美洲商陆抗病毒蛋白基因在毕赤酵母中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物病毒病是农作物的主要病害之一,它危害严重,给农业生产带来的巨大经济损失。长期以来,人们一直在探索防治病毒病的方法,但到目前为止还未研制出有效防治试剂。许多研究发现美洲商陆抗病毒蛋白(pokeweed antiviral protein,PAP)对植物病毒具有良好的控制效果。然而,自然界天然存在的PAP资源有限,很难大规模利用。用生物反应器,低成本大量生产PAP,是解决这一问题的有效方法之一。目前已经有人在这方面做出了尝试,但蛋白表达产量还不高。Francis等在巴斯德毕赤酵母(Pichia pastoris)中表达了信号肽和毒性区缺失的PAP基因,使其表达量达到了10-12mg/L。中国农科院植保所植物病毒实验室陈定虎博士成功的筛选到P.pastoris PAP利用甲醇缓慢型重组子(Mut~s),希望能利用微生物发酵的方法来大量生产PAP,将其应用于植物病毒病的防治。然而,Mut~s菌株由于发酵周期长,甲醇率利用低,并不适用于实际的大规模生产。
     本研究将含有N末端信号肽和C末端毒性区缺失的PAP基因的表达载体pPIC9K-P用Sal I酶切线性化后,通过电击转化整合P.pastorisGS115菌株细胞中。PCR筛选出利用甲醇快速型(Mut~+)的重组子后用双膜免疫杂交法筛选出表达量较高的重组菌株。
     在相同的培养条件下比较了Mut~+和Mut~s重组菌株表达PAP的异同。结果表明,诱导培养48小时后,Mut~+重组菌株表达产物在SDS-PAGE胶上显现出清晰的目的蛋白带,而Mut~s重组菌株培养72小时才能显示微弱的目的带;Western-blotting杂交信号强度表明,同样培养6天的Mut~+和Mut~s重组菌株表达产物在表达量上没有明显差别。抗病毒活性实验也表明,相同浓度的Mut~+重组子和Mut~s重组子的表达产物均对TMV病毒侵染有明显的抑制作用,且它们的抗病毒活性没有显著的差异。
     通过摇瓶培养初步摸索了诱导时间、甲醇浓度、培养基pH值等培养条件对Mut~+重组菌株表达PAP的影响。SDS-PAGE分析结果表明,Mut~+组菌株在甲醇诱导第四天后PAP在培养液中积累量达到最高水平,延长培养时间会导致产量下降;在10g/L的甲醇浓度诱导下,PAP的表达量达到最高;培养基pH值在偏酸性条件下(6.0-6.4)PAP的表达量都维持在较高的水平。
Plant virus disease is one primary crop disease. It distributes wildly and does great harm to economy of agriculture yield. People search after ways to prevention and cure virus diseases for long time but not develop effective reagent yet. Many studies revealed that pokeweed antiviral protein (PAP) can control plant virus effectively. But PAP in nature is limited which could not apply cosmically. Using bioreacter to produce PAP is one efficacious way to get a mass of PAP. Someone tried this way but the yield is low. Francis expressed truncated mutant pokeweed antiviral protein gene in Pichia pastoris. The yield reached 10-12mg/L. Dr. Chen ding hu in plant virus group of Institute of plant protection of the CAAS (Chinese academy of agriculture sciences) selected PAP Muts recombinants and wanted to produce PAP through fermentation to prevention and cure plant virus disease. But as to Muts recombinants, the periods of fermentation is too long and the efficiency of using methanol is low. So using Muts recombinants to produce PAP in factory is not felicitousness.
    Linearized the expression vector pPIC9K-P including the truncated mutant pokeweed antiviral protein (PAP) gene by restriction endonuclease Sal I and transformed it electrically into Pichia pastoris GS115.Mut+recombinants were selected by PCR and high yield Mut+ recombinant was picked out by double film immunoblotting.
