用户名: 密码: 验证码:
基于FRFT的双基地MIMO雷达目标参数估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目标参数估计和定位是雷达信号处理的一个重要内容,被广泛应用在雷达、声纳、无线通信系统定位、无线电监测和军事等领域。近年来,双基地MIMO雷达目标参数估计引起了学者的广泛关注,但是目前的回波信号模型大都假定回波信号中多普勒频率为实常数或者不考虑多普勒频率,实际上由于目标运动速度、运动方向等参数都是不断变化的,回波信号中必然存在时变的多普勒频率,若不考虑其时变特性,则必然会导致估计精度下降。针对已有算法及模型的不足,本文重点研究了双基地MIMO雷达回波信号模型及目标参数估计问题。本文主要创新工作如下:
     (1)针对窄带回波信号中存在时变多普勒频率问题,提出了具有线性时变多普勒频率的回波信号模型。针对这一信号模型提出了基于分数阶傅里叶变换和分数阶功率谱的两种算法,实现了高斯噪声环境下的目标参数联合估计,并结合分数低阶统计量理论,提出了FLOS-FPSD算法,实现了Alpha稳定分布噪声环境下目标参数的较好估计,具有较高的估计精度。进一步地,推导了上述参数估计的克拉美罗界。针对运动目标的三维运动会引起回波信号中存在非线性时变多普勒频率的问题,提出了具有非线性时变多普勒频率的扩展回波信号模型,并在此基础上提出了基于分数阶模糊函数算法和分数低阶统计量的FLOS-FAF算法,在混有脉冲噪声和高斯噪声的环境下实现了目标参数的较高精度估计。
     (2)针对宽带回波信号相对发射信号包含有多普勒频移尺度因子和时延问题,本文提出了一种扩展的宽带回波信号模型,并在此基础上提出了基于分数阶傅里叶变换和分数阶功率谱的两种目标参数估计算法,实现了高斯噪声环境下目标参数的联合估计。另外,将FLOS-FPSD算法应用到宽带回波信号参数估计问题中,实现了脉冲噪声干扰环境下目标参数较高精度估计及定位。并进一步推导了宽带回波信号模型中参数估计的克拉美罗界,得到了参数估计克拉美罗界的闭合表达式。
     (3)针对飞机目标运动状态信息获取上存在障碍和回波信号具有时变多普勒频率的问题,提出了一种扩展的近场连续回波信号模型,将分数阶模糊函数理论与投影近似子空间跟踪算法相结合提出了基于FAF-PAST的目标参数估计算法,实现了高斯噪声环境下飞机目标参数的动态估计。同时考虑了脉冲噪声的影响,提出了基于FLOS_FAF的投影近似子空间角度动态估训(FF_RLM_PAST)算法,既能有效抑制脉冲噪声的干扰,也能很好实现飞机目标参数的动态估计。
Target parameter estimation is an important aspect in radar signal processing, which has been widely used in radar, sonar, wireless communication positioning system, radio monitoring and military fields. In recent years, target parameter estimation in bistatic MIMO radar system has attracted more and more attentions, but Doppler frequency was ignored or assumed as time-invariant in most existing models. In fact, due to the velocities and moving directions of targets varying constantly, the received signals contain Doppler frequency with time-variant. If Doppler frequency is assumed as time-invariant, the performance of parameter estimation will degrade. To overcome the drawbacks of traditional models and methods, this dissertation mainly studies the model for received signals and the target parameter estimation methods under different noise environments in bistatic MIMO radar system. The main contributions are listed as follows:
     (1) Since a narrow received signal contains time-varying Doppler frequency, this dissertation proposes a signal model with linear time-varying Doppler frequency. For this signal model, by the fractional Fourier transform (FRFT), two approaches and the fractional power spetrum density are proposed to estimate target parameters in the Gaussian noise environment. This dissertation, combining fractional lower order statistics (FLOS) and fractional power spectrum, proposes a novel approach to precisely estimate target parameters in the impulsive noise environment. Furthermore, the Cramer-Rao bound for target parameter estimation is derived. Due to three dimensional motion characteristics of the target, the received signal may contain nonlinear time-varying Doppler frequency. We propose an extented signal model, then propose the fractional ambiguity function (FAF) algorithm and the FLOS-FAF algorithm to accurately estimate target parameters in both Gaussian and impulsive noise environments.
     (2) Since the wideband echo signal, in comparison with the transmitted signal, often contains time delay and Doppler stretch, which can not be estimated availably by the narrowband model, this dissertation proposes an extented wideband received signal model, then FRFT based algorithm and fractional power spectrum density algorithms are proposed to estimate jointly target parameters in the Gaussian noise environment. Then the FLOS-FPSD algorithm is applied for target paramters estimation of wideband signal model, which accurately achieves target parameter estimation and localization in the impulsive noise environment. Furthermore, the Cramer-Rao bound for target parameter estimation is derived and computed in closed form which shows its good performance.
     (3) For the difficulty on collection of moving information on a civil airplane, this dissertation proposes an extented model for received signals. We combine FAF and the projection approximation subspace tracking (PAST) algorithm and propose the FAF-PAST method to achieve airplane parameter dynamic estimation in the Gaussian noise environment. Furthermore, the FF-RLM-PAST algorithm based on FLOS-FAF method is proposed to estimate airplane parameters in the impulsive noise environment, which effectively suppresses the impulse noise and achieves parameter dynamic estimation of airplane accurately.
