套管钻井关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
套管钻井技术就是用标准的油田套管边钻边封隔井眼,套管起着钻柱的作用,将机械动力和液压动力通过与最下部套管相连的钻具组合传给钻头,以实现钻进和钻井液循环,钻达设计井深后,起出下部钻具,进行固井。套管钻井技术把钻井和下套管合并成一个作业过程,钻头和底部钻具组合的起下用钢丝绳在套管内完成,不再需要常规的起下钻作业。
     套管钻井与常规钻井相比具有明显的优势,主要表现在能够缩短钻进时间、减小井下事故、改善井控状况、起下钻时泥浆能够连续循环、减小钻机尺寸、降低地面设备和后期作业费用、减少钻井过程对地层(储层)和地表的污染等方面,既保护了环境,又提高了单井产能,日益受到人们广泛的认识和普遍的应用。
     套管钻井过程中由于套管柱既是钻柱又是完井管柱,与常规钻井相比,套管柱的受力复杂程度、环空流体的流动状态及压力分布、套管柱的偏磨与损伤等明显不同。本文就是针对套管柱在井内受弯曲、扭转应力幅值大、环空内流体流动参数预测难于确定、接头螺纹受力大以及套管疲劳损坏失效等技术难点,利用弹性力学理论和有限元方法,分别建立了套管柱力学和数学分析模型、套管环空水力学模型和接头螺纹分析模型,得出一套适合于套管钻井过程中整体管柱分析的力学计算方法。应用该方法,能够优化钻井水力参数和优选接头螺纹,预防或减小套管柱损坏。通过全面系统的研究及应用,论文得出以下主要结论:
     (1)通过套管钻井动力学研究并结合套管钻井中旋转套管柱的力学行为分析,根据井斜方位的变化建立整体管柱的摩阻力分析力学模型,并进行了轴向拉压应力状态下的套管柱剩余强度的计算。在此基础上,通过对套管柱进行屈曲分析,确定了套管柱屈曲的临界载荷,优选了套管柱。
     (2)通过套管钻井水力学研究及应用流体力学的基本方程,建立环空压耗计算模型和轴向流动的动量方程,依此得出了钻井液流动规律。在此基础上,通过钻头射流的压力降、波动压力等参数的计算,准确地给出套管钻井中井筒环空钻井液的流态及流速的相互关系与压力分布,进而优选了套管钻井水力参数。
     (3)应用弹性力学理论,借鉴管柱螺纹研究的主要方法,通过对套管柱螺纹的受力和形变分析,建立了套管钻井套管柱连接螺纹的力学分析模型。依此计算得出了螺纹齿极限承载能力,校核了套管柱接头螺纹强度,并给出了补强套管螺纹的技术措施,为优选接头螺纹和特殊螺纹的设计提供理论依据。
     (4)考虑套管钻井中和钻后完井两个工艺过程,分别从力学和化学角度研究了套管柱疲劳与损伤破坏形式,得出了不同应力幅载下的疲劳强度及剩余强度,进而提出了预防套管损坏的技术措施。
     (5)应用本文所建立的理论模型,分别对扶余地区套管钻井的套管柱摩阻扭矩、钻头水力参数、螺纹连接强度、套管柱屈服和剩余强度等参数进行了计算,通过与现场实钻数据比较,水力参数误差在10%以内,能够满足施工要求。
Casing drilling technology is that the standard casing is used to drill and pack off hole. The casing that plays the role of the drill string, will transmit mechanical and hydraulic power to drill bit through BHA which connects to the lower part of casing. It can remain drilling and circulating of drilling fluid. BHA will be hoisted and cementing will start after the wellhole is drilled to the design depth. The drilling and running casing are combined into an integral operation in casing drilling. The bit and BHA will be triped in casing with the cable and the trip operation in conventional drilling does not require any longer.