    To find out the difference between Mut+ and Muts recombinants we compared their expression of pokeweed antiviral protein in the same conditions. SDS-PAGE results showed that there was a clear target protein band in Mut+ recombinant supernatant after 48 hours of culturing, while a faint band only in Muts recombinant after 72 hours. Western-blotting result showed that there was no remarkable difference of yield between Mut+ and Muts recombinants after 6 days induced. Anti-virus activity tests revealed that culture supernatants of Mut+ and Muts recombinants could inhibit TMV infection with high efficiency in the same concentration and there was no significant difference between them.
    Different cultivation condition such as induced time, methanol concentration and pH of culture medium was studied at shake flask cultivation. SDS-PAGE results showed that as to Mut+ recombinant highest yield was obtained after 4 days inducing and with the culture
    
    
    
    time prolonged it reduced. Pokeweed antiviral protein gene expressed well when methanol concentration reached 10g/L. Pokeweed antiviral protein obtained high yield in thin acidic culture medium (pH6.0-6.4) and its quantity in total mass of secrete protein exceeded 30%.
引文
[1] Allard H A. The mosaic disease of Phytolacca decandra [J]. Phytopathology, 1918, 8: 51-54.
    [2] Duggar B M, Armstrong J K. The effect of treating the virus of tobacco mosaic with the juice of various plants [J]. Ann. Missouri Bot. Garden, 1925,12:359-366.
    [3] Chen Z C, White R F, Antoniw J F, et al. Effect of pokeweed antiviral protein(PAP) on the infection of plant viruses[J]. Plant Pathology, 1991,40:610-612.
    [4] 刘学端,张碧峰,植物抗病毒病的研究和应用[J],国外农学-植物保护,1994,7(34):8-11.
    [5] 下村澈,植物病毒抑制剂的实用性和研究现状[J].植物防疫,1984,38(7):18-22.
    [6] 吴云峰,曹让,魏宁生等,生物病毒农药筛选及应用[J],世界农业,1995,(5):35-36.
    [7] Francis R, Sekou O D, Cherri R E, et al. Expression of biologically active recombinant pokeweed antiviral protein in methylotrophic yeast Pichia pastoris [J]. Protein Expression and Purification, 2000,18:193-201.
    [8] 陈定虎,王锡锋,李莉等,美洲商陆抗病毒蛋白基因在毕赤酵母中的表达及其抗病毒活性的测定[J],农业生物技术学报,2003,11(2):183-186.
    [9] Irvin J D, Uckun F M, Pokeweed antiviral protein: ribosome inactivation and therapeutic applications[J]. Pharmacol. Ther. 1992,55:279-302.
    [10] Kassanis B, Kleczkowski A. The isolation and some properties of a virus-inhibiting protein from Phytolacca esculents. J. Gen. Microbiol. Academic Press, N.Y. 1948.
    [11] Loring,H.S.1942.The reversible inactivation os tobacco mosaic virus by crystalline ribonuclease[J]. J.Gen. Physiol.25: 497-505.
    [12] Wyatt S D, Shepherd R J. Isolation and characterization of a virus inhibitor from Phytolacca Americana[J]. Pahytopathology, 1969,59:1787-1794.
    [13] Tomlinson J A,Walker V M, Flewett T H, Barclay G T. The inhibition of infection by cucumber mosaic virus and influenza virus by extra of Phytolacca americana[J]. J.Gen. Virol. 1974,22:225-232.
    [14] Ussery M A, Irvin J D, Hardesty B. Inhibition of poliovirus replication by a plant
    
    antiviral peptide. Ann. N.Y. Acad. Sci. 1977,284: 431-440.
    [15] Aron G M, Irvin J D. Inhibition of herpes simple virus multiplication by the pokeweed antiviral protein. Antimicrob Agents Chemother [J]. 1980,17:1032-1033.
    [16] Oalson M, Ramakrishnan S, Anand T. Ribosomal inhibitory proteins from plants inhibits HIV-1 replication in acutely infected peripheral blood mononuclear cells [J]. AIDS Res. Hum. Retrovir. 1991,7,1025-1030.
