretation. In: Tucker M, ed. Techniques inSedimentology. Oxford: Backwell,1988,63-85.
    [79] Milliman J and Farnsworth K L. River discharge to the coastal ocean: a global synthesis. Cambridge,New York: Cambridge University Press,2011.
    [80] Milliman J D and Meade R H. World-wide delivery of river sediment to the oceans. Journal ofGeology,1983,91(1):1-21.
    [81] Milliman J D and Syvitski P M. Geomorphic/tectonic control of sediment transport to the ocean: theimportance of small mountainous rivers. The Journal of Geology,1992,100,525-544.
    [82] Milliman J D, Qin Y S, Ren M E et al. Man’s influence on the erosion and transport of sediment byAsian rivers: the Yellow River (Huanghe) example. J. Geol.,1987,95:751-762.
    [83] Milliman J D, Shen H T, Yang Z S et al. Transport and deposition of river sediment in the Changjiangestuary and adjacent continental shelf. Cont. Shelf Res.,1985,4(1-2):37-45.
    [84] Milliman J D. Sediment discharge to the ocean from small mountainous rivers: The New Guineaexample. Geo-Marine Letters,1995,15:127-133.
    [85] Morton A, Meinhold G, Howard J P, et al. A heavy mineral study of sandstones from the easternMurzuq Basin, Libya: contstraints on provenance and stratigraphic correlation. Journal of AfricanEarth Sciences,2011,61:308-330.
    [86] Murray R W. Chemical criteria to identify the depositional environment of chert: general principlesand applications. Sedi Geol.,1994,90:213-232.
    [87] Nahm W H, Kim J K, Yang D Y, et al. Holocene paleosols of the Upo wetland, Korea: theirimplications for wetland formation. Quaternary International,2006,144:53-60.
    [88] Nechaev V P and Isphording W C. Heavy mineral assemblages of continental margins as indicators ofplate-tectonic environments. J.of Sedi. Petrology,1993,63:1110-1117.
    [89] Nesbitt H W, Markovics G, Price R C. Chemical processes affecting alkalis and alkaline earths duringcontinental weathering. Geochim Cosmochim Ac,1980,44:1659-1666.
    [90] Nittrouer C A, Curtin T B, DeMaster D J. Concentration and flux of suspended sediment on theAmazon continental shelf. Cont. Shelf Res.,1986,6(1-2):151-174.
    [91] Norman M D and Deckker P D. Trace metals in lacustrine and marine sediments: A case study fromthe Gulf of Carpentaria, northern Australia. Chemical Geology,1990,82:299-318.
    [92] Osterberg E C. Late Quaternary (marine isotope stages6-1) seismic sequence stratigraphic evolutionof the Otago continental shelf, New Zealand. Marine Geology,2006,229:159-178.
    [93] Park S C, Yoo D G, Lee K W et al. Accumulation of recent muds associated with coastal circulations,southeastern Korea Sea (Korea Strait). Cont. Shelf Res.,1999,19:589-608.
    [94] Park Y A and Kim B K. Sea level fluctuation in the Yellow Sea Basin. Journal of Korean Society ofOceanography,1994,29:42-49.
    [95] Pirmez C, Pratson L F, Steckler M S. Clinoform development by advection-diffusion of suspendedsediment: modeling and comparison to natural systems. J. Geophys. Res.,1998,103(B10):141-158.
    [96] Prins M A and Weltje G J. End member modeling of siliciclastic grain-size distributions: The lateQuaternary record of eolian and fluvial sediment supply to the Arabian Sea and its pale climaticsignificance. In: Harbaugh J, Watney L, Rankey G, et al.(Eds.), Numerical experiments in stratigraphy:Recent advances in stratigraphic and sedimentologic computer simulations.SEPM Special Publication62, Society for Sedimentary Geology,1999,91-111.
    [97] Qin J G, Wu G X, Zheng H B, et al. The palynology of the First Hard Clay Layer(late Pleistocene)from the Yangtze Delta, China. Review of Palaeobotany&Palynology,2008,149:63-72.
    [98] Reimer P J, Baillie, M G L, Bard E et al. IntCal09and Marine09radiocarbon calibration curves,0-50,000years cal BP. Radiocarbon,2009,4:1111-1150.
    [99] Ren M E and Shi Y L. Sediment discharge of the Yellow River (China) and its effect on thesedimentation of the Bohai and the Yellow Sea. Cont. Shelf Res.,1986,6,785–810.