     Compared with conventional drilling, casing drilling has obvious advantages which mainly represent some aspects following. It can shorten the drilling time, reduce down hole accidents, improve the well-controlled conditions and cause drill fluid continuous to cycle while tripping. It also can decrease drilling rig size and the cost of later stage operating surface equipment and reduce the pollution on the layer(reservoir) and surface environment during the drilling. This not only protects the environment, but also increases the single well production, which causes people's awareness and general application ever.
     Compared with conventional drilling process, casing string serve as drill string. This leads to obvious difference in straining complexity, flowing state and pressure distribution in annular space, eccentric wear and damage, and so on. Technological difficulties includes string bending in wellbore, lager twisting stress amplitude, definite prediction of annular fluid parameters, load on thread, fatigue and damage of casing. Focusing on these difficulties, the article builds up a set of mechanics model of whole casing string combining mechanics of elasticity with finite element method. The model can be used to analyze casing string mechanics, annular hydraulics and thread mechanics. Based on the above model, drilling hydraulics and thread can be optimized, and casing string failure can be prevented or decreased. Through overall and systematic research and application, the article gets main conclusions as follows:
     (1) Casing dynamics and rotating mechanics are jointly researched. String friction force of whole casing string is analyzed considering deviation and azimuth. Residual strength of casing string is calculated in axial tensile stress condition. Critical buckling load is defined by analyzing casing string buckling, and casing string is optimized.
     (2) The model of annular pressure loss calculation and momentum equation of axial flowing are built based on drilling hydraulics and application of basic hydromechanics equation. So flowing regularity of drill fluid is obtained. Based on calculating pressure drop of bit jet and fluctuating pressure, interrelationship between flowing pattern and velocity and pressure distribution in annular are presented accurately in casing and annular space, further hydraulics of casing drilling is optimized.
     (3) Elasticity mechanics theory is applied to research thread load. The model is built by analyzing strain and deformation of casing string thread. Thread teeth’s bearing limit is got, and the strength of sub thread in casing string is checked. Furthermore, technical measures of thread’s reinforcement is presented, which provides theoretical foundation for optimizing sub and special thread design.
     (4) Considering of the two processes in casing drilling and completion after drilling, the fatigue and damage types of the casing string are obtained respectively from the mechanics and chemical views. We obtain the fatigue strength and residual intensity in different stress loading and present further the technical measures of preventing casing damage.
     (5) By applying the theoretical models established in the article, many parameters are calculated respectively, which are friction and torque of casing string, bit hydraulics, thread strength of joint, buckling and residual intensity of casing string in the casing string in Fuyu region. By comparing with actual drilling data, the error of hydraulics parameters is less than 10% and meets the requirement of the construction work.
引文
[1]韦实.套管钻井—降低钻井成本的一种途径.世界石油工业,1999,6(11):2~15 .
    [2]Roger Shields. Large-Diameter Clory-Hole Drilling:Evolution Form 12-ft to 20-ft Diameter[R].SPE 22122,1994.
    [3] Vogt C. Drilling Technology for Depleted Reservoir[R].SPE 36827. 1996.
    [4] Sinor L A .Rotary Liner Drilling for Depleted Reservoirs[R].SPE 39399,1998. SPE 39399. 1998.
    [5] Skinazi E. Development,of A Casing/Drilling System,Improves the Drilling Process[P].SPE 62780, 2000.
    [6] Jose C,De Leon Mojarro. Breaking a Paradigm: Drilling with T ubing in Cas Wells[R] .SPE 40051, 1998.
    [7]Brian Tarr.Casing-While-Drilling:The Next Step Change in Well Construction [R].World Oil,October,1999.
    [8] A del Sheshtawy. Cut Costs with New BHA for Reduced Clearance Casing Programs [J].World oil, December,I 999.
    [9]Jose C, De Leon Mojarro. Drilling with Casing: The Mexican T echnique Uses the Casing as a Drillpipe[R].SPE 59055,2000.
