两类非线性发展方程的分析与计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性发展方程在力学领域、生物医学工程领域、控制工程领域等理论研究和工程应用中都有着十分重要的意义。材料力学中的粘性振动和生物医学中的神经传播的模型可归结为一类非线性发展方程——非线性拟双曲方程,对该类方程解的存在性和进行数值求解方法的研究,是材料力学和生物医学研究领域的重要课题。但其高维情形的数值方法和理论分析难度较大。波浪是海洋中最常见的物理现象,其由深海向近岸传播过程中所产生的各种非线性效应对近岸人类生产生活和近岸地貌变化有着较大影响。而近岸浅水区波浪非线性较强且形式复杂,导致数值模拟难度增大。Boussinesq类方程是目前常用的一类浅水非线性发展方程,对该类方程进行理论分析和计算方法研究,为进一步保障近海生产作业、进行海岸工程设计和施工等有重要意义。本文对非线性拟双曲方程,以及在海岸工程中得到广泛应用的Boussinesq类浅水波浪模型这两类非线性发展方程进行了理论分析与计算方法的研究。
     针对材料力学中的粘性振动及神经传播过程中涉及的一类非线性拟双曲方程,目前计算方法的研究一般局限于一维问题,其高维非线性情形的理论分析和数值求解难度较大。本文基于有限元配置法,对该类非线性发展方程的二维初边值问题,采用分片双三次Hermite插值多项式空间作为求解的逼近函数空间,建立了半离散和全离散格式,并对两种格式证明了数值解的存在唯一性;应用微分方程先验估计的理论和技巧得到L2最佳阶误差估计。数值实验结果表明,在保证整体误差估计和不增加计算量的前提下,本方法比传统有限元方法有更高的逼近精度,进一步扩展了配置法的应用范围。
     基于交替方向有限元法和变网格法,本文提出了针对上述非线性发展方程三维形式的交替方向变网格有限元方法。基于对二维方程的分析,对其三维方程构造了交替方向变网格有限元格式;通过在原方程中加入扰动项,将高维问题化为一系列简单的一维问题逐次求解;应用常规恒等变换的技巧,使得方程能够进行交替方向计算,且可以并行进行。对该格式的误差分析表明,该格式形式简便、稳定,易于并行计算,适用于大规模科学工程计算。
     现有Boussinesq类方程,在提高其非线性的同时,通常方程的最高阶导数的阶数也会随之增加,很多情况下都保留了高于三阶的导数项,这给数值计算带来很大困难。通过重新假定波高水深比和水深波长比的关系,本文建立了不增加方程最高阶导数前提下提高精度的新型二维Boussinesq方程。
     对近岸浅水区波浪的分析和计算求解中,求解区域范围通常比较大,需要消耗较大的计算量和计算时间。对经典的Boussinesq方程,本文提出了基于区域分解的Boussinesq方程并行计算方法。基于区域分解方法和重叠度概念,提出了用于并行求解的重叠区域分解方法;结合子区域校正算法,采用单位分解函数合理分配重叠区域上的校正量,构造了一类针对Boussinesq方程的新型并行有限差分算法;通过对孤立波进行算例分析,讨论了子区域重叠度和迭代次数对算法的影响。实验结果表明,该并行计算方法可以有效地提高计算效率,对于单位分解函数集取线性函数时,计算中只需要较小的重叠度和较少的迭代次数即可满足实际需要。
Nonlinear evolution equations play an important role in mechanics, biomedical engineering, control engineering and other fields of theoretical researches and engineering applications. The models of viscous vibration in material mechanics and neural transmission in the biomedical can be reduced to a class of nonlinear evolution equations——Nonlinear pseudo-hyperbolic equation. Thus it is an important subject in the areas of material mechanics and biomedical to study the existence of the solutions and the numerical methods for these equations. However, it is not easy to obtain the numerical methods or the theoretical analysis for the multi-dimensional cases. Waves are the most common physical phenomena in oceans, and a variety of nonlinear effects during the travelling from the deep sea to the shore have a great impact on the production of human life and near-shore coastal landscape change. The strong nonlinearity as well as the complex forms of the waves in the offshore shallow water increases the difficulty in numerical simulation. Nowadays the Boussinesq type equations are commonly used nonlinear evolution equations for shallow water. The study of the class of equations theoretically and numerically are of great significance in the further protection of the offshore production operations, design and construction of coastal projects and so forth. In this paper, the proposed nonlinear hyperbolic equations and the widely used Boussinesq equations in coastal engineering have been theoretical analyzed, and some numerical methods have also been researched.