    [17] Zarling J M, Moran P A, Haffar O, et al. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies [J]. Nature(London) 1990,347:92-95.
    [18] Tomlinson J A, Walker V M, Flewett T H. The inhibition of infection by cucumber mosaic virus and influenza virus by extract of Phytolacca americana [J]. J. Gen. Virol 1974,22: 225-232.
    [19] Irvin J D, Kelly T, Robertus J D. Purification and properties of a second antiviral protein from Phytolacca americana which inactivates eukaryotic ribosomes [J]. Arch. Biochem. Biophys. 1980, 200: 418-425.
    [20] Barbieri L, Aron G M, Irvin J D, et al. Purification and partial characterization of another form of the antiviral protein from the seeds of Phytolacca americana L. (pokeweed) [J]. Biochem. J. 1982, 203: 55-59.
    [21] Bolognesis A, Barbieri L, Abbondanza A. Purification and properties of new ribosome inactivating proteins with RNA N-glycosidase activity[J]. Biochem Biophs Acta. 1990, 1087: 293-297.
    [22] Kataoka J, Ago H, Habuka N, et al. Expression of a pokeweed antiviral protein in Escherichia coli and its characterization[J]. FEBS Lett. 1993,320(1):31-36
    [23] Bass H W, Webster C. A maize ribosome-inactivating protein is controlled by the transcriptional activator opaque-2 [J]. Plant Cell, 1992,4:225-234.
    [24] 38Bjorn M J, Larrick J, Piatak M, et al. Characterization of translational inhibitors from Phytolacca americana. Amino-terminal sequence determination and antibody-inhibitor conjugate [J]. Biochim Biophys Acta, 1984, 790(2): 154-162.
    [25] Tumer N E, Duk-Ju H. C-terminal deletion mutant of pokeweed antiviral protein inhibits viral infection but does not depurinate host ribosomes [J]. Proc. Natl. Acad. Sci.
    
    USA 1997, 94(8): 3866-3871.
    [26] Lin Q, Chen Z C, Antoniw J F, et al. Isolation and characterization of cDNA clone encoding the anti-viral protein from Phytolacca americana. Plant Mol. Biol [J]. 1991,17: 609-614.
    [27] Poyet, J.L. Radom,J. and Hoeveler, A. Isolation and characterization of a cDNA clone encoding the pokeweed antiviral protein Ⅱ from Phytolacca americana and its expression in E. coli [J]. FEBS Lett. 1994, 347: 268-272.
    [28] Barbieri L, Aron G M, Irvin J D, et al. Purification and partial characterization of another form of the antiviral protein from the seeds of Phytolacca Americana L.(pokeweed) [J]. Biochem J, 1982,203 (1): 55-64.
    [29] Houston L L, Ramakrishnan S, Hermodson M A. Seasonal variations in different forms of pokeweed antiviral protein; a potent inactivator of ribosomes[J], J. Biol. Chem. 1983,258:9601-9604.
    [30] Kung S S, Kimura M, Funatsu G. The complete amino acid sequence of antiviral protein from the seeds of pokeweed (Phytolacca americana) [J]. Agric. Biol. Chem. 1990,54:3301-3318
    [31] Poyet J L, Hoeveler A. cDNA cloning and expression of pokeweed antiviral protein from seeds in Escherichia coli and its inhibition of protein synthesis in vitro[J]. FEBS Lett. 1997,406: 97-100.
    [32] Park S W, Lawrence C B, Lingen J C, et al. Isolation and characterization of a novel ribosome inactivating protein from root cultures of pokeweed and its mechanism of secretion [J]. Plant-physiol. 2002,130(1): 164-178.
    [33] Monzingo A F, Collins E J, Ernst S R, et al. The 2.5 structure of pokeweed antiviral protein [J]. J. Mol. Biol. 1993,233(4): 705-715.
    [34] 曾宗浩,金雷,李宏明等,商陆种子抗病毒蛋白的0.25nm分辨率晶体结构[J],中国科学(C辑),1998,28(5):431-437.
