东鞍山含碳酸盐铁矿石浮选行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国钢铁工业飞速发展,钢铁产量持续攀高,导致国内铁矿石市场呈现严重的供不应求局面,铁矿石进口量大幅度上升。“十五”期间,我国铁矿石进口量从2001年的9231万吨增加到2005年的2.75亿吨,增加了1.8亿吨;2007年、2008年我国进口铁矿石分别达到3.83亿吨和4.16亿吨,占我国铁矿石消耗量的50%以上。为保证我国钢铁工业的健康、可持续发展,国内迫切需要稳定、足量、优质的铁矿原料供给。对此,国家“十一五”规划明确提出“要积极利用低品位铁矿资源”,难选铁矿石的利用也迫在眉睫。因而,研究复杂难选铁矿的开发与利用意义重大。
     东鞍山铁矿石是我国典型的难选贫赤铁矿,具有品位低、嵌布粒度细、组成和结构构造复杂的特点,对其选矿技术研究从“六五”开始一直被列为国家和原冶金部的重点攻关项目。从两段连续磨矿、单一的正浮选到目前的两段连续磨矿、中矿再磨、重选—磁选—阴离子反浮选工艺流程演变看,高亚铁矿石得到利用,精矿品位也由60%提高到64.8%,但对含碳酸盐铁矿石入选适应性差的问题始终没有解决,特别是当碳酸铁矿石入选比例超过10%时浮选指标急剧恶化,直至不能分选。所以,从研究含碳酸盐铁矿石浮选行为入手,来解决东鞍山铁矿石浮选分离问题是十分必要的。
     本文对东鞍山含碳酸盐铁矿石工艺矿物学特性、主要矿物可浮性、浮选分离特性、浮选分离机理及浮选分离技术与工艺进行了系统研究。
     主要矿物可浮性研究表明,阴离子捕收剂浮选体系中淀粉和CaCl2组合,在pH为5-7的条件下,菱铁矿可浮性较好,磁铁矿、赤铁矿、石英可浮性较差;在pH>11的强碱性条件下,石英可浮性较好,磁铁矿和赤铁矿可浮性很差,矿物在不同的pH介质条件下出现较大的浮游差。
     主要矿物浮选分离特性及浮选分离机理研究表明,阴离子捕收剂浮选体系中,在强酸性或中性条件下,可实现含铁矿物与石英的正浮选分离;赤铁矿与石英采用反浮选工艺较易实现两者的浮选分离;菱铁矿的存在对铁矿物的浮选分离效果有很大的影响,随着菱铁矿的比例增大,精矿的富集比和选择性指数下降。
     由于菱铁矿在石英和赤铁矿表面吸附罩盖,使石英和赤铁矿表面性质与菱铁矿相近,导致这两种矿物呈现与菱铁矿类似的浮游性。所以,采取在pH为中性的条件下提前选出菱铁矿并消除其影响,然后在pH为强碱性的条件下浮选石英,即采用分步浮选工艺实现菱铁矿、赤铁矿、石英的分离。
     矿石的浮选分离工艺研究表明,东鞍山烧结厂现场混合磁选精矿的“分步浮选”实验室闭路浮选试验可获得铁品位为67.84%、回收率为69.47%的铁精矿,尾矿中铁的品位为19.15%,回收率19.14%;连续浮选试验获得了铁品位为66.37%、回收率为62.93%的铁精矿,尾矿中铁的品位为22.67%,回收率22.96%。通过第一步浮选,54.34%的菱铁矿进入菱铁矿精矿,含铁品位为38%左右的菱铁矿精矿,通过“焙烧—磁选”工艺处理,可以获得铁品位为57.80%、回收率为49.53%的铁精矿,菱铁矿精矿可以得到进一步的回收利用。
     本研究首次提出采用“分步浮选”工艺处理东鞍山含碳酸盐铁矿石,并取得了良好的分离效果,具有明显的创新性和实践性,本研究成果对东鞍山含碳酸盐铁矿石的高效开发与利用具有重要的指导意义。
In recent year, the iron ore market of China shows a serious shortage situation and the imports of iron ore increase substantially because of the rapid development of iron and steel industry and the continuous rise of iron and steel production. In the period of Tenth Five-Year, the imports of iron ore of China were increased from 92.31Mt in 2001 to 275Mt in 2005, which increased 180Mt. The imports of iron ore of China were reached 383Mt in 2007 and 416Mt in 2008 respectively, which accounted for more than 50% of iron ore consumption of our country. In order to ensure the health and sustainable development of iron and steel industry of China, it is necessary to supply high quality iron ore with stability and enough. For this reason, it has been proposed clearly in the Eleventh Five-Year Planning that the low-grade iron ore resources should be used actively. It is also imminent to use the refractory iron ore. So, it is significant to explore and utilize the complex-refractory iron ore.
