非线性神经元电活动的数学模型及其分析方法与计算机仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经元放电活动的研究是非线性科学和神经科学交叉的前沿课题,受到了数理科学和生命科学等领域学者的重视,是国际科学研究的前沿领域。
     非线性动力学的突飞猛进为相关科学的发展创造了契机,在生物和医学领域体现得尤为突出,因为该领域的研究对象和系统一般都具有很强的非线性性质。非线性动力学方法的引入使得人们对过去实验观察和记录到的大量杂乱无规则的生物医学信号现在有了全新的理解和认识,它们不能再像过去那样只被看作是随机过程,而完全可能是由确定性机制所产生的混沌运动。现在,围绕着神经元放电模式、心律变化、脑功能等方面的复杂运动形式引起了科研工作者的极大兴趣和广泛注意。
     神经系统是人体生理机能的重要调节系统,是通过神经元感受外界刺激,并以神经放电的方式对外界刺激信息进行编码、传递和解码。不同的放电模式反映了不同的外界刺激,相应的产生不同的生理效应。因此,深入研究外刺激与神经放电方式之间的量化关系,对更好的利用电刺激治疗疾病有重要的理论和实际意义。神经电生理活动具有复杂的非线性动力学行为。
     本文以Hodgkin-Huxley(HH)模型、FitzHugh-Nagumo(FHN)模型以及神经传播型方程为研究对象,利用稳定性、定性等理论对模型本身进行理论分析;由于HH模型采用了高维微分方程组的数学表述形式,具有多变量强耦合非线性的特点,给分析工作带来了极大的困难,本文导出HH模型的一种实用合理的简化模型,并对它们进行分析;利用非线性动力学理论和方法,研究矩形脉冲和指数衰减波形脉冲刺激下神经元的放电情况,取得了以下一些主要新结果:
     1.导出了HH模型的一种实用合理的简化模型,首次给出它们的孤波解,以及孤波出现的条件。
     2.利用常微分方程定性理论对新的简化的HH模型、FHN模型以及神经传播型方程进行定性分析,首次给出了不同情况下,HH简化方程以及FHN方程可以用来描述神经元放电机制的数学证明。
     3.构造了Lyapunov函数,对FHN模型以及非线性神经传播型方程进行了稳定性分析,首次证明了一组神经传播过程的稳定性定理,给出了其稳定性存在的充分条件。
     4.利用多种方法,首次求出神经元的传播是以扭结孤波的形式传播。并得出波幅很小时出现呼吸子现象,随波幅的增大而趋于稳定状态。
     5.首次给出了神经元在外部刺激作用下放电情况的数值仿真。
The research of neuron discharge activity, a some-what new subject intersecting nonlinear science and nerve science, raises many scholars concerns in the fields of mathematical science and life science. It is also a marginal and mutual scientific research field.
     The rapid development of nonlinear dynamics creates a chance for the development of related sciences, which is shown especially obviously in the biological and medical science fields, because the research objects and system in the very fields generally have strong nonlinear character. The introduction of the method of nonlinear dynamics makes people have a fully new understanding of large quantities of messy and irregular biological and medical signals observed and recorded in the past researches. They are no longer regarded as random processes, but on the contrary, they may surely be chaos movement caused by qualitative mechanisms. Now, the complex movement forms, surrounding neuron discharge patterns, heart ratio variation and brain functions, arouse great interests and wide attention among scientific workers.
     The nerve system is an important modulating system in the human physiological enginery. The external stimulus are taken by the neurons of the nerve system, and coded, propagated and decoded by means of various patterns of neuron discharge. Different patterns of discharge reflect the difference of the external stimulus information and induce diverse physiological effects. Therefore, a deep research into the quantitive relationship between external stimulus and nerve discharge pattern has important theological and practical meanings for the better usage of electric stimulus to cure diseases. The electrophysiological function of nerve system contains very complex nonlinear dynamical behaviors.