引文
[1]SAYED A H, TARIGHAT A, KHAJEHNOURI N. Network-based wireless location challenges faced in developing techniques for accurate wireless location information [J]. IEEE Signal Processing Magazine,2005,22(4):24-40.
    [2]Gogineni S D. Adaptive MIMO Radar for Target Detection, Estimation, and Tracking[D]. Missouri:Washington University,2012.
    [3]FISHLER E, HAIMOVICH A, BLUM R., et al. MIMO radar:an idea whose time has come in[C]. Proceedings of the IEEE Radar Conference, Newark, NJ, USA,26-29 April 2004,71-78.
    [4]FISHLER E, HAIMOVICH A, BLUM R., et al. Spatial diversity in radars-models and detection performance[J]. IEEE Transactions on Signal Processing,2006,54(3): 823-838.
    [5]FISHLER E, HAIMOVICH A, BLUM R., et al. Performance of MIMO radar systems:advantages of angular diversity[C]. Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers, USA,7-10 November 2004:305-309.
    [6]BEKKERMAN I, TABRIKIAN J. Target detection and localization using MIMO radars and sonars[J]. IEEE Transactions on Signal Processing,2006,54(10):3873-3883.
    [7]BEKKERMAN I, TABRIKIAN J. Spatially coded signal model for active arrays[C]. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Canada,2004:209-212.
    [8]ROBEY F C, COUTTS S, WEIKLE D., et al. MIMO radar theory and experimental results[C]. Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers, USA,7-10 November 2004:300-304.
    [9]XU L Z, LI J, STOICA P. Target detection and parameter estimation for MIMO radar system[J]. IEEE Transaction on Aerospace and Electronic Systems,2008,44 (3): 927-939.
    [10]LI J, STOICA P, XU LZ. On parameter identifiability of MIMO radar [J]. IEEE Signal Processing Letter,2007,14(12):968-971.
    [11]BENCHEIKH M L, WANG Y D, HE HY. Polynomial root finding technique for joint DOA DOD estimation in bistatic MIMO radar[J]. Signal Processing,2010,90:2723-2730.
    [12]谢荣,刘峥.基于多项式求根的双基地MIMO雷达多目标定位方法[J].电子与信息学报,2010,32(9):2197-2220.
    [13]BENCHEIKH M L, WANG Y. Joint DOD-DOA estimation using combined ESPRIT-MUSIC approach in MIMO radar[J]. Electronics Letters,2010,46(15):1081-1083.
    [14]ZHANG X F, XU L Y, XU L., et al. Direction of Departure and Direction of Arrival Estimation in MIMO Radar with Reduced-Dimension MUSIC[J].IEEE Communications Letters,2010,14(12):1161-1163.
    [15]陈金立,顾红,苏卫民.一种双基地MIMO雷达快速多目标定位方法.电子与信息学报,2009,31(7):1664-1668.
    [16]JIANG H, WANG D F, LIU C. Joint parameter estimation of DOD/DOA/polarization[J]. The Journal of China Universities of Posts and Telecommunications,2010,17(5): 32-37.
    [17]JIN M, LIAO G S, LI J. Joint DOD and DOA estimation for bistatic MIMO radar [J]. Signal Processing,2009,89:244-251.
    [18]CHEN D F, CONG B X, QI G D. Angle estimation using ESPRIT in MIMO Radar [J]. Electronics Letters,2008,44(12):770-771.
    [19]HASSANIEN A, VOROBYOV S A. Transmit energy focusing for DOA estimation in MIMO radar with colocated antennas[J]. IEEE Transactions on Signal Processing,2011, 59(6):2669-2682.
    [20]YAO B B, WANG W J, YIN Q Y. DOD and DOA Estimation in Bistatic Non-Uniform Multiple-Input Multiple-Output Radar Systems[J]. IEEE Communications Letters, 2012,16(11):1796-1799.
    [21]YANG M L, CHEN B X, YANG X Y. Conjugate ESPRIT algorithm for bistatic MIMO radar [J]. Electronics Letters,2010,46(25):1692-1694.
    [22]ZHENG G M, CHEN B X, YANG M L. Unitary ESPRIT algorithm for bistatic MIMO radar [J]. Electronics Letters,2012,48(3):179-191.
    [23]ABRAMOVICH Y I, FRAZER G J. Bounds on the Volume and Height Distributions for the MIMO Radar Ambiguity Function[J]. IEEE Signal Processing Letters,2008,15 (5):505-508.
    [24]吴跃波,郑志东,杨景曙.一种新的双基地MIMO雷达收发角和多普勒频率联合估计方法[J].电子与信息学报,2011,33(8):1816-1821.
    [25]张剑云,郑志东,李小波.双基地MIMO雷达收发角及多普勒频率的联合估计算法[J].电子与信息学报,2010,32(8):1843-1848.
    [26]吕晖,冯大政,和洁.一种新的双基地MIMO雷达目标定位和多普勒频率估计方法[J].电子与信息学报,2010,32(9):2167-2171.
    [27]程院兵,顾红,苏卫民.一种新的双基地MIMO雷达快速多目标定位算法.电子与信息学报,2012,34(2):312-317.
    [28]符渭波,苏涛,赵永波,等,空间色噪声环境下双基地MIMO雷达角度和多普勒频率联合估计方法[J].电子与信息学报,2011,33(12):2858-2862.
