粉末冶金铁基高温合金的制备及其微观组织和高温性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁基高温合金具有高的高温抗蠕变强度和抗中子辐射肿胀性能,是一类具有优越综合性能的先进结构材料。纳米氧化物弥散强化(ODS)铁素体合金的性能和制备工艺研究一直是许多科研学者努力的方向。本文通过直接氧化和雾化加氧两种方法制备铁基高温合金粉末Fe-14Cr-3W-0.5Ti-0.3Y-0.30(wt,%),并研究铁基合金粉末的氧化动力学以及氧在雾化粉末、球磨粉末和后续致密化合金中的存在形式;通过提高铁基合金粉末中第二相的百分含量,阐述了影响合金致密度和第二相形成的因素;采用热加工和热处理工艺获得了室、高温力学性能优良的铁基合金,分析并讨论了合金的微观结构演变规律和第二相对合金的强化机理,得到以下主要结论:
     (1)铁基合金雾化粉末Fe-14Cr-3W-0.5Ti-0.3Y-0.030(wt,%)在500℃进行氧化时,其氧化过程符合动力学方程(ΔW/S)2=kpt+c。氧化16h以内,氧化机制受表面反应控制。提高氧化温度并缩短氧化时间,可以抑制Fe203氧化层的长大。
     (2)氧以固溶形式存在于雾化粉末中;在氧化粉末中,氧达到扩散固溶度后直接在粉末颗粒表面聚集。在高能球磨过程中,粉末颗粒中产生大量晶格畸变,氧在粉末中的固溶度扩大,以固溶的方式存在于球磨粉末中。
     (3)合金Fe-14Cr-3W-0.5Ti-0.3Y-0.220(wt,%)在800~1000℃温度区间内烧结时,再结晶晶粒尺寸为亚微米级,这些晶粒非常稳定,尺寸随烧结温度和时间的变化不明显。1200℃退火基体中出现针、条状晶粒组织,延长保温时间会出现晶粒的异常长大现象,产生两种尺寸分布的晶粒,这是由于晶粒中Y-Ti-O第二相粒子分布不均匀导致的。球磨粉末锻造合金Fe-14Cr-3W-0.5Ti-0.3Y-0.220(wt,%)在温度为600和700℃时,获得了较好的耐摩擦性能,随着温度和滑动速度的提高,合金的磨损机制发生了改变,由粘着磨损转化为氧化磨损和磨粒磨损。
     (4)合金Fe-14Cr-3W-5Ti-3Y-2.2O(wt,%)中,析出相Ti2Y207对基体产生强化作用。随烧结温度升高,析出相发生长大,强化作用减弱。该锻造态合金的高温压缩强度不仅与弥散相粒子的大小有关,粒子的体积百分含量也起到了至关重要的作用。
     (5)铁基雾化粉末锻造态合金经1300℃退火,再结晶完全,晶粒细小,硬度值高达HRC54.8,随退火温度的提高,由于强化相颗粒长大,导致硬度值下降;经700℃低温回火处理后,由于材料中Cr的固溶度降低,铁基合金晶格常数变小,硬度值下降。
     (6)在铁基合金雾化粉末中引入不同的添加物,结果表明,添加A1粉加速了铁素体基体中的元素扩散,致使合金的晶粒尺寸增大;添加Fe203粉的合金由于O的固溶,氧化物溶解,产生大量残余孔隙,阻碍晶粒长大,因而晶粒尺寸较小。合金晶粒的长大规律满足Beck方程,添加Al粉合金的晶粒生长指数得到提高;添加Fe203粉合金的晶粒生长指数下降。
     (7)通过旋锻工艺可提高挤压态铁基合金的致密化程度,随着热处理时间增加,合金晶粒长大明显。Y-Ti-O纳米粒子对合金高温强度的稳定性起至关重要的作用,析出相粒子没有随退火时间的延长而发生长大,且在850℃下的压缩强度变化不明显。
Fe-based superalloy which has high creep strength and neutron irradiation-resistance at high temperatures is one important kind of advanced materials. The major goal is to research the preparation process and the properties of the oxide diffusion strengthen (ODS) ferrite alloy. In this study, oxidation kinetics and the form of oxygen in the atomized powder, mechanical alloyed powder and the iron-based alloy Fe-14Cr-3W-0.5Ti-0.3Y-0.3O(wt,%) were researched by direct oxidation or oxygen addition by atomization; the factors that affect the compaction and the precipitation phase formation of the sintered alloy were represented through enhancing the content of the precipitated phase; the iron-based alloy with the excellent room and high temperature properties was manufactured by the hot working and heat treatment process, and the microstructure evolution and the strengthen mechanism were studied, then the conclusions are drawn as below:
     (1) The oxidation behavior of iron-based metal powder Fe-14Cr-3W-0.5 Ti-0.3Y-0.03O(wt,%) at 500℃has been studied. The oxidation process obeys the oxidation kinetics (ΔW/S) 2=kpt+c. Oxidation mechanism is controlled by surface reaction within 16 hours. The formation of the Fe2O3 oxide surface can be controlled by increasing the oxidation temperature and shortening time.