    [35] Holling M. Host range studies with fifty-two plant virus[J]. Ann Appl Biol. 1959,47:98-101.
    [36] Zoubenko, O. Uckun, F. Hur, Y. Chet, I. Turner, N.E. Plant resistance to fungal infection induced by nontoxic pokeweed antiviral protein mutants. Nature
    
    Biotechnology[J]. 1997,15(10): 992-996.
    [37] Kumon K, Sasaki J, Sejima M, et al. Interactions between tobacco mosaic virus, pokeweed antiviral proteins, and tobacco cell wall[J]. Phytopathology. 1990, 80(7): 636-641.
    [38] Gessner S L, Irvin J D. Inhibition of elongation factor 2-dependent translocation by the pokeweed antiviral protein and ricin[J]. J. Biol. Chem. 1980, 255:3251-3256.
    [39] Ready M P, Brown D T, Robertus J D. Extracellular localization of pokeweed antiviral protein[J]. Proc. Natl. Acad. Sci. USA 1986, 83: 5053-5056.
    [40] Bonness M S, Ready M P, Irvin J D, et al. Pokeweed antiviral protein inactivates pokeweed ribosomes; implications for the antiviral mechanism[J]. Plant J. vol. 1994,5(2): 173-183.
    [41] Tumer N E, Parikh B A, Dinman J D. The pokeweed antiviral protein specifically inhibits Ty1-directed+1 ribosomal frameshifting and retrotransposition in Saccharomyces cerevisia[J]e. Journal of Virology. 1998,72(2): 1036-1042.
    [42] Chen Z C, Antoniw J F, Lin Q. A possible mechanism for the antiviral activity of pokeweed antiviral protein[J]. Physiol. Mol. plant pathol. 1993, 42: 249-258.
    [43] Teltow G J, Irvin J D, Aron G M. Inhibition of herpes simplex virus DNA synthesis by pokeweed antiviral protein [J]. Antimicrob Agents Chemother. 1983, 23(3): 390-396.
    [44] F, Venkatachalam T K, Irvin J D, et al. Pokeweed Antiviral Protein Isoforms PAP-Ⅰ, PAP-Ⅱ, and PAP-Ⅲ Depurinate RNA of Human Immunodeficiency Virus (HIV)-1[J]. Biochem. Biophys. Res. Commun. 1999,260(2): 453-458.
    [45] Schlick J L, Philippe D. Development of a double sandwich ELISA able to discriminate between free PAP and complexed PAP in leaf extracts[J]. Plant Science 1999,140:1-8.
    [46] Zoubenko O, Uckun F, Hut Y, et al. Plant resistance to fungal infection induced by nontoxic pokeweed antiviral protein mutants[J]. Nature Biotechnology. 1997,15(10): 992-996.
    [47] Smirnov S, Shulaev V, Tumer N E. Expression of pokeweed antiviral protein in transgenic plants induces virus resistance in grafted wild-type plants independently of salicylic acid accumulation and pathogenesis-related protein synthesis[J]. Plant-Physiology.
    
    1997,114(3): 1113-1121.
    [48] Dore J M, Gras E, Depierre F. Mutation dissociating the inhibitory activity of the pokeweed antiviral protein on eukaryote translation and Escherichia coli growth[J]. Nucleic Acids Res. 1993,21 (18): 4200-4206.
    [49] Poyet J L, Hoeveler A. cDNA cloning and expression of pokeweed antiviral protein from seeds in Escherichia coli and its inhibition of protein synthesis in vitro. FEBS Lett. 1997, 406: 97-100.
    [50] 赵扬,鄢波,张绍松等,美洲商陆核基因组抗病毒蛋白基因的克隆及序列分析[J],云南植物研究,1998,20(1):67-70.
    [51] Lodge, J.K. Kaniewski, W.K. Tumer, N.E. Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein [J]. Proc Natl Acad Sci, 1993,90(15): 7089-7093.
