基于数字岩心的岩石声电特性微观数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石物理实验费用高,周期长。针对复杂储层,岩石物理实验遇到了诸多困难,如疏松岩心处理存在困难和裂缝发育的碳酸盐岩难以取到代表性的岩心等。同时,岩石物理实验无法定量研究储层微观参数对岩石宏观物理属性的影响。因此,在三维数字岩心基础上开展岩石物理数值模拟实验将弥补上述不足。
     本文通过两种方法建立三维数字岩心。一是利用X射线CT建立真实岩样的三维数字岩心,并提出了孔隙度与渗透率相结合选择最佳扫描分辨率的方法。二是基于岩石二维信息构建三维数字岩心。首先结合过程法和模拟退火算法的优点,提出了基于岩石二维图像重建三维数字岩心的混合法。重建三维数字岩心的均质性和孔隙连通性与通过X射线CT建立的三维数字岩心相似。然后利用过程法构建具有不同储层参数的三维数字岩心,用于定量研究储层微观参数对岩石物理属性的影响。在三维数字岩心基础上,利用数学形态学方法和有限元方法模拟岩石的电阻率、地层因素和电阻率指数;利用有限元方法模拟岩石的体积模量和剪切模量;利用格子玻尔兹曼方法模拟岩石的绝对渗透率,并结合有限元方法计算不同含水饱和度下的岩石电阻率。
     基于利用X射线CT建立三维数字,岩心的岩石声电特性和渗透率的数值模拟结果与岩石物理实验结果相符,验证了数值模拟方法的准确性,为开展数字岩石物理实验奠定了基础。在具有不同储层微观参数的三维数字岩心的基础上,利用数值模拟方法研究其对岩石物理属性的影响。模拟结果系统展示了储层微观因素对岩石宏观物理属性的影响。揭示了粘土含量和微孔隙是形成低阻储层的重要原因。岩石润湿性对孔隙流体分布有重要影响,油湿储层的饱和度指数明显大于水湿储层。岩石孔隙尺寸分布影响岩石电性,不同尺寸孔隙的导电网络相互连接,导致岩石电性的非阿尔奇现象。不同的岩石颗粒粒径导致不同的岩石微观孔隙结构,并影响岩石宏观物理属性。在相同孔隙度下,随着岩石粒径的增大,岩石电阻率和弹性模量减小,而渗透率增大。裂缝对岩石的电性影响显著,其影响规律取决于裂缝孔隙度、宽度和方向。岩石弹性模量不但与孔隙度有关,而且与岩石孔隙形状密切相关。微分有效介质模型适用于具有结构泥质的泥质砂岩,而自洽模型和微分有效介质模型相结合适用于具有分散泥质的泥质砂岩。
Petrophysics experiment is costly and time consuming. It encounters difficulties applying it to the rocks from the complex reservoir, such as the unconsolidated rock and carbonate sample with fracture that can not be obtained easily. Furthermore it is hard for petrophysics experiment to study the effects of micro-factors on the macro petrophysics properties. The digital petrophysics experiment is numerical simulation of petrophysics based on 3-D digital core. It will overcome the weakness of the petrophysics experiment mentioned above.
     The 3-D digital cores are generated by two kinds of methods. Firstly we obtain them by X-ray CT based on real rock samples and proposed a new method, which combines porosity and permeability of rock, to determine the best resolution of scanning. The other method to generate 3-D digital core is the reconstruction method based on 2-D information of rocks. We propose a hybrid method to reconstruct 3-D digital core. It inherits the advantages from process-based method and simulated annealing method. The homogeneity and pore connectivity of reconstructed digital cores are similar with those of 3-D digital core from X-ray CT. In order to study the effects of micro-factors of reservoir process-based method is applied to generate 3-D digital core with different grain radius.
     Based on 3-D digital cores derived from real samples, numerical methods are applied to simulate the petrophysics properties, such as mathematical morphology and the finite element method (FEM) for resistivity, FEM for elastic moduli, and lattice Boltzmann method for permeability. Those methods were also applied to the 3-D digital cores with different micro-factors to study their effects on petrophysics.