    [10] Robin Goodale. Systems Make Casing Drilling Viable[J].The American Oil & Gas Reporter,Sep. 2000.
    [11]Lubinski A.A study of the buckling of rotary drilling string. Drilling and Production Practice,1950:178~214.
    [12]Lubinski A,Woods HB. Factors Affecting the Angle of Inclination and Dog-Legging in Rotary Bore Holes. DPP.1953:222~242.
    [13]Woods HB. Lubinski A. Use of Stabilizers in controlling Hole Deviation. DPP, 1955:165~182.
    [14]Lubinski A. Maximum Permissible Dog-Legs in Rotary Boreholes. AIME-SPE Tech. Pub. No. 1543-9. Oct. 25,1960:256~275.
    [15]Woods HB, Lubinski A. Charts Solve Hole-Deviation Problems. OGJ,May 31,1954:84.
    [16]《钻井手册(甲方)》编写组,钻井手册(甲方)[M] .北京:石油工业出版社,1990:758~766.
    [17]闫铁.优选参数钻井理论与实践[M].哈尔滨:哈尔滨工业出版社,1994:2~5.
    [18] Tommy M Warren.Casing Drilling_System Design Considerations.JPT,2000(2).
    [19]胡湘烔,高德利.油气井工程[M].北京:中国石化出版社,2003年2月第一版:1~8.
    [20]H.Eschenauer, J.Koski and A.Osyczka. Multicriteria Design Optimization[M]. Berlin, Springer-Verlag,1990.
    [21]J Rakowska, R T. Haftka and L.T.Watson.Tracing the Efficient Curve for MultiObjective Control-Structure Optimization. Computing Systems in Engineering[M].1991,2(6):461-471.
    [22]Bradley WB. Factors Affecting the Control of Borehole Angle in Straight and Directional Wells. JPT. Jun1975:679~688.
    [23]Fisher FJ. Analysis of Drill String in Curved Borehole. SPE 5071.
    [24]白家址,苏义脑.井斜控制理论与实践[M].北京:石油工业出版社,1990:1~100.
    [25]中原油器钻采研究所钻井二室.定向井下部钻具组合造斜能力的研究[R].定向井资料,石油情报研究所:525~534.
    [26]王大贞.钻井扶正器组合性能的理论计算及其运用[R].定向井资料,石油情报研究所:535~541.
    [27]苏义脑.求定向井井底真实钻压值的理论分析和初步计算[J].石油钻采工艺,1991(2) :31~42.
    [28]陈祖锡,高志强.下部钻具组合—不等截面、近钻头稳定器问题的分析[J].石油学报,1991(3) :100~109.
    [29]Walker BH. Friedman MB. Three-Dimensional Force and Deflection Analysis of a Variable Cross Section Drill String. J. of Pressure Vessel Tech. May 1977:367~373.
    [30]Walker BH. Downhole Assembly Design Increases ROP,Cuts Costs. World Oil, June 1977:59~65.
    [31]Millheim KK. et al. Bottom-Hole Assembly Analysis Using the Finite-Element Method. JPT. Feb.,1978:265~74.
    [33]Millheim KK. The Effect of Hole Curvature on the Trajectory of a Borehole. SPE 6779.
    [34]Millheim KK. Eight-Part Series on Directional Drilling. OGJ, Nov. 6. 1978 to Feb. 12.1979.
    [35]Millheim KK, Apostal MC. The Effect of Bottomhole Assembly Dynamics On the Trajectory of a Bit. JPT, Dec.1981.SPE 9222.
    [36]Millheim KK,Apostal MC. How BHA Dynamics Affect Bit Trajectory. World Oil, May 1981:183~205. Millheim KK. Computer Simulation of the Directional Drilling Process. SPE 1990.
    [37]Sutko AA,et al. Directional Drilling-A Comparison of Measured and Predicted Changes in Hole Angle.SPE8336.
    [38]Callas NP. Callas RL. Four-part Series on Stabilizer Placement. 0G1, Nov. 24,1980 to Dec. 29.1980.
