莲叶绿体基因组图谱的构建及其系统进化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莲属现存两个种:中国莲(Nelumbo nucifera Gaertn.)和美洲黄莲(Nelumbo lutea Willd.).长期以来人们一直认为莲属于睡莲目,其系统进化地位一直存在争议。对莲藕的基因组进行研究,可以为莲藕系统进化分析和莲藕育种提供理论基础。本研究围绕莲藕的基因组进行了三方面的工作:莲藕叶绿体全序列测定以及比较分析;莲藕系统进化分析;莲藕基因组纯合度筛选及基因组测序调查。
     主要研究结果如下:
     1.以中国莲和美洲黄莲为材料,利用鸟枪法测定了中国莲和美洲黄莲的叶绿体全序列。结果表明:中国莲叶绿体DNA全长163307bp,而美洲黄莲叶绿体DNA全长163206bp。两者GC含量基本相同,中国莲叶绿体GC含量为37.99%而美洲黄莲叶绿体GC含量为38.01%。莲属叶绿体一共编码了113个不同的基因,包括4个rRNA基因(16S,23S,4.5S和5S),30个tRNA基因和79个不同的蛋白质编码基因。其中4个rRNA基因,7个tRNA基因和6个蛋白质编码基因分布在IR区,其基因总数为130。莲属叶绿体有55.66%的序列是基因编码区,其中,48.43%(79086 bp)的序列编码蛋白质;5.53%(9026)的序列编码核糖体RNA(rRNA);剩下的1.71%(2788bp)编码转运RNA(tRNA)。非编码区占整个叶绿体的44.34%,其中包括基因间隔区(58078 bp;占全叶绿体35.56%)和内含子区(14329 bp;占全叶绿体8.77%)。对两个叶绿体全序列进行比对后,共检测到398个SNP位点和161个INDEL位点。
     2.利用中国莲和美洲黄莲的叶绿体全序列,结合其他80个物种的叶绿体全序列,对莲属的系统进化地位进行了分析。截取这82个叶绿体基因组中的78个蛋白质编码基因序列,制作成为DNA矩阵,利用MP,ML和BI三种算法进行系统进化分析。结果表明,莲属为双子叶植物,莲科应该归类到山龙眼目(分类名称)中。利用r8s 1.71软件进行了分子进化钟计算,我们估计莲科有大约110百万年的进化历史,莲属仅存的两个种—中国莲和美洲黄莲的分离时间大致是2.41百万年前。
     3.进行莲藕,芡实和茭白等水生作物的SSR分子标记开发,得到一批多态性的SSR分子标记,为后续基因组研究奠定基础。利用莲藕SSR分子标记对莲藕种质进行鉴定,从242份莲藕材料中,选出纯合度最高的中间湖莲为测序材料,在华大基因对其进行全基因组de novo测序初步结果的基础上,通过基因组调查,对中间湖莲基因组大小,基因组杂合度,重复序列含量和GC含量进行了分析。初步分析结果表明,中间湖莲基因组大小约为879Mb,其基因组杂合度非常低,重复序列较少。中间湖莲基因组的平均GC含量约为37%,大部分基因组片段的GC含量在34%与40%之间。这些工作为开展构建莲基因组物理图谱和遗传图谱等工作定奠了基础。
There are two surviving Nelumbo species now:Nelumbo nucifera Gaertn. and Nelumbo lutea Willd. Nelumbo was considered as a member of Nymphaeales (water lilies) for a long time, the systematic position of the genus Nelumbo has long remained unsettled. The genome research is essential to understand the systematic position of Nelumbo, and to improve the lotus breeding. We report the complete plastid genome sequences of the Nelumbo, the phylogence of Nelumbo was inferred and are discussed, and we sequensed the Nelumbo genome.
     The main results are as follows:
     1. We sequenced the two complete plastid genome sequences of N. lutea and N. nucifera using Shot-Gun sequencing. The sizes of the N. lutea and N. nucifera plastid genomes are 163,206 and 163,307 bp, respectively. The overall GC contents are 38.01%(N. lutea) and 37.99%(N. nucifera), similar to the currently available plastid genomes of stem dicots. The Nelumbo plastome contains 113 different genes, including four distinct rRNAs (16S,23S,4.5S and 5S),30 distinct tRNAs and 79 distinct peptide-coding genes. Four rRNA, seven tRNA and six peptide-coding genes (including rps12) are duplicated in the IR region, giving a total of 130 genes.55.66% of the plastid is covered by coding regions, including peptide-coding genes (79,086 bp; 48.43%), ribosomal RNA genes (9,026 bp; 5.53%) and transfer RNA genes (2,788bp; 1.71%). The remaining 44.34% consists of intergenic regions (58,078 bp; 35.56%) and introns (14,329 bp; 8.77%). We detected 398 SNP (single nucleotide polymorphism) sites and 161 INDEL (insert/delete) sites between the N. lutea and N nucifera plastid genomes.