     The iron ore of Donganshan is classical refractory hematite in our country with the characteristics of low-grade, fine disseminated granularity and complex composition and structure. To study the technique of separating this type of iron ore is always regarded as the grand research project of our country and/or Metallurgical Department since Sixth Five-Year. Looking upon the flowsheet evolution which is changed from two-stage grinding, single direct floatation to two-stage grinding, middlings regrinding, gravity separation-magnetic separation-anionic reverse floatation which is running now, we can see that high ferrooxidans ore is utilized effectively and the concentrate grade is increased from 60% to 64.8%. But the problem of poor adaptability for separating the carbonate-containing iron ore has not been solved until now. Especially for separating the carbonate-containing iron ore which content is over 10%, the index of floatation is deteriorated rapidly, evenly, no separation is achieved. So, it is necessary to solve the separation problem of Donganshan iron ore floatation according to the floatation behaviour of carbonate-containing iron ore.
     The technical mineralogy characteristics, main minerals floatability, floatation separation characteristics, floatation separation mechanism and floatation technology and process of Donganshan carbonate-containing iron ore are studied systematically in this study.
     Studying of main minerals floatability shows that, using the combination of starch and CaCl2 as regulators in the floatation system of anionic collector, when pH is 5 to 7, the floatability of siderite is better and the floatability of magnetite, hematite or quartz is worse, but when pH is higher than 11, the floatability of quartz is better and the floatability of magnetite or hematite is worse. In different pH extent, an obvious floatation difference is appeared between different minerals.
     Studying of floatation separation characteristics and its mechanism shows that, in the floatation system of anionic collector, the iron minerals and quartz can be separated from each other by direct floatation in the strong acid or neutral condition, hematite and quartz can be separated from each other by reverse floatation. The existing of siderite creates a fatal impact on the floatation separation result of iron mineral. The enrichment ratio of concentrate and collective index are decreasing with the content of siderite increasing.
     Because siderite is adsorbed and covered on the surface of quartz and hematite, the surface properties of quartz and hematite is similar as the surface property of siderite, which leads to the similar floatability between these two minerals and siderite. So, a new flowsheet, step-floatation, is explored to separate siderite, hematite and quartz from each other, that is, siderite is separated firstly under neutral condition, so the influence of siderite can be eliminated, then, quartz is separated by floatation under strong alkaline condition.
     Studying on the floatation process shows that, using step-floatation to treat the mixed magnetic concentrate of Donganshan beneficiation plant, the result of the laboratory closed-circuit experiment can be obtained with concentrate grade 67.84%, recovery 69.47%, and tailings grade 19.15%, recovery 19.14%. The result of continuous floatation experiment can be obtained with concentrate grade 66.37%, recovery 62.93%, and tailings grade 22.67%, recovery 22.96%. By first step floatation, about 54.34% siderite in raw material is concentrated to the rougher concentrate which grade is about 38%. The rougher concentrate is treated by roasting-magnetic separation and the final concentrate with grade 57.80% and recovery 49.53% can be obtained. Thus, the final concentrate of siderite can be utilized further.