     Calculations on Nonlinear evolution equations of viscous vibration in material mechanics and neural transmission in the biomedical limited to one-dimensional problem. The numerical methods or do the theoretical analysis for the multi-dimensional cases are difficult.Taking piecewise bicubic Hermite interpolation polynomial space as the solution space, the two-dimensional initial-boundary value problem of the nonlinear hyperbolic equations was solved both in semi-discrete and fully discrete schemes utilizing the finite element configuration method. Furthermore, the existence and uniqueness of the numerical solution for the two schemes have been proved. The theory and techniques of differential equations priori estimate were applied to get the best L2 error estimation. Under the premise that the overall error does not increase as well as the computation, the numerical results showed that the method has higher approximation resolution than the traditional finite element method and expand the scope of application for the configuration method.
     Based on alternating direction method and variable grid method, this paper presented a three-dimensional alternating direction variable grid finite element method for the nonlinear evolution equations, and then using this method, a numerical scheme for the three dimension equations was proposed drawing on the analysis of the two dimension equations. Adding the original equation by perturbation, the high dimensional problem is translated into a series of simple one-dimensional problem. Using conventional identical transformation techniques, the equations can be calculated in alternating directions and be paralleled. The error analysis showed that the scheme has a simple form and is stable, moreover, the scheme is easy to implement parallel computing and is capable for large-scale scientific engineering computing.
     Usually the order of the highest order derivative in equations will increase as the nonlinearity of the existing Boussinesq type equations increases. In many cases derivatives higher than third order are retained, which brings to the numerical simulation great difficulties. By re-assuming the relationship between the ratio of wave height and water depth and the ratio of water depth and wavelength, the paper developed a new type two-dimensional Boussinesq equation which improves accuracy without increasing the order of the highest order derivative.
     Since the range of solving region is usually very large, the analysis and calculation of the waves in the offshore shallow water need consume a large amount of computation and time. Based on region division, this paper developed a parallel computing method for the classical Boussinesq equation. A overlapping region division method was proposed for parallel using region division method and the concept of overlap. Combining subspace correction algorithm and adopting the unit decomposition function to rationally allocate the correction on the overlap regions, a new type of parallel finite difference algorithm for Boussinesq equation was constructed. The sub-region overlap and the number of iterations of the algorithm were discussed by the numerical analysis of solitary waves. The numerical results showed that the parallel computing method can improve computational efficiency. And when the unity partition function set takes the linear function, the calculation requires only small overlap and fewer iterations for the actual needs.