    [100] Russell R D. Effects of transportation of sedimentary particles. In:Trask P D.(Eds.), Recentmarine sediments. The Society of Economic Paleontologists and Mineralogists, Tulsa (Oklahoma),1939,32-47.
    [101] Saito Y, Katayama H, Ikehara K, et al. Transgressive and highstand systems tracts andpost-glacial transgression, the East China Sea. Sedi. Geol,1998,122:217-232.
    [102] Saito Y, Yang Z S, Hori K. The Huanghe (Yellow River) and Changjiang (Yangtze River)deltas:A review on their characteristics, evolution and sediment discharge during the Holocene.Geomorphology,2001,41,219–231.23.
    [103] Schubel J R, Shen H T, Park M J. A comparison of some characteristic sedimentation processesof estuaries entering the Yellow Sea. In: Park, Y.A., Pilkey, O.H., Kim, S.W.(Eds.), Marine Geologyand Physical Processes of the Yellow Sea. Proc. Korea-U.S. Seminar and Workshop, Seoul, Korea,1984,286-308.
    [104] Seo K W, Chi J M, Jang Y H. Geochemical relationship between shore sediments and nearterrestrial geology in Byunsan-Taean area, west coast of Korea. Ecom Environ Geol,1998,31:69–84(in Korean).
    [105] Sircombea K N. Quantitative comparison of large sets of geochronological data usingmultivariateanalysis: a provenance study example from Australia. Geochimica et Cosmochimica Acta,2000,64(9):1593-1616.
    [106] Smith S V, Swaney D P, Talaue-McManus L, et al. Humans, hydrology, and the distribution ofinorganic nutrient loading to the ocean. BioScience,2003,53,235-245.
    [107] Song Y-H and Choi M S. REE geochemistry of fine-grained sediments from major rivers aroundthe Yellow Sea. Chem. Geol,2009,266:328-342.
    [108] Southon J, Kashgarian M, Fontugne M,et al. Marine reservoir corrections for the Indian Oceanand Southeast Asia. Radiocarbon,2002,44:167-180.
    [109] Sun X J, Li X, Beug H J. Pollen distribution in hemipelagic surface sediments of the South ChinaSea and its relation to modern vegetation distribution. Marine Geology,1999,156:211-226.
    [110] Taylor S R and McLennan S M. The Continental Crust: Its Composition and Evolution.Blackwell, Oxford.1985,28-29.
    [111] Uehara k, Saito Y, Hori K. Paleotidal regime in the Changjiang (Yangtze) Estuary, the East ChinaSea, and the Yellow Sea at6ka and10ka estimated from a numerical model. Mar. Geol.,2002,183:179-192.
    [112] Visher G S, Grain size distributions and depositional processes. Journal of Sedimentary Petrology,1969,39:1074-1106.
    [113] Vital H, Stategger K, Garbe C-D et al. Composition and trace element geochemistry of detritalclay and heavy mineral suites of the lowermost Amazon River: a provenance study. Journal of Sedi.Res,1999,69:563-575.
    [114] Walter H J, Hegner E, Diekmann B, et al. Provenance and transport of terrigenous sediment in theSouth Atlantic Ocean and their relations to glacial and interglacial cycles: Nd and Sr isotopic evidence.Geochimica et Cosmochimica Acta,2000,64,3813-3827.
    [115] Wan S M, Tian J, Steinke S, et al. Evolution and variability of the East Asian summer monsoonduring the Pliocene: evidence from clay mineral records of the South China Sea,PalaeogeographyPalaeoclimatology Palaeoecology,2010,293(1-2):237-247.
    [116] Wang H J, Saito Y, Zhang Y. Recent changes of sediment flux to the western Pacific Ocean frommajor rivers in East and Southeast Asia. Earth-Science Reviews,2011,108,80-100.
    [117] Weaver A J, Saenke O A,Clark P U, et al. Meltwater pulse1A from Antarctica as a trigger of theBφlling-Allerφd warm interval. Science,2003,299:1709-1713.
    [118] Xu Z K, Lim D I, Choi J Y. Rare earth elements in bottom sediments of major rivers around theYellow Sea: implications for sediment provenance. Geo-Mar lett.,2009,29:291-300.