    [39]Toutainn P. Three-part Series on Analysing Drill Siring Behavior. World Oil,June 1981 toSept. 1981.
    [40]Ho H-S. An Improved Modeling Program for Computing tlm Torque and Drag in Directional and Deep Well.SPE 18047.
    [41]Maidla EE,Wejtanewiez AK. Field Comparison of 2-D and 3-D Methods for the Borehole Friction Evaluation in Directional Wells. SPE 16663.
    [42]Vandiver JK, et al.Case Studies of the Bending Vibration and Whirling Motion of Drill Collars. SPE/IADC 18652.
    [43]Falconer LG, et al. Applications of a Real Time Wellbore Friction Analysis. SPE/IADC 18649.
    [44]屈展,刘德铸.钻柱振动问题及其理论研究进展[J].石油机械,1996,24(2):54~57.
    [45]G.Ooms and B.E. Kampman-Reinhartz.Influence of Drillpipe Rotation and Eccentricity on Pressure Drop Over Borehole With Newtonian Liquid During Drilling.IADC/SPE Asia Pacific Drilling Technology Conference, 2000(5): 120~132.
    [46]G.Heisig et al.Lateral Drillstring Vibrations in Extended-Reach Wells.IADC/SPE Drilling Conference,IADC/SPE59235, 2000.
    [47]Bernd Schmalhorst et al. Drilling Dynamics in the Presence of Mud Flow. IADC/SPE Drilling Conference,IADC/SPE59236, 2000.
    [48]Robert F.Mitchell Buckling of Pipe with Connectors in Vertical Wells.SPEDC,2000.9.
    [49]N.Challamel et al.A Stick-slip Analysis Based on Rock/Bit Interaction:Theoretical and Experimental Contribution.[C].IADC/SPE Drilling Conference.IADC/SPE 59230,2000.
    [50]M Laurent.Hvdraulic Rig Supports Casing Drilling.World Oil,1999,(9):1~10
    [51]汪海阁.降低钻井费用的革新方法—套管钻井[J].国外石油机械,1999,10(4):1~9.
    [52]黄志潜.再谈套管钻井技术及其装备[J].国外石油机械.1999,10(1):60~62.
    [53]杜春常,谢光平,刘崇建.深井套管抗挤强度分析及计算[J].西南石油学报,1999,21(3) :37~40.
    [54]顾晓贤,黄贺勇,胡国清.石油套管螺纹联接质量的现场控制与评价[J].钻采工艺,1999,22(6) :47~50.
    [55]习俊通,聂钢,梅雪松,等.套管螺纹接头连接性能的接触有限元分析[J].西安交通大学学报,1999,33(11) :63~66.
    [56]聂上振.套管钻井工艺技术[J].石油钻采工艺.2000,22(3):40~41.
    [57]刘清友,陈浩,钟青.套管可靠性研究进展[J].天然气工业,2000,20(2) :48~51.
    [58]陈养龙,王新来,何树栋.套管悬挂载荷的现场计算[J].石油钻探技术,2000,28(6) :25~27.
    [59]王俊芳,曹鸿斌,孙朝林,等.国外套管钻井技术综述[J].断块油气田,2001,8(6):67~68.
    [60]陈维荣.套管钻井_墨西哥公司利用套管代替钻杆的钻井技术[J].国外油田工程,2001,17(11) :26~29.
    [61]陈维荣.套管钻井系统的开发改进了钻井过程[J].国外油田工程,2001,17(5) :16~19.
    [62]黄胜利,郭海涛.套管钻井系统的设计与应用[J] .石油机械,2001,29(3) :52~54.
    [63]吕拴录,宋治,韩勇.套管抗内压强度试验研究[J] .石油矿场机械,2001,30:51~55.
    [64]陈维荣,黄涛.国外套管钻井技术的发展和现状[J].石油钻探技术,2002,30(1) :16~18.
