基于底物类型的沉积型微生物燃料电池产电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于在实现废弃物或废水无害化的同时可产生宝贵电能,微生物燃料电池(Microbial Fuel Cell, MFC)技术受到各界广泛关注。其中,沉积型MFC (Sediment MFC, SMFC)因其不需投加电子受体或供氧剂、成本低、无二次污染、可用于水体原位修复等特点,引起越来越多研究者的兴趣。本研究分别以葡萄糖、乙酸钠、蓝藻酸化液和蓝藻为产电底物,从电池性能、产电特性、阳极生物膜特性等方面综合考察了底物类型对SMFC运行特性的影响,并结合循环伏安法对其电子传递特征进行了深入分析,不仅可丰富和充实SMFC的理论内涵,也是对现有蓝藻资源化技术的很好补充,具有重要的学术价值和应用前景。主要研究内容和结果如下:
     (1)不同底物条件下SMFC启动和电池性能研究表明,电池功率密度与底物去除之间呈明显的正相关关系。以蓝藻酸化液为底物的SMFC体系,不仅最大功率密度最高,为63.24mW/m2, COD去除率及底物降解速率也最大,分别为72.6%和0.607kgCOD/(m3·d)。其次为乙酸钠和葡萄糖体系,最大功率密度和COD去除率分别为50.92mW/m2、42.14 mW/m2和72.0%、53.6%。蓝藻酸化液可作为SMFC的产电底物。
     (2)底物类型对SMFC体系产电特性的影响研究表明,底物类型通过影响微生物的代谢活性和阳极生物膜生长情况改变体系的活化阻力、传质阻力及阴阳极电势,最终影响体系的功率密度输出。蓝藻酸化液体系的阳极电势最低,为-427 mV,阴极电势最高,为164 mV,电池电势最大,为591 mV,表观内阻最小,为461 Q,故其输出功率密度也最大,达71.77 mW/m2。
     (3)底物类型对SMFC体系阳极生物膜特性的影响研究表明,葡萄糖为底物的SMFC体系胞外聚合物(Extracellular Polymeric Substances, EPS)总量最高,为19.28mg/gVS.由于细胞内源代谢,空白体系EPS总量次之,为17.44mg/gVS。蓝藻酸化液为底物造成的传质阻力较小,EPS总量为16.99mg/gVS,其阳极碳毡上生物量最大,生物膜中P含量为7.46μgP/g碳毡。蓝藻酸化液为底物时阳极生物膜的电化学活性最高,0V时为77 mA,微生物以杆菌为主。
     (4)基于底物类型的SMFC体系电子传递特征分析表明,以厌氧消化污泥为接种物的SMFC体系中,电子传递特征以生物膜机制为主。提高体系的电流密度输出可通过优化阳极生物膜的成膜能力实现。
In recent year, microbial fuel cell (Microbial Fuel Cell, MFC), as an advanced technology utilizing waste biomass directly for power generation, has gained extensive attention. Sediment MFC (SMFC), a sort of membrane-less MFC, which can be applied to water remediation and cost less without addition of electron acceptor or oxygen-supplier and secondary pollution, appeals to more and more researchers. In this study, the effect of substrate type on the performance of SMFC in sequencing batch is investigated in terms of cell performance, behavior of power generation and character of bioflim on anode electrode, with glucose, sodium acetate, cyanobacteria acidogenic fermentation liquid and cyanobacteria as substrates, respectively. Furthermore, the characteristic of electron transfer in anode is analyzed combined with cyclic voltammetry (CV). This will enrich the theory connotation of SMFC and be a helpful complement to the recycling technology of cyanobacteria so that it is worthy of great academic value and application perspective. The major contents of research and results are as follows:
     (1) The variation of substrate degradation is positively correlated with the power density. Both the maximum power density (63.24 mW/m2) and the substrate degradation (72.6%, 0.607 kgCOD/m3·d) of SMFC with cyanobacteria acidogenic fermentation liquid as substrate are the highest, followed by the SMFCs with sodium acetate (50.92 mW/m2,72.0%,0.573 kgCOD/m3·d) and glucose (42.14 mW/m2,53.6%,0.427 kgCOD/m3-d). The results show that SMFC utilizing cyanobacteria acidogenic fermentation liquid for power generation is feasible.
     (2) The substrate type affects microorganism metabolism activities and the growth of biofilm on anode electrode and results in the variation of activation resistance, mass transfer resistance, cathode, anode potential and power output of SMFC eventually. SMFC using cyanobacteria acidogenic fermentation liquid as substrate shows the lowest anode potential (-427 mV), the highest cathode potential (164 mV), the highest cell potential (591 mV) and the lowest internal resistance (461Ω), therefore the power output (71.77 mW/m2) is the highest.