     For the 3-D digital cores of real samples, the numerical results are consistent with the experimental results. It validates the accuracy of numerical methods and the X-ray CT scanning. It will help us build the digital petrophysics experiment. The 3-D digital cores with different micro-factors are built to study the effects of those factors on the resistivity, elastic moduli and permeability by numerical simulation. The results indicate that those factors have great effects on macro petrophysics properties. The clay and micro pores are the main reasons to form the reservoir with low resistivity. The wettability has great effect on the fluid distribution in pore space. The saturation exponent of oil-wet rock is much larger than that of water-wet rock. For the rock with large scale in pore size there is Non-Archie phenomenon, where the saturation exponent varies with the water saturation. It is induced by the connection style of different pore network. The grain radius of rock affects its pore structure, which has effect on macro petrophysics. For a given porosity, as the grain radius increase the resistivity and elastic moduli decrease, while the permeability increases. The fracture affects the resistivity greatly. The effect depends on its volume fraction, width and direction. The elastic properties of rocks are not only determined by porosity, but also determined by the shape of pore, which is defined by aspect ratio of pore. The differential effective medium model can be applied to shaly sand with structured clay, while the combination of the self-consistent approximation and the differential effective medium model is fitted with the shaly sand with dispersed clay.
引文
[1]陶果,岳文正,谢然红等.岩石物理的理论模拟和数值实验新方法[J].地球物理学进展. 2005, 20(1): 4-11.
    [2] Fatt I. The Network Model of Porous Media Iii:Dynamic Properties of Networks with Tube Radius Distribution[J]. Trans. AIME. 1956,V207: 164-181.
    [3] Wang Y., Sharma M. M. A Network Model for the Resistivity Behavior of Partially Saturated Rocks[C]. San Antonio, Texas: 29th SPWLA Ann. Logg. Symp, 1988
    [4] Suman R. J., Knight R. J. Effect of Pore Structure and Wettability On the Electrical Resistivity of Partially Saturated Rock—a Network Study[[J]. Geophysics. 1997, 62(4): 1151-1162.
    [5]高楚桥,章成广,毛志强.润湿性对岩石电性的影响[J].地球物理学进展. 1998, 1(13): 231-236.
    [6]毛志强,高楚桥.渤海湾地区低电阻油气层测井技术与解释方法[M].北京:石油工业出版社, 2000: 100-201.
    [7]毛志强,高楚桥.孔隙结构与含油岩石电阻率性质理论模拟研究[J].石油勘探与开发. 2000(2): 87-90.
    [8]章成广,毛志强.油藏条件下孔隙岩样毛管和电学性质研究[J].地球物理学进展. 1995, 10(01): 76-89.
    [9]陈家军,杨建,田亮.基于孔隙网络模型的非水溶相液体运移实验研究进展[J].地球科学进展. 2007(10): 997-1004.
    [10]王金勋,吴晓东,潘新伟.孔隙网络模型法计算水相滞留对气体渗流的影响[J].石油勘探与开发. 2003(05): 113-115.
    [11]高慧梅,姜汉桥,陈民锋.多孔介质孔隙网络模型的应用现状[J].大庆石油地质与开发. 2007(02): 74-79.
    [12]鲁国明.基于孔隙网络模型的砂砾岩微观水驱油驱替特征[J].特种油气藏. 2010(01): 64-67.
    [13]陈民锋,姜汉桥.基于孔隙网络模型的微观水驱油驱替特征变化规律研究[J].石油天然气学报(江汉石油学院学报). 2006(05): 91-95.
    [14]王克文,关继腾,范业活等.孔隙网络模型在渗流力学研究中的应用[J].力学进展.2005(03): 353-360.
    [15]高慧梅,姜汉桥,陈民锋.储层孔隙结构对油水两相相对渗透率影响微观模拟研究[J].西安石油大学学报(自然科学版). 2007(02): 56-59.