    [29]郭艺夺,张永顺,董宁宁,等.双基地MIMO雷达二维方位角及多普勒频率联合估计[J].系统工程与电子技术,2011,33(11):2393-2397.
    [30]吴跃波,杨景曙,王江.双基地MIMO雷达相干脉冲串的参数估计性能[J]系统工程与电子技术,2011,33(7):1497-1502.
    [31]CHEN Y H. Joint estimation of angle and Doppler frequency for bistatic MIMO radar[J]. Electronics Letters,2010,46(2):170-172.
    [32]BELKACEMI H, MARCOS S. Robust subspace-based algorithms for joint angle/Doppler estimation in on-Gaussian clutter[J]. Signal Processing,2007,87(7):1547-1558.
    [33]HUA G, ABEYSEKERA S S. Receiver Design for Range and Doppler Sidelobe Suppression Using MIMO and Phased-Array Radar[J]. IEEE Transactions on Signal Processing,2013, 61 (6):1315-1326.
    [34]NIU R X, BLUM R S, VARSHNEY P K., et al. Target Localization and Tracking in Noncoherent Multiple-Input Multiple-Output Radar Systems[J]. IEEE Transactions on Aerospace and Electronic Systems,2012,48(2):1466-1489.
    [35]MOHAND L, MESSAOUD B. Doppler spectrum estimation by Ramanujan-Fourier transform [J]. Digital Signal Processing,2009,19(5):843-851.
    [36]HAIMOVICH A M, BLUM R S, CIMINI L J. MIMO Radar with Widely Separated Antennas. IEEE Signal Processing Magazine,2008,25(1):116-129.
    [37]李丽,邱天爽.基于FRFT的双基地MIMO雷达多普勒频率和收发角联合估计新方法[J].通信学报,2012,33(11):171-176.
    [38]YAN H, Shen G, Zetik R, et al. Ultra-Wideband MIMO Ambiguity Function and Its Factorability[J]. IEEE Transactions on Geoscience and Remote Sensing,2013,51 (1):504-519.
    [39]WU X H, KISHK A A, GLISSON A W. Antenna Effects on a Monostatic MIMO radar for direction estimation a Cramer-Rao Lower bound analysis[J]. IEEE Transactions on Antennas and Propagation,2011,59(6):2388-2395.
    [40]Wehner D R. High-Resolution Radar[M],2nd ed. Boston, MA:Artech House.1999.
    [41]GARCIA ARIZA A P, MULLER R, WOLLENSCHLAGER F, et al.60GHz Ultrawideband polarimetric MIMO sensing for wireless multi-gigabit and radar[J]. IEEE Transactions on Antennas and Propagation,2013,61(4):1631-1641.
    [42]JAMES D, TAYLOR P E. Ultra-Wideband Radar Technology[M]. New York:CRC Press, 2001:10-85.
    [43]STEINER K M J. Fast convergence adaptive detection of Doppler-Shifted Range-Distributed targets. IEEE Transaction on Signal Processing,2000,48(9):2686-2670.
    [44]QU J, KON M W, Luo Z Q. The estimation of time delay and Doppler stretch of wideband signals[J]. IEEE Transactions on Signal Processing,1995,43(4):904-916.
    [45]MA N, GOH J T. Ambiguity-function-based techniques to estimate DOA of broadband chirp signals[J]. IEEE Transactions on Signal Processing,2006,54(5):1826-1839.
    [46]CHEN II W, ZHAO J W. Wideband MVDR beamforming for acoustic vector sensor linear array[J]. II-E Proceedings of Radar Sonar and Navigation,2004,151(3):158-162.
    [47]YOON Y S, KAPLAN I. M, MCCLELLAN J H. Tops:New DOA estimator for wideband signals[J]. IEEE transactions on signal processing2006,54(6):1977-1989.
    [48]CLAUDIO E D, PARISI R. WAVES:Weighted average of signal subspaces for robust wideband direction finding[J].IEEE Transaction on Signal Processing,2001,49(10): 2179-2190.
    [49]SALMI J, MOLISCH A F. Propagation parameter estimation modeling and measurements for Ultrawideband MIMO radar[J]. IEEE Transactions on Antennas and Propagation,2011,59(11):4257-4267.
    [50]GERSHMA A B, PESAVENTO M, AMIN M G. Estimating parameters of multiple wideband Polynomial-Phase sources in sensor arrays[J]. IEEE Transactions on Signal Processing,2001,49(12):2924-2934.
    [51]GERSHMAN A B, AMIN M G. Wideband direction of arrival estimation of multiple chirp signals using spatial time-frequency distributions[J]. IEEE Signal Processing Letters,2000,7(6):152-155.
    [52]WANG H, KAVEH M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources[J]. IEEE Tranaction on Acoust Speech Signal Processing,1985,33(8):823-831.
    [53]Lush D C, Hudson D A. Ambiguity function analysis of wideband radars[C]. Radar Conference,1991, Proceedings of the 1991 IEEE National, USA,1991:16-20.
    [54]AZIMI-SADJADI M R, PEZESHKI A, ROSEVEARE N. Wideband DOA Estimation Algorithms for Multiple Moving Sources using Unattended Acoustic Sensors[J]. IEEE Transactions on Aerospace and Electronic Systems,2008,44(4):1585-1599.
    [55]李磊,任丽香,包云霞,等.宽带频率步进信号参数估计的克拉美罗界研究[J].电子与信息学报,2011,33(4):982-986.