     (2) The existential manner of oxygen in the atomized powders is solid solution. The O dissolves uniformly in the oxidized powder and a very thin layer of oxides forms on the powder surface after sintering. The solid solubility of oxygen in the iron-based powder expands during the mechanical alloying process. The oxygen as solid solute is evenly distribution in the mechanical alloyed powders.
     (3) During sintering at temperatures from 800 to 1000℃, large number of equiaxed grains fine as hundreds of microns are found embedding in the matrix of Fe-14Cr-3W-0.5Ti-0.3Y-0.22O alloy (wt,%). The recrystallized grains are ultra-stable and show minor dependence on sintering temperature and time. When heated to high temperature, the recrystals turn to lamellar grained structure; while abnormal grain growth occurs after prolonged annealing and results in bimodally grained structure. The inhomogeneous distribution of Y-Ti-O nano-oxides throughout the matrix, which is the main reason of bimodally grained structure. The MA-ed Fe-14Cr-3W-0.5Ti-0.3Y-0.220 alloy (wt,%) shows the better friction properties at 600 and 700℃, and the wearing mechanism is changed from adhesive wear to oxide wear and abrasive wear with the temperature and sliding speed increasing.
     (4) The precipitated phase Ti2Y2O7 in the Fe-14Cr-3W-5Ti-3Y-2.2O (wt,%) alloy is the dispersion strengthen phase when the densification of the sintered alloy ended. The size of precipitated particle grows and the enhancing effect decreases with the increasing of the sintering temperature. The high temperature compressibility strength is associated with the precipitated particle size and the weight percentage of the particles in the forged alloy. The hardness of the forged alloy by using atomized powder is HRC54.8 at 1300℃, because the grains occur full recrystallization, and the grain size becomes fine. The hardness decreases with annealing temperature increasing, because the grain size of recrystallization unchanged but softening occurred. After tempering at 700℃, crystal size changed unobvious, the hardness value decreases which is because of the decrease of solid solubility of Cr.
     (5) The results show that the addition of Al facilitates its diffusion in the iron-based alloy and the grain size of the alloy is largest among the iron-based alloy with additions. The alloy adding Fe2O3 also has some residual porosity left by the solution of the oxide which hinders the grain growth. Grain growth obeys the Beck equation. Adding Al increases the grain growth exponent while adding Fe2O3 decreases the grain growth exponent.
     (6) The high density iron-based alloy has been prepared by swaging process. The grain size of the alloy growths with the heat treatment temperature increasing. The Y-Ti-O nano-oxides play a vital role in the stable of the high temperature strength. The precipitated particle size show minor dependence on annealing temperature and time. The compressibility strength at 850℃remains constant.
引文
[1]Capdevila C, Bhadeshia H K. Manufacturing and microstructural evolution of mechanuically alloyed oxide dispersion strengthened superalloys. Advanced Engineering Materials,2001,3(9):647-656.
    [2]Ukai S, Harada M, Okada H, et al. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials. Journal of Nuclear Materials,1993,204:65-73.
    [3]Chen J, Jung P, Pouchon M A, et al. Irradiation creep and precipitation in a ferritic ODS steel under helium implantation. Journal of Nuclear Materials,2008, 373(1-3):22-27.