    [119] Yang S Y, Jiang S Y, Ling H F, et al. Sr-Nd isotopic compositions of the Changjiang sediments:Implications for tracing sediment sources. Science in China Series D: Earth Sciences,2007,50(10):1556-1565.
    [120] Yang S Y, Jung H S, Choi M S, et al. The rare earth element compositions of the Changjiang(Yangtze) and Huanghe (Yellow) river sediments. Earth Planet. Sci. Lett.,2002,201:407–419.
    [121] Yang S Y, Jung H S, Li C X. Two unique weathering regimes in the Changjiang and Huanghedrainage basins: geochemical evidence from river sediments. Sedimentary geology,2004,164:19-34.
    [122] Yang S Y, Jung H S, Lim D I, et al. A review on the provenance discrimination of sediments inthe Yellow Sea. Earth-Science Reviews,2003,63(1-2):93-120.
    [123] Yang Z S and Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea.Marine Geology,2007,240:169-176.
    [124] Yang Z S, Wang H J, Saito Y, et al. Dam impacts on the Changjiang (Yangtze) River sedimentdischarge to the sea: The past55years and after the Three Gorges Dam. Water Resources Research,2006,42(4): W04407.
    [125] Yoo D G, Kim S P, Chang T S, et al. Late Quaternary inner shelf deposits in response to latePleistocene-Holocene sea level changes: Nakdong River, SE Korea. Quaternary International,http://dx.doi.org/10.1016/j.quaint.2014.02.004.
    [126] Youn J S and Kim T J. Geochemical composition and provenance of muddy shelf deposits in theEast China Sea. Quaternary International,2011,230:3-12.
    [127] Youn J, Yang S Y, Park Y A. Clay minerals and geochemistry of the bottom sediments in thenorthwestern East China Sea. Chinese Journal of Oceanology and Limnology,2007,25(3):235-246.
    [128] Zhang S W, Wang Q Y, Lu Y, et al. Observation of the seasonal evolution of the Yellow Sea ColdWater Mass in1996-1998. Continental Shelf Research,2008,28(3):442-457.
    [129] Zheng Z, Yang S X, Deng Y et al. Pollen record of the past60ka BP in the Middle OkinawaTrough: Terrestrial provenance and reconstruction of the paleoenvironment. Palaeogeography,Palaeoclimatology, Palaeoecology,2011,307(1~4):285-300.
    [130] Zhu W, Kennedy M, Zhou H, et al. Distribution and modeling of rare earth elements in Chineseriver sediments. The Science of the Total Environment,1997,204:233-243.
    [131]白凤龙,高建华,汪亚平,等.鸭绿江口的潮汐特征.海洋通报,2008,27(3):7-13.
    [132]边叶萍,李家彪,翦知湣,等.低纬西太平洋末次冰期以来海洋孢粉记录对海平面变化的不同响应.第四纪研究,2012,32(6):1078-1086.
    [133]蔡峰.北黄海海域地质构造与盆地演化特征.海洋地质与第四纪地质,1995,15(增刊):116-123.
    [134]陈报章,李从先,业治铮.长江三角洲北翼全新统底界和硬粘土层的讨论.海洋地质与第四纪地质,1991,11(2):37-46.
    [135]陈弘,刘坚,王宏斌.琼东南海域表层沉积物常量元素地球化学及其地质意义.海洋地质与第四纪地质,2007,27(6):39-45.
    [136]陈静,王张华,李晓,等.长江三角洲地层中的冷杉和云杉花粉的来源推测.第四纪研究,2009,29(2):290-298.
    [137]陈丽蓉.渤海、黄海、东海沉积物中矿物组合的研究.海洋科学,1989,2:1-8.
    [138]陈丽蓉.中国海沉积矿物学,北京:海洋出版社,2008,22-30.
    [139]陈庆强,李从先.长江三角洲地区晚更新世硬粘土层成因研究.地理科学,1998,18(1):53-57.
    [140]陈晓辉,李日辉,蓝先洪,等.晚更新世末北黄海中部硬质粘土层的形成及其古环境意义.第四纪研究,2014,34(3):1-9.
    [141]陈晓辉,李日辉,徐晓达.北黄海浅层声学地层.海洋地质与第四纪地质,2011,31(3):17-22.
    [142]陈晓辉,张训华,李日辉,等.辽东半岛南岸海域潮流沙脊特征及影响因素探讨.海洋地质与第四纪地质,2013,33(1):11-18.