     2. To resolve the long-standing controversies about the phylogeny of Nelumbo, we report here the two complete plastid genome sequences of N. lutea and N. nucifera. Simultaneously, a DNA matrix containing 78 protein-coding genes from four gymnosperms and 78 angiosperms was analyzed using three phylogenetic methods (maximum parsimony, MP; maximum likelihood, ML; and Bayesian inference, BI). The results implied that Nelumbo is a stem endicot and should be placed into the Proteales. Nelumbonaceae have an age of 110 million years, and the splitting between N. lutea and N. nucifera is estimated to have occurred about 2.41 Mya.
     3. We report the development and characterization of microsatellite primers designed for Nelumbo nucifera, Euryale ferox and Zizania latifolia.Using these polymorphic microsatellite markers, we select the ZJH wild lotus as the best sequencing material. We did the Nelumbo genome survey using about 18G sequencing data. The genome size of Nelumbo is about 879Mp and the heterozygous rate in this genome is very low. There are some repeat regions in this genome, according to the distribution of GC depth, we can infer that the GC content of Nelumbo genome is about 37%. This work will be useful in nelumbo linkge map constraction and physical map constraction.
引文
1.郭宏波,柯卫东,李双梅,彭静:不同类型莲资源的RAPD聚类分析。植物遗传资源学报2004,5(4):328-332。
    2.郭宏波,柯卫东:千瓣莲品种资源的RAPD分析。中国农学通报2008,24(4):66-68。
    3.胡光万,刘克明,雷立公:莲属(N elum bo Adan s.)的系统学研究进展和莲科的确立。激光生物学报2003,6:415-420。
    4.黄秀强:美洲黄莲的细胞遗传学观察。遗传1991,13(1):4-7。
    5.陆佩洪,陈维培,高建军等.睡莲科植物类平均聚类的初步研究。南京师大学报(自然科学版)1992,15(2):72-77。
    6.陆佩洪,陈维培:睡莲科植物过氧化物酶同功酶的排序分析。南京师大学报(自然科学版)1993,16(2):52-54。
    7.倪学明,於炳,周远捷,赵家荣:睡莲科的属间关系的研究。武汉植物学研究1994,12(4):311-320。
    8.潘磊,郑鹏,徐杰,全志武,李双梅,刘宏高,柯卫东,丁毅。磁珠富集法制备莲藕基因组的微卫星分子标记。中国蔬菜2007:1-13。
    9.全志武,汪静,潘磊,郑鹏,李双梅,柯卫东,丁毅。10个藕莲品种SSR指纹图谱的构建与品种鉴别。中国蔬菜2008,3:15-17。
    10.索志立:莲科系统位置评述。广西植物2007,27(1):31-39。
    11.田红丽,周世良:莲科系统学和遗传多样性研究现状。云南植物研究2006,28(4):341-348。
    12.王其超,张行言,胡春根.荷花品种分类新系统。武汉植物学研究1997,15(1):19-26。
    13.韦平和,陈维培,陈瑞阳:睡莲科的核型分析及其分类学位置的探讨.植物分类学报1994,32(4):293-300。
    14. Anderson CL, Bremer K, Friis EM: Dating phylogenetically basal eudicots using rbcL sequences and multiple fossil reference points. American Journal of Botany 2005, 92:1737-1748.
    15. Anderson FE, Swofford DL: Should we be worried about long-branch attraction in real data sets? Investigations using metazoan 18S rDNA. Mol Phylogenet Evol 2004,33:440-451.
    16. Barkman TJ, Chenery G, McNeal JR, Lyons-Weiler J, Ellisens WJ, Moore G, Wolfe AD, dePamphilis CW:Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proc Natl Acad Sci USA 2000,97:13166-13171.