    [16]高慧梅,姜汉桥,陈民锋等.储集层微观参数对油水相对渗透率影响的微观模拟研究[J].石油勘探与开发. 2006(06): 734-737.
    [17]陶军,姚军,李爱芬等.利用孔隙级网络模型研究油水两相流[J].油气地质与采收率. 2007(02): 74-77.
    [18]孙建孟,王克文,朱家俊.济阳坳陷低电阻储层电性微观影响因素研究[J].石油学报. 2006, 27(5): 61-65.
    [19]王克文,孙建孟,耿生成.不同矿化度下泥质对岩石电性影响的逾渗网络研究[J].地球物理学报. 2006, 49(6): 1867-1872.
    [20]王克文,孙建孟,关继腾等.储层岩石电性特征的逾渗网络模型研究[J].石油学报. 2007, 28(1): 101-106.
    [21]王克文.基于逾渗网络模型和升尺度方法的储层岩石电性研究[D].山东东营:中国石油大学(华东), 2007.
    [22] Blunt M. J. Flow in Porous Media Pore-Network Models and Multiphase Flow[J]. Current Opinion in Colloid & Interface Science. 2001,6(3): 197-207.
    [23] Hughes R. G., Blunt M. J. Network Modeling of Multiphase Flow in Fractures[J]. Advances in Water Resources. 2001,24(3-4): 409-421.
    [24] Lopez X., Valvatne P. H., Blunt M. Predictive Network Modeling of Single-Phase Non-Newtonian Flow in Porous Media[J]. Journ al of Colloid and Interface Science. 2003,264 (1): 256-265.
    [25] Valvatne P. H., Blunt M. J. Predictive Pore-Scale Modeling of Two-Phase Flow in Mixed Wet Media[J]. Water Resources Research. 2004,40(7): W7406.
    [26] Okabe H., Blunt M. J. Prediction of Permeability for Porous Media Reconstructed Using Multiple-Point Statistics[J]. Physical Review E. 2004,70(6): 66135.
    [27] Okabe H., Blunt M. J. Pore Space Reconstruction Using Multiple-Point Statistics[J]. Journal of Petroleum Science and Engineering. 2005,46(1-2): 121-137.
    [28] Talabi O., Alsayari S., Blunt M. J., et al. Predictive Pore-Scale Modeling: From Three-Dimensional Images to Multiphase Flow Simulations[J]. SPE. 2008: 115535.
    [29] Dong H., Blunt M. J. Pore-Network Extraction From Micro-Computerized-Tomography Images[J]. Physical Review E. 2009,80(3): 36307.
    [30] Talabi O., Alsayari S., Iglauer S., et al. Pore-Scale Simulation of Nmr Response[J]. Journal of petroleum science & engineering. 2009,67(3-4): 168-178.
    [31] Küntz M., Mareschal J. C., Lavall?e P. Numerical Estimation of Electrical Conductivity in Saturated Porous Media with a 2-D Lattice-Gas[J]. Geophysics. 2000,65(3): 766-772.
    [32]岳文正,陶果,朱克勤.饱和多相流体岩石电性的格子气模拟[J].地球物理学报. 2004, 47(5): 905-910.
    [33]王家禄,高建,刘莉.应用CT技术研究岩石孔隙变化特征[J].石油学报. 2009, 30(6): 887-897.
    [34]赵永峰,陈世江.基于VC++岩石CT图像的分形研究[J].采矿技术. 2008, 8(6): 70-71.
    [35]尹小涛,王水林,党发宁等. CT实验条件下砂岩破裂分形特性研究[J].岩石力学与工程学报. 2008, 27(S1): 2721-2726.
    [36]张顺康,陈月明,侯健等.岩石孔隙中微观流动规律的CT层析图像三维可视化研究[J].石油天然气学报. 2006, 28(4): 107-110.
    [37]李玉彬,李向良,高岩.用微焦点X-CT成象研究岩石微观特征[J].油气采收率技术. 2000, 7(4): 50-54.