    [65]陈维荣,孙家祥.可回收式井下钻具组合在套管钻井中的应用[J].石油钻采工艺,2002,24(1) .
    [66]李春吉,单正明,孟祥奎.套管钻井技术简介[J].石油钻探技术,2002,30(6) .
    [67]刘宏丽.套管钻井新技术[J].西部探矿工程,2002,5.
    [68]王涛.套管钻井在Wyoming南部的成功应用[J].国外油田工程,2002,18(12) :21~23.
    [69]李黔,冯少波.轴向载荷对套管螺纹连接应力的影响分析[J].西南石油学院学报,2002,24(1) :81~83.
    [70]李斌,杨智春,高智海.非均匀外压下含磨损缺陷套管的挤毁极限载荷分析[J] .西北工业大学学报,2002,20(4) :659~662.
    [71]张兰江,兰阔,董耀华,等.Tesco底部钻具可回收式套管钻井系统[J].国外石油机械,2003,31(12) :46~48.
    [72]肖绍嵩,王秀勇.套管钻井技术的挑战性应用[J].国外油田工程,2003,19(4) :27~29.
    [73]姜伟,涂学翔.套管钻井技术首次在我国海上钻井作业中的应用[J].2003,25(3) :27~29.
    [74]姜伟.套管钻井技术在我国海上钻井作业中的应用[J].中国还上油气(工程),2003,15(2) :32~35.
    [75] Tom.Hill.An Innovative design to reduce drillstring fatigue[J].SPE87188,2003.
    [76] Tommy M.Warren Casing,drilling, application design considerations[J].SPE59179, 2000.
    [77]沙东,王光奇,李健,等.套管钻井技术在庄海5井中的应用[J].石油钻探技术,2003,31(6) :23~24.
    [78]赵力国,杨宁宁.套管钻井是一种有效的钻井方法[J].国外油田工程,2003,19(5) :29~31.
    [79]徐合献,赵社强,娄彦钊.套管钻井在得克萨斯南部成功实施[J].国外油田工程,2003,19(2) :30~33.
    [80]袁光杰,姚振强,林元华,等.套管钻井中套管疲劳失效问题的研究[J].天然气工业,2003,23(5) :56~58.
    [81]袁光杰,姚振强.油套管螺纹连接抗粘扣技术的研究现状及展望[J] .钢铁,2003,38(11) :66~69.
    [82]宋金初,孙坤忠,蔡清,等.套管钻井新工艺[J] .断块油气田.2004,11(5) :77~79.
    [83]宋生印,杨龙,林凯,等.套管钻井用套管与地层岩石磨损的试验研究[J].石油钻探技术,2004,32(6) :1~3.
    [84]牛洪波.导向套管钻井技术[J].国外油田工程,2006,21(6) :19~22.
    [85]何树山.套管钻井技术研究与试验[J].钻采工艺,2005,28(6) :7~10.
    [86]姜伟.套管钻井中套管柱动应力研究及计算方法[J].中国海上油气,2005,17(5) :333~335.
    [87]高连新,史交齐,金烨.上扣扭矩对圆螺纹套管连接强度的影响[J].天然气工业,2005,25(2) :87~89.
    [88]马认琦,郭巧合,赵建刚.TESCO套管钻井技术[J].石油矿场机械,2006,35(2) :81~83.
    [89]周英操,闫铁,刘玉民,等.大庆油田表层套管钻井技术[J].石油钻探技术,2006,34(5) :79~80.
    [90]宋生印,刘永刚,王力,等.套管钻井用套管外表面磨损后剩余强度分析[J].石油机械,2006,34(2) :7~9.
    [91]刘巨保,张薇,王世永.套管钻井中连接螺纹力学分析及设计计算[J].大庆石油学院学报,2006,30(1) :47~49.
    [92]陈勇,练章华,易浩,等.套管钻井中套管屈曲变形的有限元分析[J].石油机械,2006,34(9) :22~24.