    17. Bergsten J: A review of long-branch attraction. Cladistics 2005,21:163-193.
    18. Borsch T, Barthlott W: Classification and distribution of the genus Nelumbo Adans. (Nelumbonaceae). Beitr Biol Pfl 1994,68:421-450.
    19. Cai Z, Penaflor C, Kuehl JV, Leebens-Mack J, Carlson JE, dePamphilis CW, Boore JL, Jansen RK:Complete plastid genome sequences of Drimys, Liriodendron and Piper. implications for the phylogenetic relationships of magnoliids. BMC Evol Biol 2006,6:77.
    20. Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chang CC, Chaw SM:The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 2006,23:279-291.
    21. Chase M, Soltis D, Olmstead R, Morgan D, Les D, Mishler B, Duvall M, Price R, Hills H, Qui YL, Kron K, Rettig J, Conti E, Palmer J, Manhart J, Sytsma K, Michaels H, Kress J, Karol K, Clark D, Hedren M, Gaut B, Jansen R, Kim KJ, Wimpee C, Smith J, Furnier G, Straus S, Xiang QY, Plunkett G, Soltis P, Swensen S, Williams S, Gadek P, Quinn C, Equiarte L, Golenberg E, Learn G, Graham S, Barrett S, Dayanandan S, Albert V: Phylogenetics of seed plants:an analysis of nucleotide sequences from the plastid gene rbcL. Ann Missouri Bot Gard 1993,80:528-580.
    22. Crane PR, Herendeen PS:Cretaceous floras containing angiosperm flowers and fruits from eastern North America. Review of Palaeobotany and Palynology 1996,90:319-337.
    23. Crane PR, Pedersen KR, Friis EM, Drinnan AN:Early Cretaceous (Early to middle Albian) platanoid inflorescences associated with Sapindopsis leaves from the Potomac Group of eastern North America. Syst Bot 1993,18:328-344.
    24. Crepet WL, Nixon KC, Gandolfo MA: Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. Am J Bot 2004,91:1666-1682.
    25. Cronquist A: An Integrated System of Classification of Flowering Plants. Columbia University Press, New York; 1981.
    26. Davies TJ, Barraclough TG, Chase MW, Soltis PS, Soltis DE, Savolainen V: Darwin's abominable mystery: insights from a supertree of the angiosperms. Proc Natl Acad Sci USA 2004,101:1904-1909.
    27. Donoghue DJ, Mathews S:Duplicate genes and the root of angiosperms, with an example using phytochrome sequences. Mol Phylogen Evol 1998,9:489-500.
    28. Doyle JA, Endress PK: Morphological phylogenetic analysis of basal angiosperms: Comparison and combination with molecular data. Int J Plt Sci 2000,161:S121-S153.
    29. Drinnan AN, Crane PR, Hoot SB:Patterns of floral evolution in the early diversification of non-magnoliid dicotyledons (eudicots). Plant Syst Evol 1994,8:93-122.
    30. Edgar RC:MUSCLE:multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 2004.32:1792-1797.
    31. Gao L. Su YJ, Wang T: Plastid genome sequencing, comparative genomics, and phylogenomics:Current status and prospects. J Syst Evol 2010,48:77-93.
    32. Gao Z, Thomas BA: A review of fossil cycad megasporophylls, with new evidence of Crossozamia Pomel and its associated leaves from the Lower Permian of Taiyuan, China. Rev Palaeobot Palynol 1989,60:205-223.
    33. Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH:Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Mol Biol Evol 2003,20:1499-1505.
    34. Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH:The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. Mol Biol Evol 2004,21:1445-1454.
    35. Goremykin VV, Holland B, Hirsch-Ernst KI, Hellwig FH:Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Mol Biol Evol 2005,22:1813-1822.
    36. Goulding SE, Olmstead RG, Morden CW, Wolfe KH:Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet 1996,252:195-206.
    37. Graham SW, Olmstead RG:Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. Am J Bot 2000,87:1712-1730.
    38. Hall BG:Comparison of the accuracies of several phylogenetic methods. Mol Biol Evol 2005, 22:792-802.
    39. Han YC, Teng CZ, Zhong S, Zhou MQ, Hu ZL, Song YC.Genetic variation and clonal diversity in populations of Nelumbo nucifera (Nelumbonaceae) in central China detected by ISSR markers. Aquatic Botany 2007,86: 69-75.
    40. Hansen DR, Dastidar SG, Cai Z, Penaflor C, Kuehl JV, Boore JL, Jansen RK: Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms:Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Mol Phylogenet Evol 2007,45:547-563.