引文
[1] J.Nagumo, S. Arimoto, and S.Yoshizawa, An active pulse transmission line simulating nerve axon,Proc.IRE 1962,50:91-102
    [2] C.V.Pao,A mixed initial boundary value problem arising in Neurophysicology,J.Math.Anal. Appl.,1975,52:105-119
    [3] R. Arima and Y. Hasegawa, On global solutions for mixed problem of a semi-linear differential equation,Proc. Japan Acad,1963,39:721-725
    [4] M. Yamaguti, The asymptotic behavior of the solution of a semi-linear partial differential equation related to an active pulse transmission line,Proc.Japan Acad,1963,39:726-730
    [5]万维明,刘亚成,神经传播方程初边值问题解的长时间行为,应用数学学报, 1999,22(2):311-315
    [6]程极济,林克椿,生物物理学,北京:人民教育出版社,1982
    [7]G.Ponce, Global existence of small of solutions to a class of nonlinear evolution equations, Nonlinear Anal., 1985,9:399-418
    [8]梅茗,高维广义神经传播方程Cauchy问题整体光滑解,应用数学学报,1991,14(4):450-461
    [9]孙和生,一类非线性拟双曲型方程组,中国科学(A辑),1988,8:801-816
    [10]郑宋穆,沈玮熙,Fitzhugu-Nagumo方程组初边值问题的整体存在性,科学通报,1984,16:966-969
    [11]吕淑娟,Fitzhugh-Nagumo神经传导方程的动力性态,生物数学,1997,1(1):29-32
    [12]沈玮熙,神经传导方程组的门槛现象,应用数学与计算数学学报,1989,3(1): 21-25
    [13]刘宝平,赵璧, Fitzhugh-Nagumo神经传导方程的多重周期平面波解,应用数学学报,1989,12(1):13-23
    [14]张步英,尹洪武,王静等,非线性拟双曲方程的有限元方法的整体超收敛,佳木斯大学学报(自然科学版),2009,27(6):931-932
    [15]贾保敏,杨青,非线性拟双曲方程的有限体积元方法,科学技术与工程,2009,9(16):4602-4606
    [16]曹志,杨青,非线性拟双曲方程的H 1 ? Galerkin混合有限元方法,科学技术与工程,2009,9(20):5951-5954
    [17] Berkhoff, J.C.W., Computation of combined refraction diffraction, Proceedings of the 13th International Coastal Engineering Conference, ASCE,1972,New York:471-490
    [18] Radder, A. C.,On the parabolic equation method for water wave propagation,Journal of Fluid Mechanics,1979,95(1):159-176
    [19] Coppeland GJ.M.A practical alternative to the“mild-slope”equations,Coast.Engrg.1985,(9):125-149
    [20] Ebersole B.A.,Refraction-diffraction model for linear water waves, J.Wtrwy.,Port,Coast .And Oc.Gngrg.,ASCE,1985,111(6):939-953,
    [21]李孟国,蒋德才,关于波浪缓坡方程的研究,海洋通报,1999,18(47):70-92
    [22] Boussinesq, M. J.,Théorie des ondes et des ramous qui se propagent le long d’un canal rectangularies horizontal, en communiquant au liquide contenudans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de Mathematique Pures et Apppliquées,deuxieme série, 1982,17:55-108
    [23] Peregrine,D.H.,Long waves on a beach, J. Fluid Mech. 1967,27, 815-827
    [24] Witting J. M., A unified model for the evolution of nonlinear water waves,J.comput. Phys.,1984,56:203-303
    [25] Madsen P. A., Murray R, S?rensen O. R., A new form of the Boussinesq equations with improved linear dispersion characteristics,Coast Engrg., 1991,15:371-388
    [26] Madsen P. A., S?rensen O. R., A new form of the Boussinesq equations with improved linear dispersion characteristics, Part 2. A slowly-varying bathymetry.,Coast Engrg,1992,18:183-204
    [27] Nwogu, O.,Alternative form of Boussinesq equations for nearshore wave propagation,Journal of Waterway,Port,Coastal and Ocean Engineering, 1993.Vol.119,6: 618-638