    [93]刘玉民,金志富,张洪君.大庆油田油层套管钻井技术研究[J].石油钻探技术,2007,35(5) :22~25.
    [94]冯来,王辉,王力.简易套管钻井技术及专用配套工具研究[J].石油钻探技术,2007,35(5) :25~28.
    [95]冯来,王辉,王力.可更换钻头套管钻井工具及工艺研究[J].石油钻探技术,2007,35(5) :18~22.
    [96]王龙.利用旋转导向系统进行套管定向钻井[J].国外油田工程,2007,23(8) :23~25.
    [97]牛洪波,胥豪,陈建隆.胜利滩海油田表层套管钻井技术研究与应用[J].石油钻探技术,2007,35(5) :32~35.
    [98]宋生印,高德利.石油套管钻井中套管柱疲劳寿命实验研究[J].科技导报,2007,25(21) :27~29.
    [99]陈军海,金衍,陈勉.套管钻井技术进展与应用前景分析[J].石油天然气学报,2007,29(3) :444~446.
    [100]沙东,周明信,王雪滔.套管钻井技术在埕海一号人工井场的应用[J].石油钻探技术,2007,35(5) :35~37.
    [101]吴晓亮,徐小峰,冯京海.套管钻井技术在定向井上的应用[J].石油钻采工艺,2007,29:21~23.
    [102]杨焕龙,任华.套管钻井技术在垦东341井的应用[J].钻采工艺,2007,30(3) :133~135.
    [103]张文华,齐月魁,张松锋.套管钻井技术在批钻井中的应用[J].石油钻探技术,2007,35(5) :29~32.
    [104]宿振国,马清明,布玉环.套管钻井可回收式钻具组合技术研究[J].胜利油田职工大学学报,2007(21):108~109.
    [105]赵增新,高德利.套管钻井扭转残余应力对套管抗挤强度的影响[J].石油钻探技术,2007,35(5) :10~13.
    [106]赵增新,高德利.套管钻井中变应力幅载荷下管柱疲劳强度的评估[J].石油钻探技术,2007,35(5) :14~16.
    [107]高连新,常龙,韩建增.一种计算套管抗挤强度的新方法[J].石油机械,2007,35(10) :40~43.
    [108]管昌生,万兆.石油气井套管钻柱失效主要影响因素分析[J].国外建材科技,2007,28(3) :98~101.
    [109]张松,苏琴.欠平衡钻井与套管钻井相结合_特定条件下的一种创新[J].吐哈油气,2008,13(2) :189~191.
    [110]胡俊宏.套管钻井技术钻井现场应用[J].生产一线.
    [111]邬刚,张宇,况雨春,张伟.套管钻井中套管柱的瞬态动力学分析与研究[J] .石油地质与工程,2008,22(3) :94~96.
    [112]况雨春,张宇,伍开松.套管钻井中套管柱疲劳寿命分析方法[J].钻采工艺,2008,31(3) :25~27.
    [113]杨智光,刘玉民,王洪亮,等.套管钻井专用设备和仪器的配套[J].石油矿场机械,2008,37(4) :80~82.
    [114]杨智光,金志富,刘玉民.延展胀开式表层套管钻井专用钻鞋的研制与应用[J].钻采工艺,2008,31(2) :94~95.
    [115]刘飞,付建红,李真祥,等.深井套管磨损几何力学模型及计算分析[J].石油矿场机械,2008,37(2) :12~15.
    [116]刘智勇,董超芳,李晓刚,等.石油套管失效分析[J].钢铁研究学报,2008,20(3) :58~61.
    [117]N.J.亚当斯.钻井工程[M].石油工业出版社,1992:1~479.
    [118]赵国珍,龚伟安.钻井力学基础[M] .石油工业出版社,1988:40~117.
    [119]韩志勇.定向井设计与计算[M].北京:石油工业出版社,1989:120~150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700