    41. Hilu KW, Borsch T, Muller K, Soltis DE, Soltis PS, Savolainen V, Chase M, Powell M, Alice L, Evans R, Sauquet H, Neinhuis C, Slotta T, Rohwer J, Chatrou L: Inference of angiosperm phylogeny based on matK sequence information. Amer J Bot 2003, 90:1758-1776.
    42. Hirose T, Sugiura M:Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast ndhD mRNA: a possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes. EMBO J 1997,16:6804-6811.
    43. Hoot SB, Magallon S, Crane PR: Phylogeny of Basal Eudicots Based on Three Molecular Data Sets:atpB, rbcL, and 18s Nuclear Ribosomal DNA Sequences. Ann. Missouri Bot. Gard 1999,86:1-32.
    44. Hughes NF, McDougall AB:Barremian-Aptian angiospermid pollen records from southern England. Rev Palaeobot Palynol 1990,65:145-151.
    45. Ito M:Phylogenetic systematics of the Nymphaeales. Bot Mag Tokyo 1987,100:17-35.
    46. Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL: Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 2007,104:19369-19374.
    47. Jansen RK, Kaittanis C, Saski C, Lee SB, Tomkins J, Alverson AJ, Daniell H:Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences:effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 2006,6:32.
    48. Kim HL, Song MJ, Kim KJ. Genetic variation analysis of Korean lotus (Nelumbo nucifera) using randomly amplified polymorphic DNA (RAPD) markers. Korean Journal of Plant Taxonomy 1998,28 (4):343-355.
    49. Kim KJ, Lee HL: Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 2004,11:247-261.
    50. Lander ES et al:Initial sequencing and analysis of the human genome. Nature 2001, 409(6822):860-921.
    51. Leebens-Mack J, Raubeson LA, Cui L, Kuehl J, Fourcade M, Chumley T, Boore JL, Jansen RK, dePamphilis CW:Identifying the basal angiosperms in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone. Mol Biol Evol 2005,22:1948-1963.
    52. Les DH:The origin and affinities of the Ceratophyllaceae. Taxon 1988,37:326-345.
    53. Li R, Fan W, Tian G, Zhu H, et al.:The sequence and de novo assembly of the giant panda genome. Nature 2010,463:311-17.
    54. Maier RM, Neckermann K, Igloi GL, Kossel H:Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 1995,251:614-628.
    55. Mardanov AV, Ravin NV, Kuznetsov BB, Samigullin TH, Antonov AS, Kolganova TV, Skyabin KG:Complete sequence of the duckweed (Lemna minor) chloroplast genome: Structural organization and phylogenetic relationships to other angiosperms. J Mol Evol 2008, 66:555-564.
    56. Mathews S, Donoghue MJ:The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 1999,286:947-950.
    57. Moore MJ, Bell CD, Soltis PS, Soltis DE:Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 2007, 104:19363-19368.
    58. Moore MJ, Soltis PS, Bell CD, Soltis DE:Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci USA 2010,107: 4623-4628.
    59. Murray MG, Thompson WF: Rapid isolation of high molecular weight DNA. Nucleic Acids Res 1980,8:4321-4325.
    60. Palmer JD:Plastid chromosomes:structure and evolution. In: Bogorad, L., Vasil, I. (Eds.), Cell Culture and Somatic Cell Genetics of Plants. Academic Press, San Diego, California, USA; 1991, pp.5-53.
    61. Pan L, Quan ZW, Li SM, Liu HG, Huang XH, Ke WD, Ding Y. Isolation and characterization of microsatellite markers in the sacred lotus(Nelumbo nucifera Gaertn.). Molecular Ecology Notes 2007,7:1054-1056.
    62. Pan L, Xia QJ, Quan ZW, Liu HG, Ke WD and Ding Y. Development of Novel EST-SSRs from Sacred Lotus(Nelumbo nucifera Gaertn) and Their Utilization for the Genetic Diversity Analysis of N. nucifera. Journal of Heredity 2010:101:71-82.
    63. Perry AS, Brennan S, Murphy DJ, Kavanagh TA, Wolfe KH:Evolutionary re-organisation of a large operon in adzuki bean chloroplast DNA caused by inverted repeat movement. DNA Res 2002,31:157-162.