    [38] Rosenberg E., Lynch J., Guéroult P. High Resolution 3D Reconstructions of Rocks and Composites[J]. Oil & Gas Science and Technology. 1999,54(4): 497-511.
    [39] Arns C. H. The Influence of Morphology On Physical Properties of Reservoir Rocks[D]. Sydney: The University of New South Wales, 2002.
    [40] Arns C. H., Bauget F., Limaye A., et al. Pore-Scale Characterization of Carbonates Using X-Ray Microtomography[J]. SPE Journal. 2005,10(4): 475-484.
    [41] Joshi M. A Class Three-Dimensional Modeling Technique for Studying Porous Media[D]. Kansas: University of Kansas, 1974.
    [42] Quiblier J. A. A New Three-Dimensional Modeling Technique for Studying Porous Media[J]. Journal of Colloid and Interface Science. 1984,98(1): 84-102.
    [43] Adler P. M., Jacquin C. G., Quiblier J. A. Flow in Simulated Porous Media[J]. International Journal of Multiphase Flow. 1990,16(4): 691-712.
    [44] Ioannidis M. A., Chatzis I. A Dual-Network Model of Pore Structure for Vuggy Carbonates[C]. Abu Dhabi: International Symposium of the Society of Core Analysts, 2000:1-12
    [45] Hazlett R. D. Statistical Characterization and Stochastic Modeling of Pore Networks in Relation to Fluid Flow[J]. Mathematical geology. 1997,29(6): 801-822.
    [46]姚军,赵秀才,衣艳静等.数字岩心技术现状及展望[J].油气地质与采收率. 2005, 12(6): 52-54.
    [47]赵秀才,姚军,陶军等.基于模拟退火算法的数字岩心建模方法[J].高校应用数学学报(A辑). 2007, 22(2): 127-133.
    [48] Hidajat I., Rastogi A., Singh M. Transport Properties of Porous Media From Thin Section[J]. SPE Journal. 2002,7(1): 40-48.
    [49] Keehm Y. Computational Rock Physics: Transport Properties in Porous Media and Applications[D]. Stanford: Stanford University, 2003.
    [50]朱益华,陶果.顺序指示模拟技术及其在3D数字岩心建模中的应用[J].测井技术. 2007, 31(2): 112-115.
    [51]朱益华,陶果,方伟.图像处理技术在数字岩心建模中的应用[J].石油天然气学报. 2007, 29(5): 54-57.
    [52]刘学锋,孙建孟,王海涛等.顺序指示模拟重建三维数字岩心的准确性评价[J].石油学报. 2009, 30(3): 391-395.
    [53] Bakke S., Oren P. E. 3-D Pore-Scale Modelling of Sandstones and Flow Simulations in the Pore Networks[J]. SPE Journal. 1997,2(2): 136-149.
    [54] Oren P. E., Bakke S. Process Based Reconstruction of Sandstones and Prediction of Transport Properties[J]. Transport in Porous Media. 2002,46(2-3): 311-343.
    [55] Oren P. E., Bakke S. Reconstruction of Berea Sandstone and Pore—Scale Modeling of Wettability Efects[J]. Journal of Petmleum Science and Enginering. 2003,39(2): 177-199.
    [56] Arns C. H., Bauget F., Ghous A., et al. Digital Core Laboratory : Petrophysical Analysis From 3D Imaging of Reservoir Core Fragments[J]. Petrophysics. 2004,46(4): 260-277.
    [57] Arns C. H., Bauget F., Limaye A., et al. Pore Scale Characterisation of CarbonatesUsing X-Ray Microtomography[C]. Houston, Texas: SPE Annual Technical Conference and Exhibition, 2004
    [58] Arns C. H., Senden T. J., Sok R. M., et al. Digital Core Laboratory: Analysis of Reservoir Core Fragments From 3D Images[C]: SPWLA 45th Annual Logging Symposium, 2004
    [59] Arns Christoph H. A Comparison of Pore Size Distributions Derived by Nmr and X-Ray-CT Techniques[J]. Physica A: Statistical Mechanics and its Applications. 2004, 339(1-2): 159-165.