    [143]陈中原,许世远.尼罗河与长江三角洲晚更新世末期硬土层特征及其成因对比研究.第四纪研究,1996,2:168-175.
    [144]程鹏,高抒,刘敬圃,等.北黄海西部全新统分布的初步认识.第四纪研究,2001,21(4):37.
    [145]程鹏,高抒.北黄海西部海底沉积物的粒度特征和净运输趋势.海洋与湖沼,2000,31(6):604-615.
    [146]程鹏.北黄海细颗粒物质的沉积特征和输运过程.青岛:中国科学院海洋研究所博士学位论文.2000.
    [147]程岩,刘月,李富祥,等.鸭绿江口及邻近浅海碎屑矿物特征与物源辨识.海洋学报,2010,29(11):1950-1959.
    [148]仇建东.山东半岛南部滨浅海区晚第四纪沉积地层结构与沉积环境演化.青岛:中国海洋大学博士学位论文.2012.
    [149]邓兵,李从先,张经,等.长江三角洲古土壤发育与晚更新世末海平面变化的耦合关系.第四纪研究,2004,24(2):222-230.
    [150]符文侠,苗丰民,魏成凯.辽东半岛黄海沿岸溺谷湾岸的充填与成陆过程.海洋学报,1995,17(5):95-102.
    [151]韩桂荣,徐孝诗,辛春英.黄海、渤海埋藏古河道区沉积物的地球化学特征.海洋科学集刊,1998,40:79-87.
    [152]何梦颖,郑洪波,贾军涛.长江现代沉积物碎屑锆石U-Pb年龄及Hf同位素组成与物源示踪研究.第四纪研究,2013,33(4):656-670.
    [153]何起祥等.中国海洋沉积地质学.北京:海洋出版社.2006.
    [154]何炎,胡兰英,王克良.江苏东部第四纪有孔虫.中国科学院地质古生物研究所集刊,1965(4):51-162.
    [155]黄朋,李铁钢,李安春,等.黄海北部表层沉积物地球化学特征.矿物学报,2007,27:343-347.
    [156]江苏省地质矿产局.江苏省地下水资源研究.南京:江苏科学技术出版社,1991,12-13.
    [157]金翔龙,喻普之.北黄海构造轮廓.黄东海地质.北京:科学出版社,1982.23-29.
    [158]孔祥淮,刘健,李巍然,等.山东半岛东北部滨浅海区表层沉积物的稀土元素及其物源判别.海洋地质与第四纪地质,2007,27(3):51-59.
    [159]蓝先洪,王红霞,李日辉,等.南黄海沉积物常量元素组成及物源分析.地学前缘,2007,14(4):197-203.
    [160]蓝先洪,张宪军,王红霞,等.南黄海NT2孔沉积地球化学及其物源.海洋地质与第四纪地质,2008,28(001):51-60.
    [161]蓝先洪,张宪军,赵广涛,等.南黄海NT1孔沉积物稀土元素组成与物源判别.地球化学,2009,38(002):123-132.
    [162]蓝先洪,张志珣,李日辉,等.南黄海NT2孔沉积物物源研究.沉积学报,2010,6:1182-1189.
    [163]李从先,范代读,杨守业,等.中国河口三角洲地区晚第四纪下切河谷层序特征和形成.古地理学报,2008,10(1):87-96.
    [164]李从先,汪品先,赵泉鸿,等.长江晚第四纪河口地层学研究.北京:科学出版社,1998.144,152-155,163-165.
    [165]李从先,闵秋宝,孙和平.长江三角洲南翼全新世地层和海侵.科学通报,1986,31(21):1650-1653.
    [166]李凡,于建军,姜秀珩,等.南黄海埋藏古河系研究.海洋与湖沼,1991,22(6):501-508.
    [167]李凡,张秀荣,李永植,等.南黄海埋藏古三角洲.地理学报,1998,53(3):238-244.
    [168]李光天,符文侠,贾锡钧.辽东潮间浅滩的综合特征.地理学报,1986,41(3):262-273.
    [169]李广雪,刘勇,杨子赓,等.末次冰期东海陆架平原上的长江古河道.中国科学(D辑:地球科学),2005,35(3):284-289.
    [170]李乃胜,赵松龄,鲍瓦西里耶夫.西北太平洋边缘海地质.哈尔滨:黑龙江教育出版社,2001.1-435.
