脉冲电晕放电烟气中细微颗粒物协同氮氧化物脱除研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,燃煤电厂中所排放的细微颗粒物PM25成为了我国各大城市主要的大气污染物。由于细微颗粒物的存在导致了可见度的下降,尤其是我国华北地区大城市受影响最为严重,并且危害到了我国居民的生活质量和身体健康。因此,对于细微颗粒物的治理已经迫在眉睫。传统的烟气除尘技术,例如静电除尘和袋式除尘技术对于细微颗粒物PM25的脱除效率有限,不能有效控制其的排放。本文采用脉冲电晕放电的方式使细微颗粒物在电场中由扩散荷电和电场荷电的作用实现非对称异极性荷电,然后在库仑力的作用下进行凝并与脱除。与此同时,在脉冲电晕放电区域,由于大量强氧化性自由基的生成,可以氧化燃煤电厂烟气中的气态污染物,例如氮氧化物等。
     本文在细微颗粒物荷电的理论研究方面,建立了颗粒物进入到脉冲电晕放电电场当中的数学模型,对细微颗粒物在电场中的电场荷电和扩散荷电机理进行了研究,并且进行了建模计算。同时研究了不同能量注入下、不同电场当中,各个粒径段颗粒物的荷电特性。
     本文在实验方面建立了脉冲电晕放电结合直流放电细微颗粒物PM25脱除系统。在细微颗粒物的实验研究方面,针对细微颗粒物的脱除,首先研究了在不同电场作用下,PM25在全粒径段的荷电情况,得出的结论与前面理论计算结论基本吻合。然后研究了在不同含氧量、不同相对湿度下细微颗粒物的荷电情况和脱除效果。实验证明,在粒径大于0.2μm的粒径范围时,随着粒径的增大,颗粒物的脱除效率增大;在粒径小于0.1μm时,随着粒径的增大,细微颗粒物的脱除效率逐渐减小。也就是说0.1-0.2μm粒径范围内细微颗粒物的脱除效率最低。但是对于整个粒径段的PM25来说,在脉冲电晕放电的作用下的脱除效率有着极其显著的提高。
     针对氮氧化物转化的实验研究方面,首先研究了脉冲电晕放电反应器几何尺寸的变化对于氮氧化物转化的影响。然后在不同的含氧量和相对湿度下对氮氧化物的转化过程和转化效率进行了研究,最后讨论了脉冲电晕放电条件下氮氧化物转化所需要的能耗。
     针对上述结论,进行了脉冲电晕放电结合直流放电烟气多种污染物协同脱除的实验。在模拟烟气中同时加入细微颗粒物和氮氧化物来进行脱除。结论是细微颗粒物的存在对氮氧化物的转化造成很大影响,但是氮氧化物的存在对细微颗粒物的脱除影响甚微。最后对协同脱除系统进行了能耗分析。
     在小试实验结果的基础上,设计了脉冲电晕放电结合直流放电多种污染物协同脱除的中试实验平台。该实验平台由直流预收尘区域、脉冲电晕放电区域和直流收尘区域组成。最后对其进行能耗分析,讨论了脉冲电晕放电结合直流放电多种污染物协同脱除系统的工业应用前景。
The particulate matter from flue gas of the power plant, especially PM2.5has already become a major type of air pollutions in China recently, which has not only affected the visibility of the surrounding atmosphere, but also seriously harm to human health. Therefore, PM2.5has aroused severe discussion in China. A much stricter air pollution control standard has been issued by Chinese government in2012which included the specific emission standard of PM2.5for the first time. Traditional technologies for particular matter control such as electrostatic precipitator or fabric filtration has lower efficiency of PM2.5. Pulsed corona discharge has been considered to be an efficient technology for the abatement of pollutants which are generated in flue gas. It has been utilized in industrial applications particularly when the plasma reactor is used as wire-plate configuration. The particles can be charged to either polarity depend on the differences of their diameter. Then the charged particles will be agglomerated by the Coulomb force between them. After the agglomeration, small particles such as PM2.5will grow larger and easier to be removed by ESP. There are large numbers of high energy electrons generated by pulsed corona discharge. In the processes of collisions between high energy electrons with background gas molecules, many different kinds of oxygenated radicals (e.g., O and OH radicals) and other active species (e.g., H2O2, O3, and HO2) are generated. All these active species can oxidize pollutions such as NO and SO2to NO2and SO3molecules which are soluble in alkaline solution.
     In this dissertation, the removal of PM2.5and NOx using pulsed corona discharge has been investigated both theoretically and experimentally. In the theoretical study, particle charging in different electric fields is investigated. Both field charging and diffusion charging are calculated. In the mean time, the charging characteristic of small particles in different electric fields and energy consumption are investigated.