     In this study, a new flowsheet, step-floatation, to process Donganshan carbonate-containing iron ore is explored firstly, and a good separation result can be obtained using this new flowsheet, which has obvious innovation and practice. This research result has a great guiding significance for the exploitation and utilization of Donganshan carbonate-containing iron ore.
引文
1.威廉斯R A.难选矿石的处理[J],国外金属矿选矿,1995(7):9-14.
    2.冯其明、陈云等.我国几种难处理矿石的加工利用现状[J],金属矿山(增刊),2006,8:5-12.
    3.叶卉、孙锡丽.进口铁矿石现状分析及策略研究[J],金属矿山,2008(9):7-10.
    4.吴溪淳.中国钢材市场发展趋势及对铁矿石市场的影响[J],金属矿山,2006(9):1-4.
    5.邹健.世界铁矿矿情[M],北京:中国冶金矿山企业协会,2005,16-19.
    6.李振、刘炯大、魏德洲等.铁矿分选技术进展[J],金属矿山,2008(5):1-6.
    7.孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J],金属矿山,2006(3):11-13.
    8.方启学、卢寿慈.世界弱磁性铁矿石资源及其特征[J],矿产保护与利用,1995(4):44-46.
    9.韩跃新、袁致涛、李艳军、陈丙辰等.我国金属矿山选矿技术进展及发展方向[J],金属矿山,2006(1):34-40.
    10. Deshpande, R. J.; Natarajan, K. A.; Kittur, S. Cz; Rao, T. R. R. Reverse Flotation of Silica from Kudremukh Iron Ore Part 2:0ptimization of Flotation Process Transactions of the Indian Institute of Metals, v50, n5,1997:397-398.
    11.张光烈.我国铁矿选矿技术的进展[J],有色矿冶(增刊),2005,7:29-36.
    12.田嘉印、刘宝平、陈古金、景建华、李维兵等.我国红铁矿选矿高效节能技术及设备评述[J],金属矿山,2005(9):4-10.
    13.宋孝先.以疏水絮团形式从铁矿石中磁选细粒赤铁矿和褐铁矿[J],国外金属矿选矿,2002(10):28-32.
    14.张军、张宗华.云南细粒红铁矿的选别工艺研究[J],金属矿山,2007(7):33-35.
    15.张芹、张一敏、胡定国等.湖北巴东鲕状赤铁矿选矿试验研究[J],金属矿山(增刊),2006,8:186-188.
    16.肖军辉、张宗华、张昱.西南地区难选细粒高磷赤褐铁矿的选矿工艺研究[J],金属矿山(增刊),2006,8:192196.
    17.任建伟、于毓华.铁矿反浮选脱硅的试验分析[J],中国矿业,2004,13(4):70-72.
    18.董干国、刘桂芝、刘林.BF-T型浮选机在铁精矿提铁降杂工艺中的应用[J],矿冶,2005,14(4):20-22.
    19.伍喜庆、刘长淼、黄志华.一种铁矿物与石英分离的有效浮选药剂[J],矿冶工程,2005,25(2): 41-43.
    20.何廷树、松全元.细粒弱磁性铁矿的选择性絮凝-脱泥研究[J],中国矿业,1996(5):39-43.
    21.陈占金、李维兵、孙胜义、周凌嘉.鞍山地区难选铁矿石选矿技术研究[J],金属矿山,2007(1):30-34.
    22.胡义明、张永.袁家村铁矿石选矿技术研究进展[J],金属矿山,2007(6):25-29.
    23.靳建平.河南舞阳赤铁矿的浮选试验研究[D],东北大学学十学位论文,2007,6.
    24.刘保平、李维兵.舞阳矿业公司铁山庙贫赤铁矿石选矿试验研究[J],金属矿山(增刊),2003,8:131-134.
    25.石云良、曾可文等.止-反浮选新工艺处理美国蒂尔登铁矿石[J],国外金属矿山,1998(4):52-54.
    26.刘亚辉、孙炳泉.赤铁矿的止-反浮选研究[J],金属矿山,2004(1):39-41.