    [28] Sch?ffer H. A., Madsen P. A., Further enhancement of Boussinesq type equations.,Coast. Engrg.,1995,26: 1-14
    [29] Madsen P.A, Sch?ffer H. A., Higher-order Boussinesq-type formulation for surface gravity waves:Derivation and analysis,Phil.Trans.R.Soc,Lond A.,1998,356:3123-3184
    [30] Chen Y., Liu P. L-F, Modified Boussinesq equations for associated parabolic models for water wave propagation, J Fluid Mech, 1995, 288: 351-381
    [31] Kaihatu J. M., Kirby J. T., Two-dimensional parabolic modeling of extended Boussinesq equations, J. Wtrwy, Port, Coast and Oc. Engrg, 1998, 124(2): 57-67
    [32] Madsen P. A.,Sch?ffer H.A.,Higher-order Boussinesq-type formulation for surface gravity waves: Derivation and analysis, Phil. Trans. R. Soc. Lond. A, 1998, 356: 3123-3184
    [33] Gobbi M. F., Kirby J. T., A fully nonlinear Boussinesq model for surface waves.Ⅱextension to ( )Oμ4,J. Fluid Mech., 2000, 405: 181- 210
    [34] Z. L. Zou, Higher order Boussinesq equations, Coastal Engineering, 1999, 26: 767-792
    [35] Madsen P. A., Bingham H. B., Hua L., A new Boussinesq method for fully nonlinear waves from shallow to deep water, J. Fluid Mech. 2002, 462: 1-30
    [36] Digemans,Water wave propagation over uneven bottoms Part I: linear wave propagation.,World scientific publishing Co. Pte. Ltd,Singapore, 1997
    [37] Wei G., Kirby J. T., Grilli S. T., et al, A fully nonlinear Boussinesq model for surface waves, PartⅠHighly nonlinear unsteady waves, J. Fluid Mech, 1995, 294: 71-92
    [38] Madsen P.A,Bingham H.B.and Sch?ffer H. A., Boussinesq-type formulations for fully nonlinear and extremely dispersion water waves: derivation and analysis.Proc.R.Soc.Lond.A,2003,459:1075-1104
    [39] Agnon Y, Madsen P. A. and Sch?ffer H. A., A new approach to high order Boussinesq models, J. Fluid Mech.,1999,399: 319-333
    [40] Lynett P,Liu P.L.F.,A two-layer approach to wave modeling.Proc. R.Soc.Lond,2004,460:2637-2669
    [41] Serre P. F., Contribution to the study of permanent and non-permanent flows in channel. La. Houille Blanche,1953,8: 374-388
    [42] Harry B.Bingham,Per A.Madsen,David R.Fuhrman,Velocity potential formulations of highly accurate Boussinesq-type models,Coastal Engine -ering,2009,56:467-478
    [43] Agnon Y, Madsen P. A. and Sch?ffer H. A., A new approach to high order Boussinesq models, J. Fluid Mech.,1999,399: 319-333
    [44]张殿新,一种改善了非线性和色散性的Boussinesq方程模型,应用数学和力学, 2008,29(7):813-824.
    [45]房克照,四阶完全非线性Boussinesq水波方程及其简化模型:[博士学位论文],大连;大连理工大学,2007.10
    [46] Yoon S. B., Liu P. L-F, Interactions of currents and weakly nonlinear water waves in shallow water. J. fluid Mech., 1989, 205: 397-419
    [47] Chen Qin, Madsen P. A., Sch?ffer H. A., et al, Wave-current based on an enhanced Boussinesq approach, Coastal Engineering, 1998, 33: 11-39
    [48]邹志利,含强水流高阶Boussinesq水波方程,海洋学报,2000,22(4):41-50
    [49]张永刚,李玉成,促进其线性频散特征另一种形式的Boussinesq方程,力学学报,1997,29(2):142-150
    [50]张永刚,李玉成.Boussinesq方程的发展形式与Ariy波理论差异性研究.应用力学学报,1998,15(1):30-36
    [51]邹志利,高阶Boussinesq水波方程,中国科学(E辑),1997,27(5):460-473.