    [56]李丽,邱天爽.基于分数阶傅里叶变换的双基地雷达线性调频信号的参数联合估计新方法[J].电子与信息学报,2012,34(4):878-884.
    [57]LI L, QIU T S. Cramer-Rao Bound for Parameter Estimation in Wideband Bistatic Multiple-Input Multiple-Output Radar [J]. ICIC Express Letters, Par B:Applications, 2012,3(4).885-892.
    [58]Jin Y, Chen G Q. Long distance target DOA estimation by MIMO sonar[C].2010 Internationa] Conference on Artificial Intelligence and Computational Intelligence, Kaifeng, China,23-24, Oct,2010,111-114.
    [59]Liu Z M, Huang Z T, Zhou Y Y. Direction of arrival estimation of wideband signals via covariance matrix sparse representation. IEEE Transactions on Signal Processing,2011,59(9):4256-4270.
    [60]Tuan D H, Russer P. Signal processing for wideband smart antenna array applications. IEEE Microwave Magazine,2004,5(1):57-67.
    [61]NAGATA Y, FUJIOKA T, ABE M. Two-Dimensional DOA estimation of sound sources based on weighted wiener gain exploiting Two-Directional microphones[J]. IEEE Transactions on Audio, Speech, Language Processing,2007,15(2):416-429.
    [62]TAYEM N, KWON H M. L-Shape 2-Dimensional Arrival Angle Estimation With Propagator Method[J]. IEEE Transactions on Antennas And Propagation,2005,53(5):1622-1630.
    [63]GU J F, WEI P. Joint SVD of Two Cross-Correlation Matrices to Achieve Automatic Pairing in 2-D Angle Estimation Problems [J]. IEEE Antennas and Wireless Propagation Letters,2007,6:553-556.
    [64]梁军利,冀邦杰,赵峰,等.一种基于平行因子分析的近场源定位新方法[J].电子学报,2007,35(10):1909-1915.
    [65]马克江,李军,吴云韬,等.无需参数配对的近场源距离方位频率联合估计算法[J].电子学报,2010,38(6):1454-1458.
    [66]SWINDLEHURST A L, KAILATH T. Passive direction of arrival and range estimation for near-field sources[C]. The 4th annual ASSP Workshop on Spectrum Estimation and Modeling, USA,1988:123-128.
    [67]HUANG Y D, BARKAT M. Near-field multiple sources localization by passive sensor array[J]. IEEE Transactions on Antennas and Propagation,1991,39(7):968-975.
    [68]RUSSELL J, KRISTINC L B, HARRY L, et al. Broadband Passive Range Estimation using MUSIC[J]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE Press, USA,2002:2920-2922.
    [69]WEISS A J, FRIENDLANDER B. Range and bearing estimation using polynomial rooting[J]. IEEE Journal of Oceanic Engineering,1993,18(2):130-137.
    [70]STARER D, NEHORAI A. Passive localization of near-field sources by path following [J]. IEEE Transactions on Signal Processing,1994,42(3):677-680.
    [71]LEE J H, LEE C M, LEE K K. A modified path following algorithm using aknown algebraic path[J]. IEEE Transactions on Signal Processing,1999,47(5):1407-1409.
    [72]王波,王树勋.基于二阶统计量的近场定位新方法[J].电子与信息学报,2006,28(6):1004-1008.
    [73]OBEIDAT B A, ZHANG Y M, AMIN M G. Range and DOA estimation of polarized near-field signals using fourth-order statistics[J]. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing,USA,2004:97-100.
    [74]张永顺,郭艺夺,赵国庆,等MIMO双基地雷达空间多目标定位方法[J].电子与信息学报,2010,32(12):2820-2824.
    [75]许红波,粟毅,黄春琳,等MIMO雷达的近场模型DOA估计[J].信号处理,2009,25(11):1710-1714.
    [76]SARKAR T K, MOKOTE E, PALMA M S. Signal Enhancement in a Near-Field MIMO Environment through Adaptivity on Transmit and Polarization Diversity[C]. Antennas and Propagation Society International Symposium, NY, IEEE Press 2008:1-2.
    [77]WIENER N. Hermitian Polynomials and Fourier Analysis[J]. Journal of Mathematics Physics MIT,1929,18:70-73.
    [78]CONDON E U. Immersion of Fourier Transform in a continous group of functional transformations[J]. Proceeding National Academy of Sciences,1973,23:158-164.
    [79]BARGMANN V. On a Hilbert Space of Analytic Functions and an Associated Integral Transform Part I[J], Communications on pure and applied mathematics,1961,14(3): 187-214.
    [80]OZAKTAS II M, KUTAY M A, ZALEVSKY Z. The Fractional Fourier transform with applications in Optics and Signal Processing[M]. New York:Wiley,2001.
    [81]NAMIAS V. The fractinal order Fourier transform and its application to quantum mechanics[J]. IMA Journal of Applied Mathematics,1980,25:241-265.
    [82]OZAKTAS H M, MENDLOVIC D. Fractional Fourier transforms and their optical implementation(II). Journal of the Optical Society of America A,1993,10(12):2522-2531.
    [83]ALMEIDA L B. The fractional Fourier transform and time-frequency representations [J]. IEEE Transactions on Signal Processing,1994,42(11):3084-3091.
    [84]OZAKTAS H M, KUTAY M A, Bozdagi G. Digital computation of the fractional Fourier transform[J]. IEEE Transactions on Signal Processing,1996,44:2141-2150.