    28.罗立群.菱铁矿的选矿开发研究与发展前景[J],金属矿山,2006(1):68-72.
    29.盛忠义.菱铁矿综合回收试验研究[J],金属矿山,1999(1):42-44.
    30.侯宗林.中国铁矿资源现状与潜力[J],地质找矿论丛,2005(4):242-247.
    31.文光远,欧阳奇,周培土.威远菱铁矿选矿和烧结性能的研究[J],重庆大学学报:自然科学版,1999,22(1):99-105.
    32.罗立群、张泾生、高远扬等.菱铁矿干式冷却磁化焙烧技术研究[J],金属矿山,2004(10):28-31.
    33.刘宁斌、杨杰康等.王家滩菱铁矿开发利用[J],中国工程科学,2005,7(增刊):331-338.
    34.张久铭、王贵成、何亚丽.我国铁矿资源的秉赋特征与可持续开发利用研究[J],中国矿业,2007(7):36-39.
    35.Э·A·特罗菲莫娃等.磁选前含菱铁矿矿石的磁化预处理[J],武汉化工学院学报(增刊),1992,6:81-86.
    36.宫磊、徐晓军、梁忠荣.细粒褐铁矿干式磁选抛尾技术在化念铁矿的应用研究[J],金属矿山,2005.8(增刊):151-152.
    37.袁启东、翁金红.云南东川包子铺高磷赤褐铁矿石选矿工艺研究[J],金属矿山,2007(4):30-33.
    38.王运敏、田嘉印、王化军、冯泉.中国黑色金属矿选矿实践[M],北京:科学出版社,2008,1-169.
    39.干毓华、陈兴华、黄传兵.褐铁矿反浮选脱硅新工艺试验研究[J],金属矿山,2005(7):37-39.
    40.王毓华、任建伟.阴阳离子捕收剂反浮选褐铁矿试验研究[J],矿产保护与利用,2004(8):33-35.
    41.谢富良.铁坑褐铁矿选矿新工艺研究[J],冶金矿山设计与建设,1996(5):19-25.
    42.甘建华.铁坑选厂扩产流程改造实践[J],矿业快报,2004(4):37-38.
    43.熊大和.SLon磁选机分选东鞍山氧化铁矿石的应用[J],金属矿山,2003(6):21-24.
    44.李永聪,孙福印.新疆某褐铁矿的选矿工艺研究[J],金属矿山,2002(6):29-30.
    45.陈雯.絮凝-强磁选回收易泥化褐铁矿的试验研究[J],金属矿山,2003(6):32-34.
    46.张桂兰.难选低品位褐铁矿石的选矿试验[J],河北理工学院学报,1999(21):6-12.
    47.周岳远、李小静、余兆禄等.CRIMM稀十永磁辊式强磁选机分选褐铁矿的生产实践[J],矿冶工程,2002,22(2):62-64.
    48.赵一鸣.中国铁矿资源现状、保证程度和对策,地质论评,2004(4):396、417.
    49.贾景山.包钢选矿厂磁矿系列磨选流程分析及改进[J],包钢科技,2005,31(4):28-29.
    50.张泾生、余永富、麦笑宇.我国黑色冶金矿山的选矿技术进步[J],金属矿山,2000(4):8-13.
    51.杨久流.某锌铁多金属矿石选矿工艺研究[J],矿冶,2005,14(4):17-19.
    52.韩跃新,杨小生,于福家等.东北地区贫杂铁矿资源的开发与利用研究[J],金属矿山(增刊),2005,8:35-37.
    53.伊新辉、伊元荣.某难选铜铁矿选矿试验研究[J],新疆有色金属,2005(4):21-23.
    54.张忠宝.高磷砷铁矿降磷砷实验研究[M],云南.昆明,昆明理工大学,2006,4.
    55.卢尚文、张邦家、熊道仁等.宁乡式胶磷铁矿用解胶浸矿法降磷的研究[J],金属矿山,1994(8):30-33.