    [171]李培英,杜军,刘乐军等.中国海岸带灾害地质特征及评价.北京:海洋出版社,2007.
    [172]李涛,向荣,李团结.珠江口表层沉积物底栖有孔虫分布及环境指示.海洋地质与第四纪地质,2011,31(6):91-98.
    [173]李铁刚,常凤鸣,于心科. Younger Dryas事件与北黄海泥炭层的形成.地学前缘,2010,17(1):322-329.
    [174]李铁刚,常凤鸣.冲绳海槽古海洋学.北京:海洋出版社.2009.
    [175]李艳,李安春,黄朋.大连湾近海表层沉积物重矿物组合分布特征及其物源环境指示.海洋地质与第四纪地质,2011,31(6):13-20.
    [176]李艳,李安春,万世明,等.大连湾近海表层沉积物矿物组合分布特征及其物源环境.海洋地质与第四纪地质,2009,29(4):115-121.
    [177]李艳.北黄海末次冰消期以来的沉积特征及物源环境指示.青岛:中国科学院海洋研究所博士论文.2009.
    [178]李贞,李珍,张卫国,等.广西钦州湾海岸带孢粉组合和沉积环境演变.第四纪研究,2010,30(3):598-608.
    [179]辽宁省地质矿产局.辽宁省区域地质志.北京:地质出版社,1989.
    [180]刘爱菊,尹逊福,卢铭.黄海潮汐特征(II).黄渤海海洋,1984,2(2):24-27.
    [181]刘东生,剪知髻,袁宝印,等.以气候变化为标志的中国第四纪地层对比表.第四纪研究,2000,20(2):108-128.
    [182]刘东生,刘敏厚,吴子荣,等.气候标志及中国第四纪地层的划分.中国地质,1962,6:1-9.
    [183]刘东生,刘敏厚,吴子荣,等.关于第四纪地层划分问题.第四纪地质问题.北京:科学出版社,1964,45-64.
    [184]刘季花,梁宏锋,夏宁,等.东太平洋深海沉积物小于2μm组分的稀土元素地球化学特征.地球化学,1998,27(1):49-57.
    [185]刘季花.东太平洋沉积物稀土元素和Nd同位素地球化学特征及其环境指示意义.青岛:中国科学院海洋研究所博士学位论文,2004.
    [186]刘嘉麒,刘强.中国第四纪地层.第四纪研究,2000,20(2):129-141.
    [187]刘敏厚,吴世迎,王永吉.黄海晚第四纪沉积.北京:海洋出版社,1987.
    [188]刘锐,郑洪波.杭州湾地区末次冰盛期第一硬质粘土层粒度特征及其环境意义.海洋地质与第四纪地质,2006,26(6):27-34.
    [189]刘振夏, Berné S, L'ATALANTE科学考察组.东海陆架的古河道和古三角洲.海洋地质与第四纪地质,2000,20(1):9-14.
    [190]刘振夏,夏东兴,汤毓祥.渤海东部全新世潮流沉积体系.中国科学(B辑),1994,24(12):1331-1338.
    [191]刘振夏,夏东兴.中国近海潮流沉积沙体.北京:海洋出版社,2004.
    [192]刘忠臣,刘保华,黄振宗,等.中国近海及邻近海域地形地貌.北京:海洋出版社,2005.
    [193]罗超,郑洪波,吴卫华,等.河流悬浮物Sr-Nd同位素随深度的分异:以长江大通站为例.科学通报,2012,57(21):2022-2030.
    [194]梅西.南黄海DLC70-3孔晚更新世以来的沉积记录与环境响应.青岛:中国科学院海洋研究所博士学位论文.2011.
    [195]梅西,张训华,李日辉.南黄海中部泥质沉积区DLC70-3孔稀土元素及环境意义.地质科技情报,2011,30(4):21-28.
    [196]孟宪伟,杜德文,吴金龙.冲绳海槽中段表层沉积物物质来源的定量分离:Sr-Nd同位素方法.海洋与湖沼,2001,32(3):319-326.
    [197]闵秋宝,汪品先.论上海地区的第四纪海进.同济大学学报,1979,7(2):109-128.
    [198]潘保田,王均平,高红山,等.河南扣马黄河最高级阶地古地磁年代及其对黄河贯通时代的指示.科学通报,2005,50(2):255-261.
    [199]齐君,李凤业,宋金明,等.北黄海沉积速率及其沉积通量.海洋地质与第四纪地质,2004,24(2):9-14.