     (3) Total extracellular polymeric substances (EPS) of SMFC taken glucose as substrate is the highest (19.28 mg/gVS) and total EPS of control SMFC (17.44 mg/gVS) is second only to that of glucose system because of autophagocytosis. Cyanobacteria acidogenic fermentation liquid leads to lower mass transfer resistance and total EPS of SMFC with it as substrate is 16.99 mg/gVS. It's demonstrated that effect of activitation resistance is greater than ohmic resistance in biofilm on anode electrode of SMFC because biomass of SMFC with acidogenic fermentation liquid is the largest (7.46μgP/g carbon felt) and internal resistance is also the lowest (461Ω). Besides, the electrochemical activity of biofilm on anode electrode of SMFC with acidogenic fermentation liquid is the strongest (0.077 A at 0 V) and bacilli occupy the dominant position of microbial community.
     (4) The analysis on the characteristic of electron transfer in anode of SMFC based on substrate type shows that electron is transferred to anode electrode by adsorbing to the surface of electrode and forming biofilm in SMFC. The current output of SMFC can be increased by optimizing the capability of biofilm forming on anode.
引文
[1]Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes[J]. Appl Environ Microbiol,2003,69(3):1548-1555
    [2]Jang JK, Pham TH, Chang IS, et al. Construction and operation of a novel mediator-and membrane-less microbial fuel cell[J]. Process Biochem,2004,39:1007-1012
    [3]Fan YZ, Hu HQ, Liu H. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration[J]. J Power Sources,2007,171: 348-354
    [4]Aelterman P, Rabaey K, Pham HT, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J]. Environ Sci Technol,2006,40: 3388-3394
    [5]张锦涛,倪晋仁,周顺桂.基于铁还原菌的微生物燃料电池研究进展[J].应用与环境生物学报,2008,14(2):290-295
    [6]Reimers CE, Tender LM, Fertig S, et al. Harvesting energy from the marine sediment-water interface[J]. Environ Sci Technol,2001,35:192-195
    [7]李登兰,洪义国,许玫英.微生物燃料电池构造研究进展[J].应用与环境生物学报,2008,14(1):147-152
    [8]邓丽芳,李芳柏,周顺桂,等.克雷伯氏菌燃料电池的电子穿梭机制研究[J].科学通报,2009,54(19):2983-2987
    [9]汪之和,施文正.蓝藻的综合开发利用[J].渔业现代化,2003,2:32-33
    [10]杨海麟,李克朗,张玲,等.蓝藻资源无害化利用技术的研究[J].生物技术,2008,18(6):95-98
    [11]李玉祥,刘和,堵国成,等.碱性条件促进太湖蓝藻厌氧发酵产挥发性脂肪酸[J].环境工程学报,2010,4(1):210-213
    [12]Chaudhuri SK, Lovley DR. Electricity from direct oxidation of glucose in mediator-less microbial fuel cells[J]. Nat Biotechnol,2003,21:1229-1232
    [13]Chae KJ, Choi MJ, Lee JW, et al. Effect of different substrates on the performance, bacterial diversity and bacterial viability in microbial fuel cells[J]. Biores Technol,2009, 100:3518-3525
    [14]Zhang ER, Xu W, Diao GW, et al. Electricity generation from acetate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells[J]. J Power Sources,2006,161(2):820-825
    [15]尤世界,赵庆良,姜珺秋.废水同步生物处理与生物燃料电池发电研究[J].环境科学,2006,27(9):1786-1790
    [16]Oh S, Min B, Logan BE. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environ Sci Technol,2004,38(18):4900-4904
    [17]易丹,陶虎春,李兆飞,等.双室微生物燃料电池利用乙酸钠和淀粉产电研究[J].环境科学研究,2008,21(3):141-145
    [18]Feng Y, Wang X, Logan BE, et al. Brewery wastewater treatment using air-cathode microbial fuel cells[J]. Appl Microbiol Biotechnol,2008,78:873-880
    [19]Zhang JN, Zhao Q L, You S J, et al. Continuous electricity production from leachate in a novel upflow air-cathode membrane-free microbial fuel cell[J]. Water Sci Technol, 2008,57(7):1017-1021
    [20]Borole AP, Mielenz JR, Vishnivetskaya TA, et al.Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnol Biofuels, http://www.biomedcentral.com/content/pdf/1754-6834-2-7.pdf, 2009.