    [52] 张海燕,党本元,周奕华等,用微束激光穿刺技术将PAP导入油菜获得抗病毒转基因植株[J],中国激光,1999,26(1):1053-1056.
    [53] 张海燕,刘桂珍,陈正华,商陆抗病毒蛋白cDNA的克隆、测序及其植物表达载体的构建[J],植物学报,1999,41(2):226-228.
    [54] 张海燕,田颖川,周奕华等,将商陆抗病毒蛋白(PAP)cDNA导入油菜获得抗病毒转基因植株[J],科学通报,1998,43(23):2534—2537.
    [55] 傅道林,王兰岚,张海燕等,用微束激光穿刺技术将商陆抗病毒蛋白(PAP)cDNA导入马铃薯的研究[J],光子学报,2000,29(11):970-974.
    [56] Wang P, Zoubenko O, Tumer N E. Reduced toxicity and broad spectrum resistance to viraland fugal infection in transgenic plants expressing pokeweed antiviral protein Ⅱ [J],Plant Mol Biol, 1998,38(6):957-964.
    [57] Hur, Y. Hwang, D.J. Zoubenko, O. Coetzer, C. Uckun, F.M. Turner, N.E. (1995) Isolation and characterization of pokeweed antiviral protein mutations in Saccharomyces cerevisiae: identification of residues important for toxicity[J]. Proc. Natl. Acad. Sci. USA. 92 (18): 8448-8452.
    [58] 陈定虎,王锡锋,李莉,美洲商陆抗病毒蛋白真核基因表达载体的构建及在毕赤酵母中的表达[J],福建农业大学学报,2001,30(增刊):228
    [59] Masuho Y, Kishida K, Hara T. Targeting of the antiviral protein from Phytolacca
    
    Americana with an antibody[J]. Biochem Biophys Res Commun. 1982, 105: 462-468.
    [60] Ramakrishnan S, Houston L L. Comarson of the selective cytotoxic effects of immunotoxins containing ricin A chain or pokeweed antiviral protein and anti-Thy1.1 monoclonal antibodies[J]. Cancer Research. 1984,44:201-206.
    [61] Ramakrishnan S, Houston L L. Inhibition of human acutte lymphoblastic leukemia cells by immunotoxins: potentiation by chloroquine[J]. Science. 1984, 223: 58-61.
    [62] Anderson P M, Meyers D E, Hasz DE. In vitro and in vivo cytotoxicy of an anti-osteosaroma immunotoxin containing pokeweed antiviral protein[J]. Cancer Res. 1995,55(6): 1321-1325.
    [63] Goldmacher V S, Senter P D, Lambert J M. Photoactivation of toxin conjugates[J]. Bioconjug Chem. 1992, 3(2): 104-106.
    [64] Dore, J.M. Gras, E. Wijdenes, J. (1997) Expression and activity of a recombinant chimeric protein composed of pokeweed antiviral protein and of human interleukin-2[J]. FEBS-Letters. 402(1): 50-52.
    [65] Cregg J M, Cereghino J L, Shi J, et al. Recombinant protein expression in Pichia pastoris [J]. Mol Biotechnol, 2000,16(1): 23-52.
    [66] Werten M W, van den Bosch T J, Wind R D, et al. High-yield secretion of recombinant gelatins by Pichia pastoris [J]. Yeast, 1999, 15: 1087-1096.
    [67] Hasslacher M, Schall M, Hayn M, et al. High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts [J]. Protein Expr Purif, 1997, 11: 61-71.
    [68] Vedvick T, Buckholz R G, Engel M, et al. High-level secretion of biologically active aprotinin from the yeast Pichia pastoris [J]. J Ind Microbiol, 1991, 7:197-201.
    [69] Siegel R S, Brierley R A. Methylotrophic yeast Pichia pastoris produced in high-cell-density fermentations with high cell yields as vehicle for recombinant protein production [J]. Biotechnol Bioeng, 1989, 34: 403-404.
    [70] Ogata K, Nishikawa H, Ohsugi M. A yeast capable of utilizing methanol [J]. Agric. Biol. Chem. 1969,33:1519-1520.