    [52]邹志利,含强水流高阶Boussinesq水波方程,海洋学报,2000,22(4):41-50
    [53]张宝善,戴世强,Boussinesq方程的发展形式与Ariy波理论差异性研究,力学与实践,1997,19(4):20-22
    [54]李孟国,王正林,蒋德才,关于波浪Boussinesq方程的研究,青岛海洋大学学报,2002,22(3):345-354
    [55] Abbott M. B., Petersen H. M., On the numerical modeling of short waves in shallow water,Journal of Hydraulic Research,1978,16(3):173-203
    [56]陶建华,波浪在岸滩上爬高和破碎的数值模拟,海洋学报,1984,6(5): 692-700
    [57]陶建华,水波的数值模拟,天津:天津大学出版社,2005 [58Yoon S.B.Liu P.F.,Interactions of currents and weakly nonlinear water waves in shallow water,J.Fluid Mech.,1989,205;397-419
    [59] Madsen P.A,Sorensen O.R. Sch?ffer H.A.,Surf zone dynamics simulated by a Boussinesq type model.Part 2:surf beat and swash oscillations for waves groups and irregular waves,Coast.Engrg.,1997b,32;289-320
    [60] Qi P,Wang Y.X.and Zou Z.L.,2-D composite model numerical simulations of nonlinear waves,China Ocean Engrg.,2000,14(1):113-120
    [61] Lonsdale G, Schüller A,Multigrid efficiency for complex flow simulation on distributed memory machines, Parallel Computing, 1993, 19: 23-32
    [62] Basu A J, A parallel algorithm for spectral solution of the three- dimensional Navier-Stokes Equation, Parallel Computing, 1994, 20: 1191- 1204
    [63] Twamiya T, Fukuda M, Nakamura T and Yoshida M, On the numerical wind tunnel(NWT) program,Parallel Computational Fluid Dynamics:New Trends and Advances,1995
    [64] Lanteri S, Parallel solutions of compressible flow using overlapping and Non-overlapping mesh computing, 1996(22): 943-968
    [65]吕晓斌,朱自强,李津,跨、超音速流动的区域分解方法与并行计算,航空学报,2000,21(4):322-325
    [66]徐旭,张振鹏,喷管内流场并行计算方法研究,推进技术,1998,19(5):30-33
    [67] Kashiyama K, Saitoh K, Behr M and Tezduyar T E, Parallel finite element methods for large-scale computation of storm surges and tidal flows, Int J for Numerical Methods in Fluids,1997,24: 1371-1389
    [68]郑永红、游亚戈、沈永明等,缓坡地形上非线性波浪变形的并行计算,水科学进展,2003,14(3):328-332.
    [69] Lynett P, Liu P F, A two-layer approach to high order Boussinesq models,Journal of Fluid Mechanics,1999.,399:319-333
    [70] Sitanggang K I, Lynett P, Parallel computation of a highly nonlinear Boussinesq equation model through domain decomposition,Int.J.Numer. Meth. Fluids,2005.,49: 57-74
    [71] Cai X, Pedersen G K and Langtangen H P,A Parallel multi-subdomain strategy for solving Boussinesq water wave equations,Advances in Water Resources,2005,28: 215-233
    [72] Wu D M, Wu T Y, Three-dimensional nonlinear long waves due to moving surface pressure, In Proceedings of the 14th Symposium on Naval Hydrodynamatics,MI, USA,1982,103-129
    [73] Abbott M. B., Petersen H. M., On the numerical modeling of short waves in shallow water, Journal of Hydraulic Research, 1978, 16(3): 173-203
    [74]张岩,陶建华,二维短波方程的差分格式研究,海洋工程,2000,18(2):29-37
    [75] Wei G., Kirby J. T., Time-dependent numerical code for extended Boussinesq equations,Journal of Waterway,Port,Coastal&Ocean Engineering -ASCE,1995, 121(5): 251-261
    [76]洪广文,张洪生,任意水深变化水域非线性波数值模拟,海洋工程,1999,第17卷第4期,64-73
    [77]朱良生,洪广文,任意水深变化Boussinesq型方程非线性波数值计算,海洋工程,2000,18(2):29-37
    [78]钦文婷,龙文,陶建华,Boussinesq方程的高精度求解及其验证,水动力学研究与进展,2002,17(1):32-38
    [79] Antunes Do Carmo J. S., Scabra Santos F. J., Surface waves propagation in shallow water: a finite element model. J.Numer. Methods Fluids, 1993, 16:447-459
    [80] Ambrosi D., Quartapelle L., A Taylor-Galerkin method for simulating nonlinear dispersive water waves, J. Comput. Phys., 1998, 146:546-569
    [81] Eskilsson C.,Sherwin S. J.,Spectral/hp discontinuous Galerkin methods for modeling 2D Boussinesq equations, Journal of Computational Physics,2006,212:566-589