     In the experimental study, a simultaneous removal system based on pulsed corona discharge for small particles and NOx has been established. First of all, particle charging characteristic by both pulsed and DC power supply has been investigated. The result is a perfectly match compare with the theoretical calculation. Then, the charging and removal efficiency of PM2.5has been studied in different oxygen concentration and relative humidity of flue gas. Experimental results show that when the particle diameter is larger than0.2μm, particle removal efficiency increases along with the increase of diameter. When the diameter is smaller than0.1μm, the result is just opposite, particle removal efficiency decrease along with the increase of diameter. In the diameter region of0.1-0.2μm, particle removal efficiency is the lowest. The total PM2.5removal efficiency has a very significant improvement using pulsed corona discharge than DC power supply. With the decrease of oxygen concentration and increase of the relative humidity, PM2.5removal efficiency increases.
     In the NO conversion experiment study, an optimized geometry structure of laboratory scale plasma discharge reactor has been investigated. The conclusion we obtain can be a theoretical basis for further industrial application. Three different experimental methods are performed to study the geometry structure of the plasma reactor. They are electrical experiment, optical experiment and NO conversion experiment. Then, NO removal efficiency under different oxygen concentration and relative humidity has been studied. Energy consumption of the NO conversion process is calculated.
     Simultaneous removal of PM2.5and NO from flue gas by pulsed corona discharge has been investigated. The result shows that the existence of PM2.5has a huge impact on the NO conversion efficiency. NO conversion efficiency drops nearly20%with the existence of PM2.5in the flue gas. However, the existence of NO has little effect on PM25removal efficiency.
     Based on the results of the laboratory scale experiment, an ESP with pulsed corona discharge system has been designed to control PM2.S and NO from flue gas. The system consists of DC pre-removal area, pulsed corona discharge area and ESP. Finally the energy consumption of the system has been calculated. A discussion has been made about the future industrial application about pulsed corona discharge.
引文
[1]崔民选,中国能源发展报告,社会科学文献出版社,2009.
    [2]吕中法,优化电源结构促进电力工业可持续发展,科技信息,vol.15, pp.561,2009.
    [3]江泽民,对中国能源问题的思考,上海交通大学学报,vol.42,2008.
    [4]王志轩,潘荔,张晶杰,杨帆,我国燃煤电厂“十二五”大气污染物控制规划的思考,环境工程技术学报,vol.1, pp.63-71,2011.
    [5]钱易,唐孝炎,环境保护与可持续发展,高等教育出版社,2000.
    [6]L. K. Wang, N. C. Pereira, Y. Hung, Air pollution control engineering, vol.1. Humana press, 2004.
    [7]J. C. Mycock, J. D. McKenna, L. Theodore, Handbook of air pollution control engineering and technology, CRC Press,1995.
    [8]席胜伟,大气污染危害性分析及治理途径,科技情报开发与经济,vol.16,pp.153-154,2006.
    [9]J. R. Goldsmith, L. T. Friberg, Effects of air pollution on human health, Air pollution, vol.2, pp.457-610,1977.
    [10]A. Seaton, D. Godden, W. MacNee, K. Donaldson, Particulate air pollution and acute health effects. The Lancet, vol.345, pp.176-178,1995.
    [11]焦红光,胡正彬,浅谈我国燃煤污染危害及其防治,选煤技术,vol.2, pp.3-6,2004.
    [12]王方群,杜云贵,刘艺,王小敏,国内燃煤电厂烟气脱硝发展现状及建议,电力环境保护,vo1.23,2007.
    [13]崔彦亭,刘宝林,何伯述,燃煤电厂污染控制技术进展与展望,电力环境保护,vol.22,2006.
    [14]盛来运,中国统计年鉴:2011,中国统计出版社,2011.
    [15]魏一鸣,范英,韩智勇,吴刚,中国能源报告2006:战略与政策研究,科学出版社,2006.
    [16]魏凤,张军营,王春梅,郑楚光,煤燃烧超细颗粒物团聚促进技术的研究进展,煤炭转化,vol.26, pp.27-31,2003.
    [17]徐杰英,刘晶,郑楚光,燃烧源超细颗粒物的研究进展,煤炭转化,vol.26, pp.16-20, 2003.
    [18]吕建焱,李定凯,吕子安,燃烧过程颗粒物的形成及我国燃烧源分析,环境污染治理技术与设备,vol.7, pp.43-47,2006.
    [19]程义斌,金银龙,刘迎春,汽车尾气对人体健康的危害,卫生研究,vol.32, pp.504-507, 2003.
    [20]A. van Donkelaar, R. V. Martin, M. Brauer, R. Kahn, R. Levy, C. Verduzco, et al., Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth:development and application, Environmental Health Perspectives, vol.118, pp. 847,2010.