    [4]Mukhopadhayay D K, Froes F H, Gelles D S. Development of oxide dispersion strengthened ferritic steels for fusion. Journal of Nuclear Materials,1998, 258-263(2):1209-1215.
    [5]Schaublin R, Ramar A, Baluc N, et al. Microstructural development under irradiation in European ODS ferritic/martensitic steels. Journal of Nuclear Materials, 2006,351(1-3):247-260.
    [6]Ohtsuka S, Ukai S, Sakasegawa H, et al. Nano-mesoscopic structural characterization of 9Cr-ODS martensitic steel for improving creep strength. Journal of Nuclear Materials,2007,367-370(1):160-165.
    [7]Ohta J, Ohmura T, Kako K, et al. Hardness of 12Cr-8Mo ferritic steels irradiated by Ni ions. Journal of Nuclear Materials,1995,225:187-191.
    [8]Kim I S, Hunn J D, Hashimoto N, et al. Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe +ion irradiation with simultaneous helium injection. Journal of Nuclear Materials,2000,280(3):264-274.
    [9]Benjamin J S. Dispersion strengthened superalloys by mechanical alloying. Metallurgical and Materials Transactions B,1970,1:2943-2951.
    [10]柳光祖,田耘,单秉权.氧化物弥散强化高温合金.粉末冶金技术,19(2001)1:20-23.
    [11]Garcia-Alonso M C, Gonzalez-Carrasco J L, Escudero M L. Comparative study of the corrosion behavior of MA-956 and conventional metallic biomaterials. Oxidation of Metals,2000,53:77-98.
    [12]Pint B A, Wright I G. Substrate and bond coat compositions:factors affecting alumina scale adhesion. Journal of Nuclear Materials,2002,307-311:763-768.
    [13]Grosdidier T, Suzon E, Wagner F. Primary recrystallization in an ODS FeAl alloy:an effective way to modify texture and microstructure. Mechanics of Materials, 2004,12:645-654.
    [14]Mohamed S. E, Jean M T. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems. Journal of Nuclear Materials,2005,340:93-112.
    [15]Wasilkowska A, Bartsch M, Messerschmidt U. Creep mechanisms of ferritic oxide dispersion strengthened alloys. Journal of Materials Processing Technology, 2003,133:218-224.
    [16]吴卫东,柳祖光,李华林,材料工程,1995(4):6-9.
    [17]黄乾尧,李汉京.特殊钢丛书-高温合金.北京:冶金工业出版社,2000.182-189.
    [18]上海第五钢铁厂第二中心试验室译.高温合金.1976.10.
    [19]郝嘉琨.聚变堆材料.北京:化学工业出版社,2006.15-24.
    [20]Odette G R, Alinger M J, Wirth B D. Recent developments inirradiation-resist ant steels, Annual Review of Materials Research.2008,38:471-503.
    [21]Teruo K. Materials Outlook for Energy and Environment. Tsukuba, Japan: National Institute for Materials Science,2008.42-43.
    [22]张莹.俄罗斯粉末高温合金涡轮盘的生产工艺钢铁研究学报,2000,12(3):63-69.
    [23]国为民.俄罗斯粉末高温合金工艺的研究和发展.粉末冶金工业,2000,10(1):20-27.
    [24]Bruce S J, Johnston G H. Interactions between nitrogen jets and liquid lead and tin streams. Powder Technology,1978,21(1):119-133.
    [25]Schmit H. Mathematical-physical considerations regarding the production of metalpowders for powder metallurgy. Powder Metallurgy Interational,1979,11(2):6 8-71.
    [26]Liu H M, Dandy D S. Modeling of liquid metal flow and heat transfer in d elivery tube during gas atomization. Materials Science and Engineering A,1995, 197(2):199-208.
    [27]张义文.俄罗斯粉末冶金高温合金.钢铁研究学报,1998,10(3):74-76.
    [28]沈军,崔成松,蒋祖龄,等.气体雾化过程几个重要参量的计算.粉末冶金技术,1994,12(4):255-257.
    [29]杨留栓,杨根仓,周饶和.金属雾化过程中液流非稳定流动的理论探讨.粉末冶金技术,1994,12(3):186-190.
    [30]Schmidt O, Kubie J. An experimental investigation of outflow of ilquids from single outlet vessels. Intenrational Jounral of Multiphase Flow,1995,21(6): 1163-1168.