    [60] Arns Christoph H., Bauget Fabrice, Limaye Ajay, et al. Pore Scale Characterization of Carbonates Using X-Ray Microtomography[J]. SPE Journal. 2005,10(4): 475-484.
    [61] Arns Christoph H., Knackstedt Mark A., Pinczewski W. Val, et al. Virtual Permeametry On Microtomographic Images[J]. Journal of Petroleum Science and Engineering. 2004,45(1-2): 41-46.
    [62] Arns Ji-Youn, Arns C. H., Adrian P. S., et al. Relative Permeability From Tomographic Images; Effect of Correlated Heterogeneity[J]. Journal of Petroleum Science and Engineering. 2003,39(3-4): 247-259.
    [63] Arns Ji-Youn, Robins Vanessa, Sheppard A. P., et al. Effect of Network Topology On Relative Permeability [J]. Transport in Porous Media. 2004,55(1): 21-46.
    [64] Ghous Abid, Knackstedt Mark Alexander, Arns C. H., et al. 3D Imaging of Reservoir Core at Multiple Scales; Correlations to Petrophysical Properties and Pore Scale Fluid Distributions[C]. Kuala Lumpur, Malaysia: International Petroleum Technology Conference, 2008
    [65] Jones Anthony C., Arns Christoph H., Hutmacher Dietmar W., et al. The Correlation of Pore Morphology, Interconnectivity and Physical Properties of 3D Ceramic Scaffolds with Bone Ingrowth[J]. Biomaterials. 2009,30(7): 1440-1451.
    [66] Knackstedt M. A., Arns C. H., Limaye A., et al. Digital Core Laboratory: Properties of Reservoir Core Derived From 3D Images[C]. Kuala Lumpur, Malaysia: SPE Asia Pacific Conference on Integrated Modelling for Asset Management, 2004
    [67] Knackstedt M. A., Arns C. H., Pinczewskiz W. V., et al. Computation of Linear Elastic Properties From Microtomographic Images: Methodology and Agreement BetweenTheory and Experiment[J]. Geophysics. 2002,67(5): 1396-1405.
    [68] Knackstedt M. A., Arns C. H., Sheppard A. P., et al. Archie'S Exponents in Complex Lithologies Derived From 3D Digital Core Analysis[C]. Austin, Texas: 48th Annual Logging Symposium, 2007
    [69] Knackstedt Mark Alexander, Sok Rob, Adrian Sheppard, et al. 3D Pore Scale Characterisation of Carbonate Core: Relating Pore Types and Interconnectivity to Petrophysical and Multiphase Flow Properties[C]. Dubai, U.A.E.: International Petroleum Technology Conference, 2007
    [70] Makarynska Dina, Gurevich Boris, Ciz Radim, et al. Finite Element Modelling of the Effective Elastic Properties of Partially Saturated Rocks[J]. Computers & Geosciences. 2008,V34(6): 647-657.
    [71] Olafuyi Olalekan Adisa, Sheppard Adrian P., Arns Christoph Hermann, et al. Experimental Investigation of Drainage Capillary Pressure Computed From Digitized Tomographic Images[C]. Tulsa, Oklahoma, USA: SPE/DOE Symposium on Improved Oil Recovery, 2006
    [72] Sakellariou Arthur, Arns Christoph H., Sheppard Adrian P., et al. Developing a Virtual Materials Laboratory[J]. Materials Today. 2007,10(12): 44-51.
    [73] Blunt M. J., Jackson M. D., Piri M., et al. Detailed Physics, Predictive Capabilities and Upscaling for Pore-Scale Models of Multiphase Flow[J]. Advances in Water Resources. 2004,V8-12(25): 1069-1089.
    [74] Al-Gharbi Mohammed Saif. Dynamic Pore-Scale Modelling of Two-Phase Flow[D]. London: Imperial College London, 2004.