    56.彭会清、李禄宏、徐林.某铁精矿浮选脱硫试验研究[J],金属矿山,2005(12):35-37.
    57.麦笑宇.金山店铁矿铁精矿降硫试验研究[J],矿冶工程,2005,25(5):30-32.
    58.纪军.高磷铁矿石脱磷技术研究[J],矿冶,2003(2):33-37.
    59 Santana, A. N. Reverse magnetite flotation. Minerals Engineering, v14, nl, Jan, 2001:107-111.
    60.张桂兰.含磷钒钛磁铁矿选铁试验[J],矿产综合利用,1996(2):22-25.
    61.鲁荣林.东鞍山铁矿矿石工艺矿物学特征研究[J],金属矿山,2004(9):40-41.
    62.张强、李正龙、于化军.采用混合药剂选别东鞍山难选矿石的研究[J],金属矿山,1992(6):43-48.
    63.毛益平、魏素坤.东鞍山赤铁矿药剂添加剂的选矿试验研究[J],金属矿山,1993(5):36-39.
    64.郭建斌.东鞍山赤铁矿载体浮选试验研究[J],矿冶工程,2003(6):29-31.
    65.刘慧纳、方萍、马俊伟.东鞍山难选铁矿石浮选与矿浆pH值、电位的关系[J],金属矿山,1997(2):19-21.
    66.孙传尧、印万忠.硅酸盐浮选原理[M],北京:科学出版社,2001.
    67.胡熙庚等.浮选理论与工艺[M],长沙:中南工业大学出版社,1991.
    68.胡为柏主编.浮选[M],北京:冶金工业出版社,1983.
    69.下淀佐、胡岳华.浮选溶液化学[M],长沙:湖南科学技术出版社,1998.
    70. Ananthpadnmanabhan K P, SomasundaranP. Interfacial phenomenain Miner. Process,1981, 207-227.
    71. R.L.R.Reis, A. E. C. Peres and A. C. Araujo, Corn grits:a new depressant agent for the flotation of iron and phosphate rocks, Proceedings Ⅱ International Mineral Processing Symposium, Izmir, (1989),73-89.
    72. L. S. Leal Filho, P. R. Seidl, J. C.G. Correia and L. C. K. Cerqueira. Molecular modeling of reagents for flotation processes, Minerals Engineering, Vol.13, No.14-15 (2000),1495-1503.
    73.魏德洲.固体物料分选学[M],北京:冶金工业出版社,2000.
    74.蒋先明、何伟平.简明红外光谱识谱法[M],桂林:广西师范大学出版社,1992.
    75.闻辂、梁婉雪、章正刚等.矿物红外光谱学[M],重庆:重庆大学出版社,1988.
    76.F·H·A·埃尔米达里等.两性捕收剂在硅石和赤铁矿表面上的吸附机理[J],国外金属矿选矿,2009,1-2:38-40.
    77.陈达、葛英勇.改性淀粉对石英-磁铁矿浮选体系的影响[J],矿产综合利用,2006(6):13-14.
    78. Effect of siderite in coal on reductive pyrolytic analyses·ARTICLE Fuel, Volume 79, Issue 15, December 2000, Pages 1873-1881 I. I. Maes, G. Gryglewicz, J. Yperman, D. V. Franco, J. D'Haes, M. D'Olieslaeger and L. C. Van Poucke.
    80.胡岳华.浮选溶液化学[M],长沙:湖南科学技术出版社,1988.
    81.宁家成.有机化合物结构鉴定与有机波谱学[M],北京:清华大学出版社,1989.
    82.唐恢同.有机化合物的光谱鉴定[M],北京:北京大学出版社,1992.
    83.林水水.实用傅里叶红外光谱学[M],北京:中国环境科学出版社,1991.
    84. Fenwei Su, Dephosphorization of Magnetite Fines[D], Lulea U-niversity of Technology, 1998.
    85.82. Ananthpadnmanabhan K P, SomasundaranP. Interfacial phenomenain Miner. Process,1981, 207-227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700