    [31]Rizk N K, Lefebvre A H. Airblast atomization:studies on dorp-size distri bution.Jounral of Energy,1982,6(5):323-327.
    [32]Pietsch W H, Feuerstein S A, Heimerd J, et al. Atomization of reactive and refractory metals by the electron beam rotating disc process. Powder Metallurgy Intenational,1983,15(2):77-83.
    [33]Champagne B, Angers R. Fabrication of powder by the rotating electrode pro cess.International Jounral of Powder Metallurgy and Powder Technology,1980,16(4): 359-367.
    [34]陈焕铭,胡本芙,李慧英,等.等离子旋转电极雾化FGH95高温合金粉末的预热处理.中国有色金属学报,2003,13(3):554-559.
    [35]Benjamin J S, Volin T E. Mechanism of mechanical alloying. Metallurgical Transactions, JIM,1974,5(8):1929-1934.
    [36]Gilman P S, Benjamin J S. Mechanical alloying. Annual Review of Materials Science,1983,13:279-300.
    [37]Suryanarayana C. Mechanical alloying and milling. Progress in Materials Science,2001,46:1-184.
    [38]Merrick H F. Effect of heat treatment on the structure and properties of extruded P/M alloy 718. Metallurgical and Materials Transactions A,1976,7(4):505-514.
    [39]Miller M K, Kenik E A, Russell K F, et al. Atom probe tomography of nanoscale particles in ODS ferritic alloys. Material Science Engineering A,2003, 353(1-2):140-145.
    [40]肖纪美.合金能量学.上海:上海科学技术出版社,1985.435-440.
    [41]Gaudeta J M, Hatcharda T D, Farrellc S P, et al. Properties of Fe-Ga based powders prepared by mechanical alloying. Journal of Magnetism and Magnetic Materials,2008,320(6):821-829.
    [42]Zhernovenkova Y V, Sviridova T A, Tcherdyntsev V V, et al. Amorphous and quasicrystalline Ti-Ni-Zr powders synthesized by mechanical alloying. Journal of Non-Crystalline Solids,2007,353(32-40):3429-3433.
    [43]Pabi S K, Joardar J, Manna I, et al. nanocrystalline phases in Cu-Ni, Cu-Zn and Ni-Al systems by mechanical alloying. Nanotructured Materials,1997,9(1-8): 149-152.
    [44]Cheng X Y, Ouyang Y F, Shi H W, et al. Nano-amorphous (FeAl)1-xZrx alloys prepared by mechanical alloying Journal of Alloys and Compounds,2006,421(1-2): 314-318.
    [45]Nie C Z, Gu J J, Liu J L, et al. Investigation on microstructures and interface character of B4C particles reinforced 2024A1 matrix composites fabricated by mechanical alloying. Journal of Alloys and Compounds,2008,24 (1-2):118-122.
    [46]Enayati M H, Bafandeh M R. Phase transitions in nanostructured Fe-Cr-Ni alloys prepared by mechanical alloying. Journal of Alloys and Compounds,2008,24 (1-2):228-232.
    [47]Guittoum A, Layadi A, Bourzami A, et al. X-ray diffraction, microstructure, Mossbauer and magnetization studies of nanostructured Fe50Ni50 alloy prepared by mechanical alloying. Journal of Magnetism and Magnetic Materials,2008,320 (7):1385-1392.
    [48]Sakasegawa H, Ohtsuka S, Ukai S, et al. Microstructural evolution during creep of 9Cr-ODS steels. Fusion Engineering and Design,2006,81:1013-1018.
    [49]李凤生.超细粉体技术.北京:国防工业出版社,2000.13-18.
    [50]Zhang D L. Processing of advanced materials using high energy-mechanical milling. Progress in Materials Science,2004,49:537-560.
    [51]韩凤麟.世界粉末冶金趋势,粉末冶金技术.2002,20(6):369-370.
    [52]林文松.机械合金化过程中的金属相变.粉末冶金技术,2001,19(3):178-181.
    [53]张同俊.高能球磨过程Fe-Ni机械合金化特点.粉末冶金技术,1996,14(1):3-7.