    [75] Youssef Souhail, Bauer Daniela, Han Mei, et al. Pore-Network Models Combined to High Resolution Micro-Ct to Assess Petrophysical Properties of Homogenous and Heterogenous Rocks[C]. Kuala Lumpur, Malaysia: International Petroleum Technology Conference, 2008
    [76] Youssef Souhail, Rosenberg Elisabeth, Gland Nicolas F., et al. High Resolution CT and Pore-Network Models to Assess Petrophysical Properties of Homogeneous and Heterogeneous Carbonates[C]. Abu Dhabi, UAE: SPE/EAGE Reservoir Characterization and Simulation Conference, 2007
    [77]姚军,赵秀才,衣艳静等.储层岩石微观结构性质的分析方法[J].中国石油大学学报(自然科学版). 2007, 31(1): 80-86.
    [78]朱益华,陶果,方伟等. 3D多孔介质渗透率的格子Boltzmann模拟[J].测井技术. 2008(01): 25-28.
    [79] Al-Gharbi Mohammed Saif. Dynamic Pore-Scale Modelling of Two-Phase Flow[D]. London: Imperial College London, 2004.
    [80] Frish U., B Hasslacher, Y Pomeau. Lattice-Gas Automata for the Navier-Stokes Equation[J]. Phys Review Letter. 1986,56(3): 1505-1508.
    [81] Chen S., Doolen G. D. Lattice Boltzmann Method for Fluid Flows[J]. Annual Review of Fluid Mechanics. 1998,30(1): 329-364.
    [82] Chin J., Boek E. S., Coveney P. V. Lattice Boltzmann Simulation of the Flow of Binary Immiscible Fluids with Different Viscosities Using the Shan-Chen Microscopic Interaction Model[J]. Philosophical Transactions of the Royal Society A. 2002, 360(1792): 547-558.
    [83] D Humieres D., Ginzburg I., Krafczyk M., et al. Multiple-Relaxation-Time Lattice Boltzmann Models in Three Dimensions[J]. Philosophical Transactions of the Royal Society A. 2002,360: 437-451.
    [84] Grunau D., Chen S., Eggert K. A Lattice Boltzmann Model for Multiphase Fluid Flows[J]. Physics of Fluids. 1993,5(10): 2557-2562.
    [85] Gunstensen A. K., Rothman D. H., Zaleski S., et al. Lattice Boltzmann Model of Immiscible Fluids[J]. Physical Review A. 1991,43(8): 4320-4327.
    [86] He X., Doolen G. D. Thermodynamics Foundations of Kinetic Theory and Lattice Boltzmann Models for Multiphase Flows[J]. Journal of Statistical Physics. 2002,107(1/2): 309-328.
    [87] He X. Y., Chen S. Y., Zhang R. Y. A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and its Application in Simulation of Rayleigh-Taylor Instability[J]. Journal of Computational Physics. 1999,152(2): 642-663.
    [88] Martys N., Chen H. Simulation of Multicomponent Fluids in Complex Three-Dimensional Geometries by the Lattice Boltzmann Method[J]. Physical Review E. 1996,V53(1b): 743-750.
    [89] Martys N. S., Douglas J. F. Critical Properties and Phase Separation in Lattice Boltzmann Fluid Mixtures[J]. Physical Review E. 2001, 63(3): 31205.
    [90] Martys N. S., Torquato S., Bentz D. P. Universal Scaling of Fluid Permeability for Sphere Packings[J]. Physical Review E. 1994,50(1): 403-408.
    [91] Pan C. Use of Pore-Scale Modeling to Understand Flow and Transport in Porous Media[D]. Chapel Hill: University of North Carolina, 2003.
    [92] Rothman D. H., Keller J. M. Immiscible Cellular-Automaton Fluids[J]. Journal of Statistical Physics. 1988,52(3/4): 1119-1127.
    [93] Zhang D., Zhang R., Chen S., et al. Pore Scale Study of Flow in Porous Media: Scale Dependency, Rev, and Statistical Rev[J]. Geophysical Research Letters. 2000,27(8): 1915-1918.
    [94] Kameda A. Permeability Evolution in Sandstone: Digital Rock Approach[D]. Stanford: Stanford University, 2004.