    [21]Heilmann J, Logan BE, Production of electricity from proteins using a microbial fuel cell[J]. Water Environ Res,2006,78:531-537
    [22]李玉祥,刘和,堵国成,等.碱性条件促进太湖蓝藻厌氧发酵产挥发性脂肪酸[J].环境工程学报,2010,4(1):210-213
    [23]刘振玲,堵国成,刘和,等.食品废弃物厌氧消化产乙酸的研究[J].环境污染与防治,2007,29(1):49-52
    [24]崔康平,金松.新型单室无质子膜微生物燃料电池性能研究[J].环境科学研究,2008,5(21):1-5
    [25]郭磊.市政污泥多级逆流厌氧发酵产酸技术研究[D]:[硕士论文].无锡:江南大学,2008
    [26]罗曦,雷中方,张振亚.好氧-厌氧污泥胞外聚合物(EPS)的提取方法研究[J].环境科学学报,2005,25(12):1624-1629
    [27]郭磊,刘和,堵国成,等.底物浓度对多级逆流工艺厌氧发酵城市污泥产酸的影响[J].食品与生物技术学报,2009,28(4):544-548
    [28]Aelterman P. Microbial fuel cells for the treatment of waste streams with energy recovery[D]:Ph D Thesis. Gent University, Belgium,2009
    [29]蔡春光,刘军深,蔡伟民.胞外聚合物在好氧颗粒化中的作用机理[J].中国环境科学,2004,24(5):623-626
    [30]Tender LM, Reimers CE, Stecher HA, et al. Harnessing microbially generated power on the seafloor[J]. Nat Biotechnol,2002,20(8):821-825
    [31]Lowy DA, Tender LM, Zeikus JG, et al. Harvesting energy from the marine sediment-water interface Ⅱ:kinetic activity of anode materials[J]. Biosens and Bioelectron,2006, 21:2058-2063
    [32]莫志军,胡林会,朱新坚.燃料电池表观内阻的在线测量[J].电源技术,2005,29(2):95-98
    [33]Reddy MV, Srikanth S, Mohan SV, et al. Phosphatase and dehydrogenase activities in anodic chamber of single chamber microbial fuel cell (MFC) at variable substrate loading conditions[J]. Bioelectrochemistry,2010,77:125-132
    [34]钟登杰,陈阳,梁鹏,等.阳极厚度对填料型微生物燃料电池产电性能的影响[J].中国给水排水,2009,25(7):9-12
    [35]Kiely PD, Rader GK, Regan JM, et al. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts[J]. Bioresour Technol,2010:1-6
    [36]黄素德,刘宜胜,李伟,等.啤酒酵母菌微生物燃料电池及阳极研究[J].机电工程,2008,25(8):35-39
    [37]曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究[J].环境科学学报,2006,26(8):31-37
    [38]Menicucci J, Beyenal H, Marsili E, et al. Procedure for determining maximum sustainable power generated by microbial fuel cells[J]. Environ Sci Technol,2006,40(3): 1062-1068
    [39]詹亚力,王琴,张佩佩,等.微生物燃料电池影响因素及作用机理探讨[J].高等学校化学学报,2008,29(1):1-5
    [40]Venkata MS, Mohanakrishna G, Srikanth S, et al. Harnessing of bioelectricity in microbial fuel cell (MFC) employing aerated cathode through anaerobic treatment of chemical wastewater using selectively enriched hydrogen producing mixed consortia[J]. Fuel,2008,87:2667-2676
    [41]曹效鑫,范明志,梁鹏,等.阳极电势对Geobacter sulfurreducens产电性能的影响[J].高等学校化学学报,2009,30(5):983-987
    [42]孙瑾华,刘建妤,黄呈珠,等.二氧化锰为阴极催化剂的微生物燃料电池[J].电源技术,2008,32(12):838-844
    [43]双陈冬,张恩仁,刁国旺,等.复合菌体及单一菌体催化的微生物燃料电池产电机 理初步研究[J].电化学,2008,14(3):313-318
    [44]Andreadakis AD. Physical and Chemical Properties of Activated Sludge Flocs[J]. Wat Res,1993,27:1707-1714
    [45]Dignac MF, Urbain V, Rybacki D, et al. Chemical Description of Extracellular Polymers: Implication on Activated Sludge Floc Matrix[J]. Wat Sci Tech,1998,38:45-53
    [46]Findlay RH, King GM, Wafting L. Efficacy of Phospholipid Analysis in Determining Microbial Biomass in Sediments[J]. Appl Environ Microbial,1989,55(11):2888-2893
    [47]Myers CR, Myers JM. MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1[J]. Appl Environ Microbiol,2002,68:5585-5594
    [48]Venkata MS, Veer RS, Sarma PN. Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia[J]. Biosens Bioelectron, http://www.sciencedirect.com/sdarticle.pdf,2008
    [49]张翼峰.不同底物的微生物燃料电池阳极菌群及其产电特性分析[D]:[硕士论文].大连:大连理工大学,2008
    [50]Reddy SJ. Studies on Electrode Processes by Cyclic Voltammetry, Chronoamperometry, Chronopotentiometry and Controlled Potential Coulometry[D]:Ph D Thesis. Sri Venkateswara University, India,1986
    [51]Veer RS, Venkata MS, Venkateswar RM, et al. Behavior of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment[J]. Int J Hydrogen Energy, 2009:7547-7554
    [52]黄燕新,李萍,颜幼平.微生物燃料电池阳极产电菌的选育[J].广东化工,2010,37(3):137-140
    [53]卢娜,周顺桂,倪晋仁.微生物燃料电池的产电机制研究进展[J].化学进展,2008,20:1233-1240
    [54]Angenent LT, Karim K, Al-Dahhan MH, et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater[J]. Trends Biotechnol,2004,22(9):477-485
    [55]Rabaey K, Boon N, Siciliano SD, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Appl Environ Microbiol,2004,70:5373-5382
    [56]Heidelberg JF, Paulsen IT, Nelson KE, et al. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis[J]. Nat biotech,2002,20:1118-11231
    [57]Reguera G, Mccarthy KD, Mehta T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature,2005,435:1098-1101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700