     This paper, taking Hodgkin-Huxley(HH) model, FitzHugh-Nagumo(FHN) model and nerve propagation equation as the research objects, analyzes theologically the models themselves with the theories such as stability and quality. Many variables and strong coupling nonlinear, due to HH models adopting such math expression as high dimensional differential coefficient equation groups, bring a huge difficulty for analytic work. This paper educes the practical rational simplified model of HH model, makes an analysis of them, studies the neuron discharge conditions under stimulus of rectangle impulse and exponent attenuation wave mode impulse, using nonlinear dynamics theory and method, and gets the following results:
     1. We have given a practical rational simplified model of HH model, their solitary wave solutions and the solutions exited conditions.
     2. We give a new specific analysis of the simplified HH model, FHN model and nerve propagation equation, by using the qualitative theory as a series of differential equations. We give the mathematical proof which simplified HH equations; FHN equations may describe neuron discharge mechanism under different condition.
     3. We have constructed a Lyapunov function and given a stability analysis of FHN model and nerve propagation equation. We proved series stability theorems and given the full conditions for stability existence.
     4. We get the solitary wave is of the kink mode waves and its solution of nerve wave propagation equation by using the expansion methods of hyperbolic sine, hyperbolic tangent and others at first. We observed the breather in the small amplitude state.
     5. We have given the numerical simulation of the neuron discharge condition under external stimulus.
引文
[1] Hodgkin A. L., Huxley A. F.. A quantitative description of membrane current and its applications to conduction and excitation in nerve [J].J.physiol.1952, 117: 500-544.
    [2] Wiggins S.. Global Bifurcations and Chaos[M]. New York: Springer-Verlag, 1988
    [3] Wiggins S.. Introduction to Applied Nonlinear Dynamical Systems and Chaos [M]. New York: Springer-Verlag, 1990.
    [4]刘延柱,陈立群.非线性动力学[M].上海:上海交通大学出版社,2000: 1-237.
    [5]陆启韶.非线性神经动力学的研究进展[C] .//戴世强,周哲玮,程昌钧等.现代数学和力学(MMM IX).上海:上海大学出版社,2004:127-131.
    [6]寿天德.神经生物学[M].北京:高等教育出版社,2002:1-41.
    [7]阮炯,顾凡及,蔡志杰.神经动力学模型方法和应用[M].北京:科学出版社,2002:1-9.
    [8]刘秉正.生命过程中的混沌[M].长春:东北师范大学出版社,1999:110-126.
    [9]范少光,汤浩,潘伟丰.人体生理学[M].北京:北京医科大学出版社,2000:1-4.
    [10] Longstaff A..神经科学[M].北京:科学出版社,2000:1-110.
    [11] Izhikevich E. M.. Neural excitability spiking and bursting[J]. Int. J. of Bif. And Chaos,2000,10:1171-1266.
    [12] Chay T. R., Lee Y. S.. Impulse responses of automaticity in the Purkinje fiber[J]. Biophys.J,1984,45: 841-849.
    [13] Chay T. R.. Abnormal discharges and chaos in a neuronal model system[J]. Biol. Cybern.,1984, 50: 301-311.
    [14] Chay T. R., Rinzel J.. Bursting, beating, and chaos in an excitable membrane model[J].Biophys.J.,1985, 47: 357-366.
    [15] Chay T. R.. Chaos in a three-variable model of an excitable cell[J]. Physica D, 1985, 16: 233-242.
    [16] Plant R. E.. Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxleye quations[J]. Biophys.J.,1976,16: 227-244.
    [17] Chay T. R.. Eyring Rate theory in excitable membranes: application to neuronaloscillations[J]. J.phys.Chem,1983,87: 2935-2940.
    [18] Chay T. R., Keizer J.. Minimal model for membrane oscillations in the pancreatic beta-cell[J]. Biophys.J.,1983, 42: 181-190.
    [19] FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane[J]. J. Biophys,1961,1:445–466.
    [20] Hindmars J. L., Rose R. M.. A model of neuronal bursting using three coupled first order differential equations[J]. Proc. R Soc. London Ser. B, 1984, 221: 87-102.
    [21]杨卓琴.神经元模型放电节律模式的非线性动力学研究[D],北京:北京航空航天大学,2003.