    [85]PEI S C, DING J J. Relations between fractional operations and time-frequency distributions and their applications[J]. IEEE Transactions on Signal Processing, 2011,49(8):1638-1655..
    [86]JOUNY I I. Radar Backscatter analysis using fractional Fourier transform[C]. IEEE Antennas and Propagation Society symposium. USA, IEEE Press,2004,2115-2119.
    [87]TAO R, ZHANG F, WANG Y. Fractional Power Spectrum[J]. IEEE Transactions on Signal Processing,2008,56(9):4199-4206.
    [88]杨小明,陶然.基于分数阶傅里叶变换的线性调频信号二维波达方向估计[J].电子学报,2008,36(9):1737-1740.
    [89]邓兵,王旭,陶然,等.基于分数阶傅里叶变换的线性调频脉冲时延估计特性分析[J].兵工学报,2012,33(6):0764-0768.
    [90]孙晓兵,保铮.分数阶Fourier变换及其应用[J].电子学报,1996,24(12):60-65.
    [91]Qu Q, Jin ML, Kim J M. FRFT based parameter estimation of the quadratic FM signal [J]. Chinese Journal of Electronics,2009,19(3):463-467.
    [92]陈鹏,侯朝焕,马晓川,等.基于匹配滤波和离散分数阶傅里叶变换的水下动目标LFM同波联合检测[J].电子与信息学报,2007,29(10):2305-2308.
    [93]张希会,蔡竟业,杨亦师.基于分数阶傅里叶变换的LFM信号参数估计预判法[J].信号处理,2008,24(4):667-671.
    [94]张南,陶然,王越.基于变标处理和分数阶傅里叶变换的运动目标检测算法[J].电子学报,2010,38(3):683-688.
    [95]AKAY 0, BOUDREAUX-BARTELS G F. Fractional convolution and correlation via operator methods and an application to detection of linear FM signals[J]. IEEE Transactions on Signal Processing,2001,49(5):979-993.
    [96]DONG Y Q, TAO R; ZHOU S Y., et al. Multicomponent chirp signal detection using fractional fourier analysis[J]. Journal of Systems Engineering and Electronics, 1999,10(3):57-63.
    [97]CLEMENTE C, SORAGHAN J J. Range Doppler and chirp scaling processing of synthetic aperture radar data using the fractional Fourier transform[J]. IET Signal Processing,2012,6(5):503-510.
    [98]WHITE P R, LOCKE J. Performance of methods based on the fractional Fourier transform for the detection of linear frequency modulated signals[J]. IET Signal Processing, 2012,6 (5):478-483.
    [99]SUN H B, LIU G S, GU H., et al. Application of the Fractional Fourier transform to Moving Target Detection in Airborne SAR[J]. IEEE Transactions on Aerospace And Electronic Systems,2002,38(4):1416-1424.
    [100]齐林,陶然,周思永,等.基于分数阶傅里叶变换的线性调频信号的自适应时频滤波[J].兵工学报,2003,24(4):499-503.
    [101]陈小龙,关键,刘宁波,等.基于FRFT的LFM信号自适应滤波算法及分析[J].现代雷达,2010,32(12):48-53.
    [102]孟祥意,陶然,王越.分数阶傅里叶域滤波器组的一般化设计方法[J].电子学报,2009,37(9):2046-2051.
    [103]孟祥意,陶然,王越.分数阶傅里叶域两通道滤波器组[J].电子学报,2008,36(5):919-926.
    [104]王强,潘翔.水下沉底小目标回波的短时FRFT滤波分析[J].浙江大学学报(工学版),2008,42(6):918-922.
    [105]邓兵,陶然,齐林,等.分数阶Fourier变换与时频滤波[J].系统工程与电子技术,2004,26(10):1357-1359.
    [106]黄文玲,杨鹏.基于扫频滤波器线性调频信号的滤波算法[J].同济大学学报(自然科学版),2010,38(11):1656-1658.
    [107]ERDEN M F, KUTAY M A, Ozaktas II M. Repeated filtering in consecutive fractional fourier domain and its application to signal restoration[J], TREE Transactions on Signal Processing,1999,47(5):1458-1462.
    [108]KUTAY M A, OZAKTAS H M. Optimal filtering in fractional fourier domains[J]. IEEE Transactions on Signal Processing,1997,45(5):1129-1143.
    [109]SHI J, ZHANG N T. Multichannel Sampling and Reconstruction of Bandlimited Signals in Fractional Fourier Domain[J]. IEEE Signal Processing Letters,2010, 17(11):909-912.
    [110]TAO R, MENG X Y, WANG Y. Transform Order Division multiplexing[J]..IEEE Transactions on Signal Processing,2001,59(2):598-609
    [111]GEORGAKIS A, SUBRAMANIAM S R. Estimation of the Second derivative of Kinematic impact signals using Fractional Fourier domain filtering[J]. IEEE Transactions on Biomedical Engineering,2009,56(4):996-1004.
    [112]PEI S C, DING J J. Generalized Eigenvectors and Fractionalization of Offset DFTs and DCTs[J]. IEEE Transactions on Signal Processing,2004,52(7):2032-2046.
    [113]DJUROVIC I, STANKOVIC S, PITAS I. Digital Watermarking in the fractional fourier transformation Domain[J]. Journal of Network and Computer Applications,2001, 24:167-173.