    [71] Veenhuis M, van Dijken J P, Harder W. The significance of peroxisomes in the metabolism of one-carbon compounds in yeast [J]. Adv. Microb.Physiol. 1983, 24: -82.
    
    
    [72] Tschopp J F, Brust P F, Cregg J M, Stillman C A, Gingeras T R. Expression of the LacZ gene from two methanol-regulated promoters in Pichia pastoris [J]. Nucleic Acids Res. 1987,15: 3859-3876.
    [73] Couderc R, Baratti J. Oxidation of methanol by the yeast Pichia pastoris: purifcation and properties of alcohol oxidase [J]. Agric. Biol. Chem. 1980, 44: 2279-2289.
    [74] Roggenkamp R, Janowicz Z, Stanikowski B, Hollenberg C P. Biosynthesis and regulation of the peroxisomal methanol oxidase from the methylotrophic yeast Hansenula polymorpha [J]. Mol. Gen. Genet. 1984, 194: 489-493.
    [75] Ellis S B, Brust P F, Koutz P J, Waters A F, Harpold M M, Gingeras T R. Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichiapastoris [J]. Mol. Cell. Biol. 1985, 5: 1111-1121.
    [76] Cregg J M, Madden K R, Barringer K J, Thill G P, Stillman C A. Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris [J]. Mol. Cell. Biol. 1989,9:1316-1323.
    [77] 彭毅,步威,康良仪,甲醇酵母表达系统[J],生物技术通报,2000,(1):38-41.
    [78] Cregg J M, Madden K R. Development of the methylotrophic yeast, Pichia pastoris, as a host system for the production of foreign proteins [J]. Dev. Ind. Microbiol. 1988,29: 33-41.
    [79] Joan Lin Cereghino, James M Cregg. Heterologous protein expression in the methylotrophic yeast Pichiapastoris [J]. FEMS Microbiol Rev, 2000, 24(1): 45-66.
    [80] Barr K A, Hopkins S A, Sreekrinshna K. Protocol for efficient secretion of HAS developed from Pichia pastoris [J]. Pharm Eng, 199212:48-51.
    [81] Sreekrishna K, Brankamp R G, Kropp K E, et al. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophics yeast Pichia pastoris [J]. Gene, 1997,190(1): 55-62.
    [82] Cregg J M, Vedvick T S, Raschke W C. Recent advances in the expression of foreign genes in Pichiapastoris [J]. Bio/Technology, 1993,11 (8): 905-910.
    [83] Vedvick T, Buckholz R G, Engel M, et al. High-level secretion of biologically active aprotinin from the yeast Pichiapastoris [J]. J Ind Microbial, 1991,7(3): 197-201.
    [84] Scorer C A, Clare J J, McCombie W R, et al. Rapid selection using G418 of high copy
    
    number transformants of Pichia pastoris for high-level foreign gene expression [J]. Bio/Technology, 1994, 12(2): 181-184.
    [85] Shigang S, Greitje S, Thomas W, et al. A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris [J]. Gene, 1998,216: 93-102.
    [86] Ohi H, Miura M, Hiramatsu R, et al. The positive and negative cis-acting factors for methanol regulation in the Pichia pastoris AOX2 gene [J]. Mil Gen Genet, 1994,243(5): 489-499.
    [87] Tschopp J F, Brust P F, Cregg J M, et al. Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris [J]. Nucleic Acid Res, 1987,15(9): 3859-3876.
    [88] Cregg J M, Madden K R, Barringer K J, et al. Functional characterization of the two alcohol oxidase gene from the yeast Pichia pastoris [J]. Mol Cell Biol, 1989, (3): 1316-1323.
    [89] Sreekrishna K, Tschopp J F, Fuck M. Invertase gene (SUC2) of Saccharomyces cerevisiae as a dominant marker for transformation of Pichia pastoris [J]. Gene, 1987,59(1): 115-125.