    [22] Chen Zhixiong, Guo Benyu.. Long-time behaviour of the partially uniform discrete Nagumo model[J]. Mathematical Methods in the Applied Sciences, 1993,16:305-325.
    [23]范恩贵.可积系统与计算机代数[M].北京:北京科学出版社,2004:145-178.
    [24] Ren W., Hu S. J., Zhang B. J. etc. Period-adding bifurcation with chaos in the inter spike intervals generated by an experimental neural pacemaker[J]. Int.J. Bif. And Chaos, 1997,7:1867-1872.
    [25] Gong Y. F., Xu J. X., Ren W. etc Determine degree of chaos from analysis of ISI time series in nervous system[J]. Biological Cybernetics, 1998, 78(2): 159-165.
    [26]桂福如.电刺激在医疗中的应用与展望[J].中国医疗器械信息,1996,2(1):9-11.
    [27]王卫,任莉等.生物电和电刺激在医学中的应用[J].第四军医大学学报,2001, 22 (suppl): 55-56.
    [28]蓝宁,汪家棕等.功能性电刺激的原理、设计与应用(一)[J] .中国康复理论与实践,1997,3(4):151-154.
    [29] Kantz H, Sehreiber T.. Nonlinear time series analysis[M]. Cambridge:Cambridge University Press,1997:134-135.
    [30]吕金虎,陆金安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002:l-5,57-58.
    [31] Cao L., Wu D. J., Lin L.. First-order-like transition for colored saturation models of dye lasers:effects of quantum noise[J].Physics Review A,1994,49:506-516.
    [32] Magnasco M. O.. Molecular combustion motors [J]. Physics Review Letter, 1994, 72:2656-2659.
    [33] Magnasco M. O.. Forced thermal ratchets [J]. Physics Review Letter, 1993,71: 1477-1481.
    [34] Reimann P.. Brownian motors: noisy transport far from equilibrium[J]. Physics Reports, 2002,361:57-265.
    [35] Broomhead D. S., King G. P.. Extracting qualitative dynamics from experimental data[J]. Physica D,1986,20:217-236.
    [36] Bezruchko B. P., Karavaev A. S., Ponomarenko V. I. etc. Reconstruction of time-delay systems from chaotic time series [J]. Phys Rev E,2001,64:1-3.
    [37] Ponomarenko V. I., Prokhorov M. D.. Extracting information masked by the chaotic signal of a time-delay system [J].Phys Rev E, 2002,66:3-5.
    [38] Leung H. K.. Stochastic Hopf Bifurcation in a biased van der Pol model [J]. Physical A, 1998, 254:146-155.
    [39] Namaehchivaya N. S.. Stochastic Bifurcation [J], Applied Mathematics and Computation,1990, 38:101-159.
    [40] Ariaratnam S. T.. Some illustrative examples of stochastic bifurcation[C]//Thompson J., Bishop S. R.. in Nonlinearity and chaos in engineering dynamics. IUTAM Symposium. New York:Wiley,1994:267-274.
    [41] Sehenk-Hoppe K. R.. Bifurcation scenarios of the noisy Duffing-Van der Pol oscillator[J], Nonlinear Dynamics.1996,11:255-274.
    [42] Speneer B. F., Bergman L. A.. On the numerical solution of the Fokker-Planck equation[J], J. Sound and Vibration.1985,101:41-54.
    [43]买斐.神经纤维电刺激的建模及非线性分析[D].天津:天津大学,2003.
    [44]官山,陆启韶,黄克累.Hodgkin-Huxley方程Hopf分叉的研究[J].非线性动学学报,1996,3(3):252-257.
    [45]车艳秋.Hodgkin-Huxley模型的分岔与混沌分析[D],天津:天津大学,2005.
    [46]张骅.Hodgkin-Huxley模型的分岔分析[D],天津:天津大学,2003.
    [47] Lamberto Lamberti. Solution to the Hodgkin-Huxley Equations[J]. Applied Mathematics and Computation,1986,18: 43-70.
    [48] Murray J. D.. Mathematical Biology[M].Berlin Heidelberg New York: Springer-Verlag, 1993,140-175.