    [114]HENNELLY B, SHERIDAN J T. Fractional Fourier Transform-based image encryption: phase retrieval algorithm[J]. Optics Communications,2003,226:61-80.
    [115]Youssef A M. On the Security of a Cryptosystem Based on multiple-Parameters Discrete Fractional Fourier Transform[J]. IEEE Signal Processing Letters,2008, 15(4):77-78.
    [116]PEI S C, HSUE W L The Multiple-Parameter Discrete Fractional Fourier Transform [J]. IEEE Signal Processing Letters,2006,13(6):329-332.
    [117]TAO R, MENG X Y, WANG Y. Image Encryption With Multiorders of Fractional Fourier Transforms[J]. IEEE Transactions on Information Forensics And Security,2010, 5(4):734-738.
    [118]JANG S, CHOI W, SARKAR T K., et al. Exploiting early time response using the fractional Fourier transform for analyzing transient radar returns[J]. IEEE Transactions on Antennas and Propagation,2004,52(11):3109-3121.
    [119]JOUNY I I. Radar Backscatter analysis using fractional Fourier transform[C]. IEEE Antennas and Propagation Society symposium, IEEE Press, USA,2004:2115-2119.
    [120]SUN H B, LIU G S, GU H., et al. Application of the fractional Fourier transform to moving target detection in airborne SAR[J]. IEEE Tran Aerospace and Electronic Systems,2002,38(4):1416-1424.
    [121]MUSHA T, UCHIDA H, NAGASHIMA M. Self-monitoring sonar transducer array with internal accelerometers[J]. IEEE Journal of Oceanic Engineering,2002,27(1): 28-34.
    [122]MARTONE M. A multicarrier system based on the fractional Fourier transform for time-frequency-selective channels[J]. IEEE Transactions on Communications,2001, 49 (6):1011-1020.
    [123]CLEMENTE C, SORAGHAN J J. Range Doppler and chirp scaling processing of synthetic aperture radar data using the fractional Fourier transform[J]. IET Signal Processing,2012,6(5):503-510.
    [124]GUAN J, CHEN X L, HUANG Y., et al. adaptive fractional Fourier transform-based detection algorithm for moving target in heavy sea clutter[J]. IET Radar Sonar Navigation,2012,6(5):389-401.
    [125]WANG Q, MATTHEW P, BEACH R J., et al. SAR-Based Vibration Estimation Using the Discrete Fractional Fourier Transform[J]. IEEE Transactions on Geoscience And Remote Sensing,2012,50(10):4145-4156.
    [126]AMEIN A S, SORAGHAN J J. A new Chirp scaling algorithm based on the Fractional Fourier Transform-IEEE Signal Processing Letters,2005,12(10):705-708.
    [127]WANG Y L, WANG X X, CAI P. The Applications of Fractional Fourier Transform in Underwater Acoustic Trajectory Tracking[C]. Proceedings of the 2010 IEEE International Conference on Information and Automation, China,2010:36-439.
    [128]CHEN Y, CAI P, WANG L L. A new underwater acoustic communication system based on Fractional Fourier Transform[C]. Proceedings of the 2010 IEEE International Conference on Information and Automation, Harbin China,2010:413-418.
    [129]YANG G, LI M, ZHANG L. Multi-Parameter Estimation of Underwater Acoustic Channel Based on Fractional Fourier Transform[C], International Conference on Wireless Communications & Signal Processing, Qingdao China,2009,11:1-5.
    [130]SHAO M, NIKIAS C L. Signal processing with fractional lower order moments:stable processes and their applications[J]. Proceedings of IEEE,1993,81(7):986-1010.
    [131]MA X, NIKIAS C L. Parameter estimation and blind channel identification in impulsive interference[J]. IEEE Transactions on Signal Processing,1995,43 (11): 2884-2897.
    [132]TSIHRINTZIS G A, NIKIAS C L. Evaluation of fractional lower-order statistics-based detection algorithms on real radar sea-clutter data[J]. IEE Proceedings Radar, Sonar and Navigation,1997,144(1):29-38.
    [133]MA X, NIKIAS C L. Parameter estimation and blind channel identification in impulsive interference[J]. IEEE Transactions on Signal Processing,1995,43 (11):2884-2897.
    [134]TSAKALIDES P, NIKIAS C L. Robust space-time adaptive processing (STAP) in non-Gaussian clutter environments[J]. IEE Proceedings Radar, Sonar and Navigation, 1999,146(2):84-93.
    [135]TSAKALIDES P, RASPANTI R, NIKIAS C L. Angle/Doppler estimation in heavy-tailed clutter backgrounds[J]. IEEE Transactions on Aerospace and Electronics systems, 1999,35(2):419-436.
    [136]MA X, NIKIAS C L. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics[J]. IEEE Transactions on Signal Processing,1996,44(11):2669-2687.
    [137]LIU W H, QIU T S, HU T T., et al. Highresolution multipath time delay estimation based on FLOCCS-ESPRIT[J]. Journal of China University of Mining &Technology,2007, 17(1):30-34.
    [138]郭莹,邱天爽,张艳丽,等.脉冲噪声环境下基于分数低阶循环相关的自适应时延估计方法[17].通信学报,2007,28(3):8-14.
    [139]唐洪,邱天爽,张文蓉.脉冲噪声环境中自适应阵列信号的跟踪[J].通信学报,2005,26(8):22-27.