    [200]乔淑卿,杨作升.长江和黄河入海沉积物不同粒级组分中稀土元素的比较.海洋地质与第四纪地质,2007,27(6):9-16.
    [201]秦蕴珊,李凡.南黄海西部埋藏古河系.科学通报,1986,24:1887-1890.
    [202]秦蕴珊,赵一阳,陈丽蓉.黄海地质.北京:海洋出版社,1989.
    [203]任美锷.黄河的输沙量:过去、现在和将来-距今15万年以来的黄河泥沙收支表.地球科学进展,2006,21(6):551-563.
    [204]孙荣涛,李铁刚,常凤鸣.北黄海表层沉积物中的底栖有孔虫分布与海洋环境.海洋地质与第四纪地质,2009,29(4):21-28.
    [205]孙荣涛,李铁刚,常凤鸣.全新世北黄海泥质区环境演化的底栖有孔虫记录.海洋地质与第四纪地质,2010,30(5):83-90.
    [206]孙湘君,宋长青,王瑜等.黄土高原南缘10万年以来的植被——陕西渭南黄土剖面的花粉记录.科学通报,1995,40(13):1222~1224.
    [207]孙永传,李蕙生.碎屑岩沉积相及沉积环境.北京:地质出版社.1986.8-20.
    [208]覃军干,吴国,郑洪波,等.从孢粉、藻类化石组合看长江三角洲第一硬质粘土层的成因及其古环境意义.第四纪研究,2004,24(5):546-554.
    [209]汪品先,闵秋宝,卞云华.黄海有孔虫、介形虫组合的初步研究.海洋微体古生物论文集.北京:海洋出版社,1980a.
    [210]汪品先,闵秋宝,卞云华.南黄海西北部底质中有孔虫、介形虫分布规律及其地质意义.海洋微体古生物论文集.北京:海洋出版社,1980b.
    [211]汪品先.东海底质中的有孔虫和介形虫.北京:海洋出版社,1988.
    [212]王飞飞,赵全民,丁旋,等.渤海东北海域有孔虫埋葬群特点与沉积环境的关系.海洋地质与第四纪地质,2009,29(2):9-14.
    [213]王飞飞,丁璇,刘健.南黄海西部陆架氧同位素3期以来的古沉积环境演化.微体古生物学报,2012,29(3):235-252.
    [214]王桂芝,高抒,李凤业.北黄海西部的全新世泥质沉积.海洋学报,2003,25(4):125-134.
    [215]王桂芝.北黄海西部泥质沉积特征与成因探讨.青岛:中国科学院海洋研究所硕士学位论文.2001.
    [216]王金土.黄海表层沉积物稀土元素地球化学.地球化学,1990,19(1):44-53.
    [217]王开发,韩信斌.我国东部新生界环纹藻化石研究.古生物学报,1983,22(4):468~472.
    [218]王开发,张玉兰,蒋辉.双星藻科化石在东、黄海沉积中的发现及其古地理意义.科学通报,1982,27(22):1387~1389.
    [219]王立波,杨作升,赵晓辉,等.南黄海中部泥质区YE-2孔8.4kaBP来的沉积特征.海洋地质与第四纪地质,2009,29(5):1-11.
    [220]王伟,李安春,徐方建,等.北黄海表层沉积物粒度分布特征及其沉积环境分析.海洋与湖沼,2009,40(5):525-531.
    [221]王张华,赵宝成,陈静,等.长江三角洲晚第四纪年代地层框架及两次海侵问题的初步探讨.古地理学报,2008,10(1):99-100.
    [222]王中波,杨守业,王红霞,等.南黄海表层沉积物石榴石化学组成及其物源示踪.金翔龙,秦蕴珊,朱日祥,等主编,中国地质地球物理研究进展,2009,587-595.
    [223]魏特,周旅复,史立人.长江悬移质泥沙物质组成研究.长江科学院院报,1986,9-18.
    [224]吴忱,许清海,阳小兰.论华北平原的黄河古水系.地质力学学报,2000,6(4):1-8.
    [225]吴福莉,方小敏,马玉贞等.黄土高原中部1.5Ma以来古生态环境演化的孢粉记录.科学通报,2004,49(1):99~105.
    [226]吴明清.冲绳海槽沉积物和稀土和微量元素的某些地球化学特征.海洋学报,1991,13(1):75-81.