    [49] Sleeman B. D.. Small Amplitude Periodic Waves for the Fitzhugh-Nagumo Equations[J]. J. Math. Biol.,1982, 14: 309-325.
    [50] Rinzel J., Repetitive Activity and Bifurcation Under Point Stimulation For a Simple Fitzhugh-Nagumo Nerve Conduction Model[J]. J. Math Biol., 1978, 5: 363-382.
    [51] Schorbeck M. E., Boundary Value Problems for the Fitzhugh-Nagumo Equations[J].J. Diff Equa., 1978, 30: 119-147.
    [52]刘宝平.赵壁,Fitzhugh-Nagumo神经传导方程的多重周期平面波解[J].应用数学学报,1989,12: 13-23.
    [53]郑宋穆,沈玮熙.Fitzhugh-Nagumo方程组初边值问题的整体存在性[J].科学通报,1984,16:966-969.
    [54]吕淑娟.Fitzhugh-Nagumo神经传导方程的周期初值问题[J].生物数学,1997,1(1):25-28.
    [55] Maria Eliena. Schonbek.Boundary Value Problems for the Fitzhugh-Nagumo Equation[J]. Journal of Differential Equations,1978, 30 (1): 119-147.
    [56] Dennis E., Jackson. Existence and Regularity for the Fitzhugh-Nagumo Equation with Inhomogeneous Bourdary condition[J].Nonliner Analysis,Theory, Method & Application,1990,14(3):201-216.
    [57] Bose A., Jone C. K. R. T.. Stability of in-phase travelling wave solutions in a pair of coupled nerve fibres [J]. Indiana Univ.Math.J., 1995, 44:189-220.
    [58] Bose A.. Symmetric and anti symmetric pulses in parallel coupled nerve fibres[J]. Siam J. Appl. Math., 1995, 55:1650-1674.
    [59]吴建华.具有耦合的Fitz-Hugh-Nagumo方程组的整体吸引子和维数估计[J].西安交通大学学报,1998,32(2):74-77.
    [60]吴建华.反应扩散方程的长时间行为[D] ,西安交通大学博士论文,1997.
    [61]李开泰,吴建华.耦合的Fitz-Hugh-Nagumo模型的初边值问题[J] .数学年刊,2000,21A(2):207-216.
    [62] Anderson A., Sleeman B. D.. Wave front propagation and its failure in coupled system of discrete bistable cells modelled by FitzHugh-Nagumo dynamics[J]. International J of bifurcation and chaos,1995,5(1):63-74.
    [63]黄建华,路钢.离散FitzHugh Nagumo方程的整体吸引子和维数[J] .数学物理学报,2001, 21A(3) :296-302.
    [64] Aihara K., Matsumoto G.. Chaotic Oscillations and Bifercations in Squid Giant Axons[C].// Holden A.V.. Chaos, Nonliear Science. Theory and Applications. Manchester: Manchester University Press, 1985,2: 257-269.
    [65] Chay T. R, Fan Y. S. Bursting, spiking, chaos, fractals, and university in biological rhythms[J]. Int. J. of Bif. And Chaos,1995,5(3):595-635.
    [66] Doi S,Nabetani S., Kumagai S.. Complex nonlinear dynamics of the Hodgkin-Huxley equations induced by time scale changes[J].Biol.Cybenr.,2001,85:51-44.
    [67] Mosekide E ., Lading B., Yanchuk S. etc. Bifurcation structure of a model of bursting pancreatic cells[J]. Bio Systems,2001,63:3-13.
    [68] Holden A. V, Fan Y. S.. From simple to simple bursting oscillatory behaviour via chaos in the Rose-Hindmarsh model for neuronal activity[J]. Chaos, Solitons & Fractals, 1992, 2: 221-236.
    [69] Holden A. V., Fan Y. S.. From simple to complex oscillatory behaviour via intermittent chaos in the Rose-Hindmarsh model for neuronal activity[J].Chaos, Solitons & Fractals,1992,2:349-369.
    [70] Holden A. V., Fan Y. S.. Crisis-induced chaos in the Rose-Hindmarsh model for neuornal activity[J]. Chaos, Solitons & Fractals,1992, 2: 583-595.