    [140]SUN Y M, QIU T S. New HB-weighted time delay estimation algorithm under impulsive noise environment [J]. Journal of Systems Engineering and Electronics,2008,19(6): 1102-1108.
    [141]ZHA D F, QIU T S. Underwater Sources Location in Non-Gaussian impulsive noise Environments[J]. Digital Signal Proeessing,2006,16(2):149-163.
    [142]冯大政,常冬霞,袁莉.一种自适应全局最小平均P范数算法[J].电子学报,2001,29(12A):1848-1851.
    [143]赵知劲,郑晓华,徐春云.基于α稳定分布的二阶Volterra变抽头长度自适应滤波算法[J].信号处理,2011,27(2):236-240.
    [144]何劲,刘中.基于SCREENED Ratio原理的冲击噪声环境下DOA估计算法[J].电子与信息学报,2006,28(5):875-878.
    [145]ZHONG X H, PREMKUMAR A B, MADHUKUMAR A S. Particle Filtering for acoustic source Tracking in Impulsive Noise With Alpha-stable Process[J]. IEEE Sensors Journal,2013,13(2):589-600.
    [146]ZHA D F. Robust multiuser detection based on least p-norm state space filtering model[J]. Journal of Communications and Networks,2007,9(2):185-191.
    [147]查代奉,邱天爽.基于滑动窗与韧性函数的递归最小p范数滤波方法[J].电子与信息学报,2007,29(1):54-58.
    [148]常冬霞,冯大政.脉冲噪声环境的一种递归全局最小平均p范数算法[J].电子学报,2002,31(3):416-428.
    [149]ZHA D F, QIU T S, LI X.B. Blind Estimation of evoked potentials based on fracfiohal lower order statistics[J]. Lecture Notes in Computer Science,2005,3498:742-747.
    [150]陈文武,蔡征宇,陈如山,等.脉冲噪声下基于Robust STFT的LFM信号检测与参数估计[J].南京理工大学学报(自然科学版),2012,36(2):328-331.
    [151]POLYDORS A, NIKIAS C L. Detection of unknown-frequency sinusoids in noise: spectral versus correlation domain[J]. IEEE Transactions on Acoustic, Speech, and Signal Processing,1987,35(6):897-900.
    [152]TSIHRINTZIS G A, NIKIAS C L. Data-adaptive algorithms for signal detection in sub-Gaussian impulsive interference[J].IEEE Transactions on Signal Processing, 1997,45(7):1873-1878.
    [153]SHEN J, NIKIAS C L. Estimation/detection in impulsive noise/multiuser interfere-nce environment[C].1995 Asilomar Conference on Signals, Systems and Computers, 1995,21-24.
    [154]郭莹,邱天爽.基于分数低阶矩的LETDE时延估计算法[J].通信学报,2006,27(5):12-17.
    [155]SUN Y M, QIU T S. New HB-weighted time delay estimation algorithm under impulsive noise environment[J]. Journal of Systems Engineering and Electronics,2008,19(6): 1102-1108.
    [156]TSIHRINTZIS G A, Tureli U, Nikias C L. Fractional lower-order statistics-based ambiguity functions for differential delay Doppler estimation[J]. IEE Proceedings Radar Sonar and Navigation,1996,143(6):358-365.
    [157]LIU T H, Mendel J M. A Subspace-Based Direction Finding algorithm using fractional lower order statistics[J]. IEEE Transactions on Signal Processing,2001,49 (8):1605-1613.
    [158]You G H, Qiu T S, Yang J. A novel DOA estimation algorithm of cyclostationary signal based on UCA in impulsive noise[J]. AEUE-International Journal of Electronics and Communications,2013,67:491-499.
    [159]TSAKALIDES P, NIKIAS C L. Robust adaptive beamforming in alpha-stable noise environments[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, USA,1996:2884-2887.
    [160]TSAKALIDES P, NIKIAS C L. Angle/Doppler estimation in heavy-tailed clutter backgrounds[J]. IEEE Transactions on Aerospace and Electronic Systems,1999, 35(2):419-436.
    [161]GEORGIADIS A T, MULGREW B. Adaptive Baysian decision feedback equalizer for alpha-stable noise environment [J]. Signal Processing,2001,81 (8):1603-1623.
    [162]RUPI M, TSAKALIDES P, NIKIAS C L. Constant modulus blind equalization based on fractional lower-order statistics[J]. Signal Processing,2004,84(5):881-894.
    [163]GEORGIADIS A T, MULGREW B. Adaptive Baysian decision feedback equalizer for alpha-stable noise environment[J]. Signal Processing,2001,81(8):1603-1623.
    [164]唐洪,邱天爽Alpha急定分布噪声下级联恒模阵列及其稳定性分析[J].电子与信息学报,2006,28(8):1439-1442.
    [165]李森,邱天爽.拟牛顿分数低阶恒模算法的研究[J].系统仿真学报,2009,21(5):1302-1304.
    [166]LI S, QIU T S, ZHA D F. Adaptive blind equalization for MIMO systems under α-stable noise environment [J]. IEEE Communications Letters,2009,13(8):609-611.
    [167]VISURI S, OJA H, KOIVUNEN V. Blind channel identification using robust subspace estimation[C]. Proceeding of the 11th IEEE Signal Processing Workshop on Statistical Processing,2001,8:281-284.
    [168]BHATIA V, MULGREW B, GEORGIADIS A T. Stochastic gradient algorithms for equalization in α-stable noise[J]. Signal Processing,2006,86(4):835-845.