    [95] Hilpert M., Miller C. T. Pore-Morphology-Based Simulation of Drainage in Totally Wetting Porous Media[J]. Advances in Water Resources. 2001,24(2): 243-255.
    [96] Mora P. The Lattice Boltzmann Phononic Lattice Solid[J]. Journal of Statistical Physics. 1992, 68(3-4): 591-609.
    [97]胡健行,李幼铭.细胞自动机在地震波传播研究中的应用[J].地球物理学报. 1995(05): 651-661.
    [98]胡健行,李幼铭.模拟固体中波动过程的细胞自动机建模研究[J].地球物理学报. 1997(01): 120-126.
    [99] Raul Del Valle-Garc?a. Rayleigh Waves Modeling Using an Elastic Lattice Model[J]. Geophysical research letters. 2003,30(16): 121-124.
    [100] Han D. H., Amos N., Morgan D. Effects of Porosity and Clay Content On Wave Velocities in Sandstones[J]. Geophysics. 1986,51(1): 2093-2107.
    [101] Laird A. D. K., Putnam J. A. Fluid Saturation in Porous Media by X-Ray Techniques[J]. Petroleum Transactions, AIME. 1951,192: 275-284.
    [102]赵碧华,周渤然,田中原.用CT技术确定砂岩的孔隙度[J].测井技术. 1994(03): 178-184.
    [103]赵碧华,周勃然,田中原.用层析技术(CT)确定砂岩的饱和度[J].测井技术.1995(01): 1-5.
    [104]赵碧华.用CT扫描技术研究岩心伤害情况[J].石油钻采工艺. 1992(05): 57-60.
    [105]赵碧华.用CT扫描技术观测岩心中液流特性[J].石油学报. 1992(01): 91-97.
    [106]赵碧华.用CT扫描技术观察油层岩心的孔隙结构[J].西南石油学院学报. 1989(02): 57-64.
    [107]赵碧华.用CT扫描技术研究油气层岩石特性[J].石油钻采工艺. 1990(01): 61-66.
    [108]张昌民,李联伍. X-CT技术在储层研究中的应用[M].北京:石油工业出版社, 1996.
    [109] Biswal B., Manwart C., Hilfer R., et al. Quantitative Analysis of Experimental and Synthetic Microstructures for Sedimentary Rock[J]. Physica A. 1999,273(3): 452-475.
    [110]赵秀才,姚军.数字岩心建模及其准确性评价[J].西安石油大学学报(自然科学版). 2007, 22(2): 16-20.
    [111] Garboczi, E. J. NIST Internal Report 6269[EB/OL]. http://ciks.cbt.nist.gov/garboczi/. 2010-01-20.
    [112] Fredirch J. T., Greaves K. H., Martin J. W. Pore Geometry and Transport Properties of Fontainebleau Sandstone[J]. International journal of rock mechanics and mining sciences & geomechanics. 1993,30(7): 691-697.
    [113]向阳,向丹,羊裔常等.致密砂岩气藏水驱动态采收率及水膜厚度研究[J].成都理工学院学报. 1999, 26(4): 289-391.
    [114] Fleury M. Resistivity in Carbonates: New Insights[C]. San Antonio, Texas: SPE Annual Technical Conference and Exhibition, 2002:1-9
    [115] Zimmerman R. W. Compressibility of Sandstones[M]. New York: Elsevier, 1991: 25-100.
    [116] Berryman J. G. Long-Wavelength Propogation in Composite Elastic Media II: Ellipsoidal Inclusions[J]. Journal of Acoustic Society of America. 1980,86(6): 1820-1831.
    [117] Gassmann F. Uber Die Elastizitat Porous Media[J]. Vier.der Natru. Gesellschaft in Zurich. 1951,96(1): 1-23.
    [118] Shan X., Chen H. Simulation of Nonideal Gases and Liquid-Gas Phase Transitions by the Lattice Boltzmann Equation[J]. Physical Review E. 1994,49(4): 2941-2948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700