    [71] Wang X. J.. Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle[J]. Physica D ,1993, 62: 263-274.
    [72] Rinzel J.. Bursting oscillation in an excitable membrane model. In ordinary and partial diferential equations[M]. New York: Springer,1985,304-316.
    [73] Rinzel J., Lee Y. S.. Dissection of a model for neuronal parabolic bursting[J]. J. Math. Biol.,1987, 25: 653-675.
    [74] Holden L., Erneux T.. Understanding bursting oscillations as periodic slow passages through bifurcation and limit points[J]. J. Math. Biol.,1993,31:351-365.
    [75] Rush M. E., RinzelJ.. Analysis of bursting in thalamic neuron model[J]. Biol. Cybem.,1994,71: 281-291.
    [76] Bertram R., Butte M. J., Kiemel T. etc. Topological and phenomenologicalclassification of bursting oscillations[J]. Bull. Math. Biol,1995,57 :41 3-439
    [77] Shen P., Larter R.. Chaos in intracellular C a2+ oscillations in a new model for non-excitable cells[J]. Cell Calcium, 1995, 17: 225-232.
    [78] Chay T. R.. Electrical bursting and luminal calcium oscillation in excitable cell models[J]. Biol. Cybenr,1996,75:419-431.
    [79] Soto-Trevino C., Kopell N ., Watson D.. Parabolic bursting revisited[J]. J. Math. Biol.,1996,35: 114-128.
    [80] Guckenheirner J., Harris-Warrick R., Peck J. etc. Bifurcation, bursting and spike-frequency adaptation[J]. J. Comput. Neurosci.,1997,4: 257-277.
    [81] Kinard T. A., Vries C. D., Sherman A . etc. Modulation of the bursting properties of single mouse pancreaticβ-cells by artificial conductances[J]. Biophys. J, 1999, 76:1423-1435.
    [82] Belykh V. N ., Belykh I. V., Colding-Jorgensen M. etc. Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models[J].Eur.Phys.J. E ,2000,3: 205-219.
    [83] Kummer U., Olsen L. F., Dixon C. J. etc. Switching from simple to complex oscillations in calcium signaling[J].Biophys.J,2000,79:1188-1195.
    [84] Kepecs A., Wang X. J.. Analysis of complex bursting in cortical pyramidal neuron models[J]. Neurocomputing,2000,32-33:181-187
    [85] Ren W., Hu S. J., Zhang B. J. etc. Period-adding bifurcation with chaos in the inter spike intervals generated by an experimental neural pacemaker[J]. Int. J. Bif. And Chaos, 1997,7:1867-1872.
    [86] Gong Y. F., Xu J. X., Ren W. etc. Determine degree of chaos from analysis of ISI time series in nervous system[J]. Biological Cybenretics,1998,78(2):159-165.
    [87]李莉.神经起步点自发放电节律的模式和节律转化的分岔序列规律[D].北京:航天医学工程研究所,2003.
    [88]朱俊玲,沈强,蒋大宗.正弦电流刺激下神经元的放电模式[J].航人医学与医学工程,2002,15(2):108-111.
    [89]朱俊玲,沈强,蒋大宗.慢变刺激下神经元的阵发放电[J].生物物理学报,2001,17(4):632-636.
    [90]文治洪,胡三觉,董秀珍等.噪声引起神经元动力学特征的改变[J].第四军医大学学报,2004,25(10):948-949.
    [91]龚云帆,史习智,任维.基于混沌降噪的神经元放电峰峰间期序列分析[J].生物物理学报,1999,15(2):339-344.
    [92]吕国蔚.实验神经生物学[M].北京:科学出版社.2002.111.
    [93] Jane C.. Mathematical aspects of Hodgkin-Huxley neural theory[M].Cambridge: Cambridge University Press, 1987.
    [94] James Keener , James Sney D.. Mathematical Physiology[M]. New York: Springer-Verlag ,1998. 33-153.
    [95] Tuckwell H. C.. Introduction to Theoretical Neurobiology: Volsl &2[M]. Cambridge:Cambridge Univerdity Press, 1983.