    [54]张伟,王树林.机械合金化的研究和发展.矿山机械,2003,8:50-54.
    [55]沙维.机械合金化氧化物弥散强化镍基超合金.有色金属,1994,46(2):67-74.
    [56]Miller M K, Hoelzer D T, Kenik E A, et al, Stability of ferritic MA/ODS alloys at high temperatures. Intermetallics,2005,13(3-4):387-392.
    [57]Chen Y L, Jones A R, Miller U. The microstructure and recrystallization of flow-formed oxide-dispersion-strengthened ferritic alloy:Recrystallization behavior. Metallurgical and Materials Transaction A,2002,33(12):3787-3794.
    [58]Miller M K, Hoelzer D T, Kenik E A, et al. Russell. Nanometer scale precipitation in ferritic MA/ODS alloy MA957. Journal of Nuclear Materials,2004, 329-333:338-341.
    [59]Miller M K, Russell K F, Hoelzer D T. Characterization of precipitates in MA/ODS ferritic alloys. Journal of Nuclear Materials,2006,351:261-268.
    [60]Shafranovsky E A, Petrov Y I. Aerosol Fe nanoparticles with the passivating oxide shell.Journal of Nanoparticle Research,2004,6:71-90.
    [61]Ohtsuka S, Ukai S, Fujiwara M, et al. Nano-structure control in ODS martensitic steels by means of selecting titanium and oxygen contents. Journal of Physics and Chemistry of Solids,2005,66(1-2):571-575.
    [62]Klimiankou M, Lindau R, Moslang A, et al. TEM study of PM 2000 steel. Powder Metallurgy,2005,48(3):277-287.
    [63]Klueh R L, Maziasz P J, Kim I S, et al. Tensile and creep properties of an oxide dispersion-strengthened ferritic steel. Journal of Nuclear Materials,2002,307-311: 773-777.
    [64]Ukai S, Harada M, Okada H, et al. Tube manufacturing and mechanical properties of oxide dispersion strengthened ferritic steel. Journal of Nuclear Materials, 1993,204:74-80.
    [65]Ukai S, Nishida T,.Okada H et al. Development of oxide dispersion strengthened ferritic steels for FBR core application Improvement of mechanical properties by recrystallization processing. Journal of Nuclear Science and Technology, 1997,34:256-260.
    [66]Hoelzer D T, Pint B A, Wright I G. A microstructural study of the oxide scale formation on ODS Fe-13Cr steel. Journal of Nuclear Materials,2000,283-287: 1306-1310.
    [67]Klueh R L, Shingledecker J P, Swindeman R W, et al. Oxide dispersion-streng thened steels:A comparison of some commercial and experimental alloys. Journal of Nuclear Materials,2005,341(2-3):103-114.
    [68]Shigeharu U, Shunji M, Tunemitsu Y, et al. Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels. Journal of Nuclear Materials, Volumes 2000,283-287:702-706.
    [69]高占勇,邓俊杰,安晓惠,等.氧化物弥散强化合金的再结晶行为及强化机理的研究,内蒙古科技大学学报,2007,26(2):118-121.
    [70]Ramar A, Oksiuta Z, Baluc N, et al. Effect of mechanical alloying on the mechanical and microstructural properties of ODS EUROFER 97. Fusion Engineering and Design,2007,82(15-24):2543-2549.
    [71]Sakasegawa H, Ohtsuka S, Ukai S, et al. Particle size effects in mechanically alloyed 9Cr ODS steel powder. Journal of Nuclear Materials,2007,367-370(1): 185-190.
    [72]H. Kishimoto, M.J. Alinger, G.R. Odette, et al. TEM examination of microstructural evolution during processing of 14CrYWTi nanostructured ferritic alloys. Journal of Nuclear Materials,2004,329-333:369-371.
    [73]M. K. Miller, C. L. Fu, M. Krcmar, et al.纳米团簇强化型铁素体钢设计中空位组元的作用.上海金属,2008,30(4):1-6.
    [74]梁英教,车荫昌,刘晓霞,等.无机物热力学数据手册.沈阳,东北大学出版社,1993:457-476.
    [75]Castro V D, Leguey T, Monge M A, et al. Mechanical dispersion of Y2O3 nanoparticles in steel EUROFER 97:process and optimisation. Journal of Nuclear Materials,2003,322(2-3):228-234.