    [82] Li Y. S., Liu S. X., Lai G. Z., Numerical modeling of Boussineq equations by finite element method, Coastal Eng.,1999, 37: 97-122
    [83]柳淑学,俞聿修,赖国璋等,数值求解Boussinesq方程的有限元法,水动力学研究与进展,2000,A辑15(4):399-410
    [84] S?rensen O.R.,Sch?ffer H.A.,S?rensen L.S., Boussinesq-type modeling using a unstructured finite element technique, Coast. Eng., 2004, 50:181 -198
    [85] Walkley M. A., Berzins M., A finite element method for the two-dimensional extended Boussinesq equations, Int.J.Numer. Methods Fluids,2002,39:865-885
    [86] Eskilsson C., Sherwin S. J., An unstructured spectral/hp element model for enhanced Boussinesq-type equations, Coast. Eng., 2006, 53:947 -963
    [87] K.S.Erduran,S.Ilic and V.Kutija,Hybrid finite-volume finite difference scheme for the solution of Boussinesq equations,Int.J. Number. Meth.Fluids,2005,49:1213-1232
    [88] R.Cienfegos, E.Barthélemy and P.Bonneton, A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations,Part I:model development and analysis, Int.J. Number. Meth.Fluids,2006,51:1217-1253
    [89] R.Cienfegos, E.Barthélemy and P.Bonneton, A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations, Part II:Boundary conditions and validation, Int.J.Number, Meth.Fluids,2007,53:1423-1455
    [90] Mara Tonelli,Marco Petti, Hybrid finite volume - finite difference scheme for 2DH improved Boussinesq equations,Coastal Engineering, 2009,56:609-620
    [91] Bradford,Scott F,Sanders, Finite volume schemes for the Boussinesq equations, Proceedings of the International Symposium on Ocean Wave Measurement and Analysis,2001,1:953-962
    [92] Stansby,Peter K, Solitary wave run up and overtopping by a semi- implicit finite-volume shallow-water Boussinesq model, Journal of Hydraulic Research,2003,41(6):639-647
    [93] DeBoor C ,Swartz B. Collocation at Gaussian points, SIAM J Numer Anal, 1973, 10: 582-606
    [94] Ma Ning,A Finite Element Collocation Method for Two-phase incompressible immiscible problems,Acta Mathematica Scientia, 2007, 27B(4): 875-885
    [95] Ma Ning.A Finite Element Collocation Method for Compressible Miscible Displacement in Porous Media, ACTA Mathematica Scientia.2006, 29(2):234-246
    [96] Y.G.Saridakis,C.G.Sifniotopoulos,D.A.Sotiropoulos,Finite element collocation approximation of the characteristic exponent in BVPs with periodic coefficients,Journal of Computational and Applied Mathematics, 1996,70:1-14
    [97] Granville Sewell,Solving PDEs in non-rectangular 3D regions using a collocateion finite element method,Advances in Engineering Software, 2010,41:748-753
    [98] Jia Bao-min,Yang Qing.Finite Volume Method for Quasi-Hyperbolic Equation, Science Technology and Engineering,2009(9)16:4602-4606
    [99] Cao Zhi,Yang Qing, H 1-Galerkin Mixed Finite Element Method for Nonlinear Quasi-Hyperbolic Equation, Science Technology and Engineering, 2009(9)20: 5951-5954
    [100] Huang Wei,Yang Gui-tong.The Propagation of Solitary Waves in a Nonlinear Elastic Rod.Applied Mathematics and Mechanics,1986,7(7): 571-582
    [101] Cui Xia.The Time Discrete Finite Element Approximation and its Analysis for the Three-Dimensional Nonlinear Hyperbolic Equation in a Time-Dependent Domain.Journal of Engineering Mathematics,1998,15(2): 57-62
    [102] Jiang Ziwen,Li Qian. Global Superconvergence for the Interpolated Fully Discrete Finite Element Method of Nonlinear Hyperbolic Equations, Journal of Engineering Mathematics,1999,5(16)2:1-8
    [103] Zhang Hong-wei,Hu Qing-ying.Existence and Nonexistence of Global Solutions for a Class of Nonlinear Hyperbolic Equations, Journal of Engineering Mathematics,2003,20(3):131-134