    [96] Jack J. J. B., Noble D., Tsien R. W.. Electric Current Flow in Excitable Cells[M]. Cambridge:Oxford University Press,1988.
    [97] Chen Zhixiong, Guo Benyu. Long-time behaviour of the partially uniform discrete Nagumo model[J]. Mathematical Methods in the Applied Sciences, 1993,16:305-325.
    [98] Nagumo J., Arimoto S., Yoshizawa S.. An active pulse transmission line simulating nerve axon[J]. Proc. IRE, 1962, 50:2061-2070.
    [99] Arima R., Hasegawa Y.. On global solution for mixed problem of a semilinear differential equation[J].Proc. Japan. Acad., 1963, 39: 721-725.
    [100] Yamaguti M.. The asymptotic behavior of the solution of a semilinear differential equation related to an active pulse transmission line[J].Proc. Japan. Acad., 1963, 39: 726-730.
    [101]刘亚成,万维明,吕淑娟.神经传播型方程初值问题解的blow - up[J].应用数学学报,1997,20(2):289-293.
    [102]刘亚成,刘大成,三维广义神经传播型非线性拟双曲方程(组)的整体强解[J].数学学报,1987,30(4):536-547.
    [103]张卫国,非线性波动与神经传播混合型方程的整体吸引子[J].应用数学学报, 1998, 21(3).339-352.
    [104]万维明,刘亚成,神经传播型方程初边值问题解的长时间行为[J].应用数学学报, 1999,22(2):311-314.
    [105]刘亚成,刘萍.关于位势井及其对强阻尼非线性波动方程的应用[J].应用数学学报, 2004,27(4):710-722.
    [106]方道元,徐江.一类强阻尼波方程解的存在性和爆破性[J].数学物理学报,2006, 26A (5):753-765.
    [107] Vittorino Pata, Marco Squassina. On the Strongly Damped Wave Equations [J]. Commu. Math. Phys., 2005, 253(2):511-533.
    [108]刘亚成,于涛.神经传播型方程解的blow-up[J].应用数学学报,1995,18(2):264-272.
    [109] Stephen W.Kuffler,John G.Nicholls,A.Robert Martin.神经生物学-从神经元到大脑(中译)[M].北京:北京大学出版社,1991.
    [110]官山,陆启韶,黄克累.Hodgkin-Huxley方程Hopf分叉的研究[J].非线性动力学学报,1996,3(3):252-257.
    [111]唐文亮.神经脉冲传导的一种解与动作势的稳定性[J].应用数学和力学,1983,4(1):113-121.
    [112]范恩贵.可积系统与计算机代数[M].北京:北京科学出版社.2004:145-178.
    [113]周钰谦,吴曦,张健.一类反应扩散方程的新精确解[J].四川师范大学学报,2003,26(5):448-451.
    [114]周钰谦,张健.一类反应扩散方程的显式复线形孤子解[J].四川师范大学学报,2004,27(2):144-146.
    [115]徐淑奖,郭玉翠,李华英.一类反应扩散方程的精确解[J].数学研究与评论,2007,27(4):896-900.
    [116] Chen Zhixiong, Guo Benyu. Long-time behaviour of the partially uniform discrete Nagumo model[J]. Mathematical Methods in the Applied Sciences, 1993,16:305-325.
    [117]王联,王慕秋.非线性常微分方程定性分析[M].哈尔滨:哈尔滨工业大学出版社.1987:229-546.
    [118] Kirchhoff G..Vorlesungen uber mechanic[J].Tauber LEIPZIG,1883,2(2):1-10.
    [119]张再云.广义神经传播型方程的局部解[J].湖南工程学院学报,2007,17(3):69-71.
    [120]屈长征,荔伟,孙国华.具非线性阻尼的拟线性双曲型方程[J].纯悴数学与应用数学,1994,10(1):91-97.
    [121]邓斌.外电厂作用下神经纤维的混沌与同步[D].天津:天津大学,2004.
    [122]梁贵书.电路理论基础[M].北京:中国电力出版社,1999,331-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700