    64. Posada D, Crandall KA: Modeltest: testing the model of DNA substitution. Bioinformatics 1998,14:817-818.
    65. Qiu Y-L, Dombrovska O, Lee J, Li L, Whitlock BA, Bernasconi-Quadroni F, Rest JS, Davis CC, Borsch T, Hilu KW, Renner SS, Soltis DE, Soltis PS, Zanis MJ, Cannone JJ, Gutell RR, Powell M, Savolainen V, Chatrou LW, Chase MW:Phylogenetic analysis of basal angiosperms based on nine plastid, mitochondrial, and nuclear genes. Int J Pit Sci 2005, 166:815-842.
    66. Qiu Y-L, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW:The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 1999,402:404-407.
    67. Qiu YL, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW:Phylogeny of basal angiosperms:analyses of five genes from three genomes. Int J Pit Sci 2000,161:S3-S27.
    68. Qiu Y-L, Li L, Hendry T, Li R, Taylor DW, Issa MJ, Ronen AJ, Vekaria ML, White AM: Reconstructing the basal angiosperm phylogeny: evaluating information content of the mitochondrial genes. Taxon 2006,55:837-856.
    69. Ronquist F, Huelsenbeck JP:MrBayes 3:bayesian phylogenetic inference under mixed models. Bioinformatics 2003,19:1572-1574.
    70. Sanderson MJ: Estimating absolute rates of molecular evolution and divergence times:a penalized likelihood approach. Mol Biol Evol 2002,19:101-113.
    71. Sanderson MJ:r8s:inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 2003,19: 301-302.
    72. Savolainen V, Chase MW, Hoot SB, Morton CM, Soltis DE, Bayer C, Fay MF, De Bruijn AY, Sullivan S, Qiu YL: Phylogenetics of flowering plants based upon a combined analysis of plastid atpB and rbcL gene sequences. Syst Biol 2000,49:306-362.
    73. Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WJ, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS: Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 2000,133:381-461.
    74. Soltis DE, Soltis PS:Amborella not a "basal angiosperm"? Not so fast. Amer J Bot 2004, 91:997-1001.
    75. Soltis PS, Soltis DE, Chase MW:Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 1999,402:402-404.
    76. Soltis PS, Soltis DE, Savolainen V, Crane PR, Barraclough TG:Rate heterogeneity among lineages of tracheophytes:Integration of molecular and fossil data and evidence for molecular living fossils. Proc Natl Acad Sci USA 2002,99:4430-4435.
    77. Swofford DL: PAUP*:phylogenetic analysis using parsimony (*and other methods). Ver.4.0 Sunderland MA: Sinauer Associates; 2003.
    78. Tsudzuki T, Wakasugi T, Sugiura M: Comparative analysis of RNA editing sites in higher plant chloroplasts. J Mol Evol 2001,53:327-332.
    79. Upchurch GR, Crane PR, Drinnan AN:The megaflora from the Quantico locality (Upper Albian), Lower Cretaceous Potomac Group of Virginia. Virginia Museum of Natural History, Memoir 4:1-57, Martinsville; 1994.
    80. Von Balthazar M, Pedersen KR, Friis EM:Teixeiria lusitanica, a new fossil flower from the Early Cretaceous of Portugal with affinities to Ranunculales. Plant Syst Evol 2005, 255:55-75.
    81. Worberg A, Quandt D, Barniske AM, Lohne C, Hilu KW, Borsch T: Phylogeny of basal eudicots:insights from non-coding and rapidly evolving DNA. Organisms Diversity Evolution 2007,7:55-77.
    82. Wu CS, Wang YN, Liu SM, Chaw SM: Chloroplast Genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: Insights into cpDNA evolution and phylogeny of extant seed plants. Mol Biol Evol 2007,24:1366-1379.
    83. Wyman SK, Boore JL, Jansen RK: Automatic annotation of organellar genomes with DOGMA. Bioinformatics 2004,20:3252-3255.
    84. Yu J, Hu S, Wang J, et al.:A draft sequence of the rice genme (Oryza sativa L. ssp. indica). Science 2002,296(5565):79-92.
    85. Zanis MJ, Soltis DE, Soltis PS, Mathews S, Donoghue MJ:The root of the angiosperms revisited. Proc Natl Acad Sci USA 2002,99:6848-6853.
    86. Zwickl DJ:GARLI, Genetic Algorithm for Rapid Likelihood Inference, Version 0.942. Available at www.bio.utexas.edu/faculty/antisense/garli/Garli.html:2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700