    [227]夏东兴,刘振夏,王揆洋,等.渤海东部更新世末期以来的沉积环境.海洋学报,1995,17(92):86-92.
    [228]向荣,李铁刚,杨作升,等.冲绳海槽北部表层沉积物中底栖有孔虫分布及其与海洋环境的关系.海洋与湖沼,2003,34(6):671-682.
    [229]肖尚斌,李安春,蒋富清,等.近2ka来东海内陆架泥质沉积物地球化学特征.地球化学,2005,34(006):595-604.
    [230]萧家仪,吕燕,祁国翔.淤泥质海岸藜科花粉与海岸线位置数量关系的初步研究.见中国古生物学会孢粉学分会.第九届一次学术会议论文摘要集.广西桂林,2013,A23:26.
    [231]谢志仁,袁林旺.略论全新世海面变化的波动性及其环境意义.第四纪研究,2012,32(6):1065-1077.
    [232]徐方建,李安春,肖尚斌,等.末次冰消期以来东海内陆架古环境演化.沉积学报,2009,27(1):118-127.
    [233]许东禹,刘锡清,张训华,等.中国近海地质.北京:地质出版社,1997.
    [234]薛春汀,周永青,朱雄华.晚更新世末至公元前7世纪的黄河流向和黄河三角洲.海洋学报,2004,26(1):48-61.
    [235]严杰,高建华,李军,等.鸭绿江河口及近岸地区稀土元素的物源指示意义.海洋地质与第四纪地质,2010,30(4):95-103.
    [236]杨守业,李从先, Lee C B,等.黄海周边河流的稀土元素地球化学及沉积物物源示踪.科学通报,2003,48(11):1233-1236.
    [237]杨守业,李从先. REE示踪沉积物物源研究进展.地球科学进展,1999,14(2):164-167.
    [238]杨守业,韦刚健,夏小平,等.长江口晚新生代沉积物的物源研究: REE和Nd同位素制约.第四纪研究,2007,27(3):339-346.
    [239]杨子赓,林和茂.中国近海及沿海地区第四纪进程与事件.北京:海洋出版社,1989.
    [240]杨子赓,林和茂.中国第四纪地层与国际对比.北京:地质出版社.1996.
    [241]杨子赓.中国与邻区第四纪地层对比.海洋地质与第四纪地质,1993,13(3):1-14.
    [242]杨作升,赵晓辉,乔淑卿,等.长江和黄河入海沉积物不同粒级中长石/石英比值及化学风化程度评价.中国海洋大学学报,2008,38(2):244-250.
    [243]于洪军.中国东部陆架黄土成因的新探索.第四纪研究,1999,4:366-372.
    [244]张国仁,江舒娥,韩晓平,等.鸭绿江断裂带的主要特征及其研究意义.地质与资源,2006,15(1):11-19.
    [245]张梦莹,范代读,吴国瑄,等.瓯江三角洲南翼晚第四纪孢粉、藻类记录及其古气候意义.第四纪研究,2012,32(6):1234-1247.
    [246]张训华等.中国海域构造地质学.北京:海洋出版社,2008.
    [247]张祖陆.鲁北平原浅埋古河道带基本特征.地理科学,1990,10(4):372-378.
    [248]赵梅.黄海中部海岸末次冰盛期第一硬质粘土层的粒度分维特征及其环境意义.海洋地质动态,2008,24(10):8-13.
    [249]赵松龄,于洪军.晚更新世末期黄、渤海陆架沙漠化环境的形成.第四纪研究,1996,16(1):43-47.
    [250]赵一阳,鄢明才.中国浅海沉积物地球化学.北京:科学出版社,1994,1-203.
    [251]郑光膺.黄海第四纪地质.北京:科学出版社,1991.
    [252]郑光膺.南黄海QC2孔第四纪地层划分.海洋地质与第四纪地质,1988,4.
    [253]郑祥民.长江三角洲及海域风尘沉积与环境.上海:华东师范大学出版社,1999:161-168.
    [254]郑卓,黄康有,魏金辉,等.中国及其邻区现代孢粉数据:空间分布特征和定量古环境重建中的应用.第四纪研究,2013,33(6):1037-1053.
    [255]朱浩然,曾昭琪,张忠英.江苏北部下第三系戴南组的盘星藻化石及其沉积环境的初步分析.古生物学报,1978,17(3):233-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700