    [104] Wang Yan-ping.The Initial Value Problem for a Nonlinear Hyperbolic Equation,Journal of Engineering Mathematics,2009.26(1):167-170
    [105]胡健伟,汤怀民,微分方程数值方法,北京:科学出版社,1999
    [106]马逸尘,梅立泉,王阿霞,偏微分方程现代数值方法,科学出版社,2006
    [107] Douglas J, Dopont T. Collocation Methods for Parabolic Equations in a Single Space Variable, Lecture Notes in Math,New York: Springer-Verlag, 1974
    [108] Douglas J, Dopont T, A finite element collocation method forquasilinear parabolic equations , Math Comp, 1973, 27:17-28
    [109] Lu Tong-Chao.The Finite Collocation Method for Parabolic Equation, Journal of Shandong University,1994,29(3):266-271
    [110] Ciarlet P G.,The finite Element Method for Elliptic Problems, North-Houand, 1978
    [111]孙家昶,样条函数与计算几何,北京:科学出版社,1982
    [112] Pao C V,A mixed boundary value problema rising in Neurophysiclogy, Math Anal Appl,1975,52:105-119
    [113] Douglas J Jr,Russel T F,Numerical methods for converction-dominated diffusion problems on combining the method of characteristic with finite element or finite procedures,SIAM J Anal,1982,19(5):871-875
    [114] Bonnerot R,Janet P, A second order finite element method for the one-dimensional Stefan problem, Int J Numer Mesh Eng, 1974,8(4):811-820
    [115]粱国平,变网格有限元法,计算数学,1985,7(4):377-384
    [116]梁国平,陈志明,具有最优阶精度的全离散变网格有限元,计算数学,1990,12(3):318-337
    [117]王立俊,双曲方程的变网格有限元法,计算数学,1990,12(2):119-128
    [118] Ewing R E,Russell T F,Wheeler M F,Convergence analysis of an approximation of miscible displacement in porous media by mixed finite dldmehts elements and a modified method of characteristics,Commmp Math in Mech and Eng,1984,47:73-92
    [119]戴培良,沈树民,抛物型积分微分方程的变网格有限元法,高等学校计算数学学报,1994,16(3):242-249
    [120] Robert A.Adams,John J.F.Fourinier,Sobolev Spaces,America:Academic Press,2003
    [121] Sylfest Glimsdal,G.K.Pedersen,H.P.Langtangen,An investigation of overlapping domain decomposition methods for one-dimensional dispersive long wave equations,Advances in Water Resources,2004,27:1111-1133
    [122] H.P.Langtangen,Geir Pedersen, Computational models for weakly dispersive nonlinear water waves, Comput. Methods Appl. Mesh. Engrg, 1998, 160:337-358
    [123] Bramble J H,Pasciak J E,Xu J,Convergence estimates for product interative methods with application to domain decomposition, Math. Compt., 1991,57:1-21
    [124] Lu T,Shih T M,Liem C B,Parallel algorithms for solving partial differential equations,Domain Decomposition Methods,SIAM Proceedings of the Second Internatinal Symposium on Domain Decomposition Methods, 1988,71-80
    [125] Lv T,The frame of Schwarz algotithm and the convergence proofs of asynchronous parallel algotithms,Systematic Sci. Math., 1989, 9(2):128-132
    [126]吕涛,石济民,林振宝,区域分解算法-偏微分方程数值解新技术,北京:科学出版社,1992
    [127] Cai X C,Additive Schwarz algorithms for parabolic convection- diffusion equations,Numer.Math.,1991,60:41-61
    [128] Cai X C,Multiplicative Schwarz methods for parabolic problem,SIAM J.Sci.Comput.,1994,15:587-603
    [129] I.P.Boglaev,Finite difference domain decomposition algorithms for a parabolic problem with boundary layers,Computers Math.Applie., 1998,36(3):25-40
    [130] I.P.Boglaev,An implicit-explicit domain decomposition algorithm for a singularly pertured parabolic problem, Computers Math. Applie., 1999,38:41-53
    [131] Xu J C,Iterative methods by space decomposition and subspace correction,SIAM Review.,1992,34(4):581-613
    [132]田敏,热传导方程的一类新型重叠型并行区域分解有限差分法,高等学校计算数学学报,2008,3(1):14-2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700