    [90] Waterham H R, Digan M E, Koutz P J, et al. Isolation of the Pichia pastoris glyceraldehydes-3-phosphate and regulation and use of its promoter [J]. Gene, 1997, 186(1): 37-44.
    [91] Clare J J, Romanos M A, Rayment F B, et al. Production of mouse epidermal growth factor in yeast: high level secretion using Pichia patoris strains containing multiple gene copies [J]. Gene, 1991,105:205-212.
    [92] Scoer C A, Clare J J, McCombie W R, et al. Rapid selection using G418 of high copy number transformants of Pichia patoris for high-level foreign gene [J]. Bio Technology, 1994,12:181-184.
    [93] Jeffrey T McGrew, Dan Leiske, Brad Dell, et al. Expression of trimeric CD40 ligand in Pichia patoris: use of a rapid method to detect high-level expressing transformants[J]. Gene, 1997,187:193-200.
    
    
    [94] 陈偿,甲醇毕赤酵母表达系统[J],热带农业科学,1999,4(2):36-43.
    [95] Romanos M A, Scoer C A clare J J. Foreign gene expression in yeast: a review [J]. Yeast, 1992,8:423-488.
    [96] Thill G P, Davis G R, Stillman C, et al. Positive and negative effects of multicopy intergrated expression vectors on protein expression in Pichia pastoris. In: Davis J, Florent jeds. Proceedings of the 6th international Symposium on Genetics of Microorganisms, Vol Ⅱ. Paris: Societe Franscaise de Microbiologie, 1990, 477-490.
    [97] Despreaux C W, Manning R F. The dacA gene of Bacillus stearothermophilus coding for D-alanine carboxypeptidase: cloing structure and expression in Escherichia coli and Pichia pastoris [J]. Gene, 1993, 131:35-41.
    [98] Weiss H M, Haase W, Michel H, et al. Expression of functional mouse 5-HT~5~A serotonin receptor in the methylotrophic yeast Pichia pastoris pharmacological characterization and localization [J]. FEBS Letters, 1995,377(3): 451-456.
    [99] 齐连权,陈薇,来大志等,毕赤酵母表达系统研究进展[J],2002,22(6):45-47.
    [100] Takahashi K, Takai T, Yasuhara T, et al. Effects of site-directed mutagenesis in the cysteine residues and the N-glycosylation motif in recombinant Der f 1 on secretion and protease activity[J]. Int Arch Allergy Immunol, 2001, 124(4): 454-460.
    [101] Hollenberg C P, Gellissen G. Production of recombinant proteins by methylotrophic yeasts [J]. Curr Opin Biotechnol, 1997, 8(5): 554-560.
    [102] Pichia Expression Kit A Manual of Methods for Expression of Recombinant Proteins in Pichia pastoris 54-58.
    [103] J.萨母布鲁克,E.P.弗里奇,T.曼尼阿蒂斯著,《分子克隆实验指南》第二版,科学出版社.
    [104] Pichia Expression Kit A Manual of Methods for Expression of Recombinant Proteins in Pichia pastoris Appendix 59.
    [105] 刘飞鹏,周天鸿,李月琴,酵母细胞的电击高频转化[J],生物工程进展,1996,16(3):6-9.
    [106] Pichia Expression Kit A Manual of Methods for Expression of Recombinant Proteins in Pichiapastoris 38-39.
    [107] Pichia Expression Kit A Manual of Methods for Expression of Recombinant Proteins
    
    in Pichiapastoris 59.
    [108] 邱荣德、朱建蓓、王垒等,人p53蛋白在巴斯德毕赤酵母中的表达[J],生物工程学报,1999,15(4)477-481.
    [109] 章如安,杨晟,邱荣德等,巴斯德毕赤酵母表达体系研究及进展[J],微生物学通报,2000,27(5),371-373.
    [110] Sreekrishna K, Kropp K E. Pchia pastoris. In: Wolf K ed. Nonconventional Yeasts in Biotechnology: a Handbook, Heidelberg: Springer-Verlag Berlin, 1997,293-311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700