    [169]张安清,邱天爽,章新华.分数低阶矩的信号盲分离万法[J].通信学报,2006,27(3):32-36.
    [170]史晓非,刘人杰,苗瑞.一种峭度依赖的参数自适应肖分离算法[J].电子与信息学报,2006,28(11):2033-2036.
    [171]查代奉,邱天爽.基于低阶预白化与新型网络传递函数的盲源分离方法[J].信号处理,2006,22(2):163-167.
    [172]TEONG C C, BAYAN S S, OLIVER R H. Robust decorrelating decision-feedback multiuser detection in non-Gaussian channels[J]. Signal Processing,2011,81(9):1997-2004.
    [173]TAO R, ZHANG F, WANG Y. Fractional Power Spectrum[J]. IEEE Transactions on Signal Processing,2008,56(9):4199-4206.
    [174]GERSHMAN A B, PESAVENTO M, AMIN M G. Estimating parameters of multiple wideband polynomial-phase sources in sensor arrays [J]. IEEE Transactions on Signal Processing,2011,49(12):2924-2934.
    [175]于红旗.宽带信号阵列高分辨率到达角估计技术研究[D].长沙:国防科技大学,2007.
    [176]刘珂.宽带信号DOA估计算法研究[D].,四川成都:电子科技大学,2010.
    [177]刘晓莉MIMO雷达参数估计方法研究[D].西安:西安电子科技大学,2011.
    [178]YASOTHARAN A, THAYAPARAN T. The performance of the Fourier method in detecting an accelerating target and estimating its median velocity[C]. IEEE International Radar Conference, Waterloo Canada,2000:59-64.
    [179]SWINDLEHURST A L, STOICA P. Maximum Likelihood methods in radar array signal processing[J]. Proceedings of the IEEE,1998,86(2):421-441.
    [180]BEKKERMAN I, TABRIKIAN J. Target detection and localization using MIMO radars and sonar [J]. IEEE Trans on Signal Processing,2006,54(10)-.3873-3883.
    [181]BAI L, YIN Q Y. CRB for carrier frequency offset estimation with pilot and virtual subcarriers[J]. IEEE Communications Letters,2012,16(4):522-525.
    [182]LI J, STOCIA P. MIMO radar with collocated antennas, IEEE Signal Processing Magazine,2007,24 (5):106-114.
    [183]YANG B. Projection approximation subspace tracking[J]. IEEE Transaction on Signal Processing,1995,43(1):95-107.
    [184]JIANG R, ZHU D, SHEN M., et al. Synthetic aperture radar autofocus based on projection approximation subspace tracking[J]. IET Radar, Sonar and Navigation, 2012,6(6):465-471.
    [185]Tsao T, Slamani M., Varshney P., et al. Ambiguity Function for a bistatic radar [J]. IEEE Transactions on Aerospace and Electronic Systems,1997,33(3):1041-1051.
    [186]LI J F, ZHANG X F. Improved joint DOD and DOA estimation for MIMO array with velocity receive sensors[J]. IEEE Signal Processing,2011,18(12):717-720.
    [187]WU S L, LUO J Q, LIU Y J. A method for recognition of spectrum peaks in 2-D MUSIC algorithm[C]. IEEE International Symposium on Microwave, Antenna, Propagation and EMC technologies for Wireless communications,2005,1 (1):704-707.
    [188]邱天爽,夏楠,李景春,等.稳定分布噪声下基于高斯近似粒子滤波的干扰源定位算法.信号处理,2012,28(9):1248-1253.
    [189]李森,邱天爽Alpha稳定分布噪声中韧性投影近似子空间跟踪算法.电子学报,2009,3(3):519-522.
    [190]黄富彪,何冰哲.一种卫星信号载波频率精确估计算法[J].现代电子技术,2012,35(3):129-134.
    [191]Weiss L G. Wavelets and wideband correlation processing[J]. IEEE Transactions on Signal Processing,1994,11(1):13-32.
    [192]QU J, Wong K M. The estimation of time delay and Doppler stretch of wideband signals[J]. IEEE Transactions on Signal Processing,1995,43(4):904-916.
    [193]李磊,任丽香,包云霞,等.宽带频率步进信号参数估计的克拉美罗界研究[J].电子与信息学报,2011,33(4),:982-986.
    [194]谭海峰,李景春.利用飞机散射信号查找干扰源的定位算法[J].无线电通信技术,2009,35(2):40-42.
    [195]邱天爽,夏楠,李景存,李书芳.稳定分布噪声下基于高斯近似粒子滤波的干扰源定位算法[J].信号处理,2012,(28)9:1248-1253.
    [196]GERSHMAN A B, PESAVENTO M, AMIN M G. Estimating parameters of multiple wideband polynomial-phase sources in sensor arrays[J]. IEEE Transactions on Signal Processing,2011,49 (12):2924-2934.
    [197]SWINDLEHURST A L, STOICA P. Maximum likelihood methods in radar array signal processing[J]. Proceedings of the IEEE,1998,86(2):421-441.
    [198]BEKKERMAN I, TABRIKIAN J. Target detection and localization using MIMO radars and sonar[J]. IEEE Transactions on Signal Processing,2006,54(10):3873-3883.
    [199]BAI L, YIN Q Y. CRB for carrier frequency offset estimation with pilot and virtual subcarriers[J]. IEEE Communications Letters,2012,16(4):522-525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700