    [76]Ohtsuka S, Ukai S, Fujiwara M, et al. Improvement of 9Cr-ODS martensitic steel properties by controlling excess oxygen and titanium contents. Journal of Nuclear Materials,2004,329-333(1):372-376.
    [77]欧阳鸿武,陈欣,余文焘,等.气雾化制粉技术发展历程及展望.粉末冶金技术,2007,25(1):53-58.
    [78]Alinger M J, Odette G R, Hoelzer D T. On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostructured ferritic alloys. Acta Mater,2009,57:392-406.
    [79]张立德,牟季美.纳米材料和纳米结构.北京,科学技术出版社,2001:203-345.
    [80]Nazar L F, Goward G, Leroux F, et al. Nanostructured materials for energy storage. International Journal of Inorganic Material,2001,3(3):191-200.
    [81]Noriyuki Y. I, Akihiko K, Masayuki F, et al. Effect of milling on morphological and microstructural properties of powder particles for High-Cr Oxide dispersion strengthened ferritic steels. Journal of Nuclear Materials,2007,367-370(1):191-195
    [82]齐宝森,王成国,姚新.高能球磨金属铬、铝粉末的特征.稀有金属,2000,24(5):325-329.
    [83]路承杰,张振忠,周剑秋,等.高能球磨法制备纳米晶Ni粉的研究.铸造 技术,2007,28(6):775-778.
    [84]Blavette D, Cldel E, Frackiewiez A, et al. Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science,1999,286(5448):2317-2319.
    [85]Estrin Y, Rabkin E. Pipe diffusion along curved dislocations:an application to mechanical alloying. Scripta Materialia,1998,39(12):1731-1736.
    [86]王德宝,吴玉程,王文芳,宗跃.机械合金化诱导难互溶系Cu-Cr合金固溶度扩展的研究.稀有金属,2008,32(1):17-22.
    [87]Maurice D, Courtney T H. Modeling of Mechanical Alloying:Part I. Deformation, Coalescence and Fragmentation Mechanisms. Metallurgical and Material Transaction,1994, A25:147-158.
    [88]田耘,柳光祖,单秉权,杨凤兰.含Ti ODS铁素体钢中弥散相再细化机制的研究.钢铁,2000,35(2):51-55.
    [89]Fu C L, Krcmar M, Painter G S, et al. Vacancy Mechanism of High Oxygen Solubility and Nucleation of Stable Oxygen-Enriched Clusters in Fe. Physical Review Letters,2007,99(22):225502.1-4.
    [90]Jiang Y, Smith J R, Odette G R. Formation of Y-Ti-O nanoclusters in nanostructured ferritic alloys:A first-principles study. Physical Review B,2009, 79(6):064103.1-7.
    [91]Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena, Elsevier, London,2004.350-372.
    [92]Eiselt C C, Klimenkov M, Lindau R. et al. Characteristic results and prospects of the 13Cr-1W-0.3Ti-0.3Y2O3 ODS steel. Journal of Nuclear Materials,2009, 386-388:525-528.
    [93]Sun F S, Rojas P, Alejandro Z, et al. Lavernia. Nanostructure in a Ti alloy processed using a cryomilling technique. Materials Science and Engineering A,2006, 430:90-97.
    [94]Nieh T G, Wadsworth J. Hall-Petch Relation in Nanocrystalline Solids. Scripta Metallurgica et Materialia,1991,25(4):955-958.
    [95]Vasil'ev L S, Lomayeva S F. On the analysis of mechanism of supersaturation of metal powders with interstitial impurities during mechanical activation. Journal of Materials Science,2004,39:5411-5415.
    [96]Gopng W P, Li D J, Chen Z S, et al. Phase equilibira of the TiO2-Y2O3 systerm. CALPHAD,2009,33:624-627.
    [97]Kim K T, Yang H C, Hong S T. Densification behavior of titanium alloy powder compacts at high temperature. Powder Metallurgy,2001,44(1):34-40.
    [98]朱远志,尹志民,李学谦.一种烧结铁基合金Fe2Cr2Mo2Ni2Co2C的热致密化过程[J].中南大学学报(自然科学版),2006,37(3):455-460.
    [99]Hirschhorn J S. Introduction to powder metallurgy. New York:American Powder Metallurgy Institute,1969:245-247.
    [100]王盘鑫.粉末冶金学.北京:冶金工业出版社,1997:183-184.
    [101]卢柯,刘学东,张皓月,等.纯镍纳米晶体的晶格膨胀.金属学报,1995,31(2):A74-A78.
    [102]黄培云.粉末冶金原理.北京:冶金工业出版社,1997.365-369.
    [103]Schmit H. Mathematical-physical considerations regarding the production of metal powders for powder metallurgy. Powder Metallurgy International,1979,11(2): 68-71.
    [104]刘文胜,唐芳,马运柱,等.微量Cr对合金93W-Ni-Fe组织及力学性能的影响.中国有色金属学报,2008,18(9):1645-1650.
    [105]陈康华,刘红卫,刘允中.强化固溶对7055铝合金力学性能和断裂行为的影响.中南工业大学学报,2000,31(6):528-531.
    [106]王庆娟,徐长征,黄美权,等.Cr分布对Cu-Cr合金性能的影响.功能材料,2007,38(7):1125-1128.
    [107]Krajnikov A V, Ortner H M, Weinbruch S, et al. Chromium interaction with TiO2 dispersoids in oxide dispersion strengthened ferritic steel. Materials Science and Technology,1999,15:1425-1432.
    [108]Ukai S, Fujiwara M. Perspective of ODS alloys application in nuclear environments. Journal of Nuclear Materials,2002,307-311(1):749-757.
    [109]Perez P. Influencen of the alloy grain size on the oxidation behavior of PM2000 alloy. Corrosion Science,2002,44:1793-1808.
    [110]Zhang J H, Huang B Y, He Y H, et al. Physical simulation of hot deformation of TiAl based alloy. Journal of Central South University (English Edition),2002, 9(2):73-76.
    [111]Ding R, Guo Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. Acta Materialia,2001, 49(16):3163-3175.
    [112]Hee Y Kim, Wong H Sohn, Soon H Hong. High temperature deformation of Ti-(46-48)Al-2W intermetallic compounds. Materials Science and Engineefing A, 1998,251(1-2):216-225.
    [113]Belyakov A, Miura H, Sakai T. Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel. MaterialsScience and Engineering A,1998,255(1-2):139-147.
    [114]Castro V D, Leguey T, Munoz A, et al. Mechanical and microstructural behaviour of Y2O3 ODS EUROFER 97. Journal of Nuclear Materials,2007, 367-370(1):196-201.
    [115]Castro V D, Leguey T, Munoz A, et al. Microstructural characterization of Y2O3 ODS-Fe-Cr model alloys. Journal of Nuclear Materials,2009,386-388: 449-452.
    [116]Oksiuta Z, Baluc N. Microstructure and Charpy impact properties of 12-14Cr oxide dispersion-strengthened ferritic steels. Journal of Nuclear Materials, 2008,374(1-2):178-184.
    [117]Mcclintock D A, Sokolov M A, Hoelzer D T, et al. Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. Journal of Nuclear Materials,2009,392(2):353-359.
    [118]Oksiuta Z, Olier P, Carlan Y D, et al. Development and characterisation of a new ODS ferritic steel for fusion reactor application. Journal of Nuclear Materials, 2009,393(1):114-119.
    [119]Lu Z, Faulkner R G, Riddle N, et al. Effect of heat treatment on microstructure and hardness of Eurofer 97, Eurofer ODS and T92 steels. Journal of Nuclear Materials,2009,386-388:445-448.
    [120]Chou T S. Recrystallisation behaviour and grain structure in mechanically alloyed oxide dispersion strengthened MA956 steel. Mater Sci Eng A,1997,223(1): 78-90.
    [121]宋余九.金属的晶界与强度.西安:西安交通大学出版社,1987:48-49.
    [122]Emmanuelle A. M. Core-shell structures of oxygen-rich nanofeatures in oxide-dispersion strengthened Fe-Cr alloys. Applied Physics Letters,2008,93: 181904.1-3.
    [123]潘金生,仝健民,田民波.材料科学基础.北京,清华大学出版社,1998:529.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700