    [21]R. Chen, Y. Li, Y. Ma, G. Pan, G. Zeng, X. Xu, et al., Coarse particles and mortality in three Chinese cities:the China Air Pollution and Health Effects Study (CAPES), Science of the Total Environment, vol.409, pp.4934-4938,2011.
    [22]A. D. Kappos, P. Bruckmann, T. Eikmann, N. Englert, U. Heinrich, P. Hoppe, et al., Health effects of particles in ambient air, International Journal of Hygiene and Environmental Health, vol.207, pp.399-407,2004.
    [23]许秦坤,陈海焱,可吸入颗粒物研究现状及发展趋势,有色金属科学与工程,vol.1, pp. 45-48,2010.
    [24]赵金镯,大气细颗粒物心血管毒性的机制研究[D],复旦大学,2008.
    [25]杨耀,邰阳,张燕,大气颗粒物的危害及其解析技术研究综述,北方环境,vol.5, pp.27, 2010.
    [26]垄旦墓,童塑夔,我国酸雨的研究进展(综述),安徽农业大学学报,vol.25, pp.208-210, 1998.
    [27]张楚莹,王书肖,邢佳,赵瑜,郝言明,中国能源相关的氮氧化物排放现状与发展趋势分析,环境科学学报,vol.28,2008.
    [28]G. C. Tiao, G. Box, W. J. Hamming, Analysis of Los Angeles photochemical smog data:a statistical overview, Journal of the Air Pollution Control Association, vol.25, pp.260-268, 1975.
    [29]A. S. Whittemore, E. L. Korn, Asthma and air pollution in the Los Angeles area., American Journal of Public Health, vol.70, pp.687-696,1980.
    [30]J. G. Calvert, Hydrocarbon involvement in photochemical smog formation in Los Angeles atmosphere. Environmental Science & Technology, vol.10, pp.256-262,1976.
    [31]P. A. Leighton. Photochemistry of air pollution,1961.
    [32]U. E. P. Tton Agencc, National Ambient Air Quality Standards (NAAQS),2006.
    [33]Environmental Quality Standards in Japan-Air Quality, http://www.env.go.jp/en/air/aq/aq.html
    [34]Air Quality Standards, http://ec.europa.eu/environment/air/quality/standards.htm
    [35]S. H. Moolgavkar, A review and critique of the EPA's rationale for a fine particle standard, Regulatory Toxicology and Pharmacology, vol.42, pp.123-144,2005.
    [36]韩晶晶,王丽萍,李杰,燃煤电厂烟气高效除尘技术的选择及应用,环境科学与管理,vol.36, pp.86-89,2011.
    [37]荣利民,任建,电除尘原理及发展趋势,科技风,pp.86,2011.
    [38]T. Yamamoto, H. R. Velkoff, Electrohydrodynamics in an electrostatic precipitator, Journal of Fluid Mechanics, vol.108, pp.1-18,1981.
    [39]J. Zucker, Google Patents,1976.
    [40]S. H. Kim, K. W. Lee, Experimental study of electrostatic precipitator performance and comparison with existing theoretical prediction models, Journal of Electrostatics, vol.48, pp. 3-25,1999.
    [41]王显龙,何立波,贾明生,陈恩鉴,静电除尘器的新应用及其发展方向,工业安全与环保,vol.29, pp.3-6,2003.
    [42]W. Humphries, J. J. Madden, Fabric filtration for coal-fired boilers:dust dislodgement in pulse jet filters, Filtration & Separation, vol.2, pp.40-44,1983.
    [43]R. P. Donovan, Fabric Filtration for Combustion Sources:Fundamentals and Basic Technology, vol.41. CRC Pressl Llc,1985.
    [44]张瑞平,赵士骐,吴利勤,布袋除尘器的应用及前景,煤气与热力,vol.24, pp.413-415, 2004.
    [45]张秀琨,郑刚,电袋复合除尘器研究与应用,能源技术与管理,vol.3, pp.74-76,2007.
    [46]Y. Nakajima, T. Sato, Electrostatic collection of submicron particles with the aid of electrostatic agglomeration promoted by particle vibration, Powder technology, vol.135, pp. 266-284,2003.
    [47]S. Kanazawa, T. Ohkubo, Y. Nomoto, T. Adachi, Submicron particle agglomeration and precipitation by using a bipolar charging method, Journal of electrostatics, vol.29, pp.193-209,1993.
    [48]T. Watanabe, F. Tochikubo, Y. Koizumi, T. Tsuchida, J. Hautanen, E. I. Kauppinen, Submicron particle agglomeration by an electrostatic agglomerator, Journal of electrostatics, vol.34, pp.367-383,1995.
    [49]S. Vemury, C. Janzen, S. E. Pratsinis, Coagulation of symmetric and asymmetric bipolar aerosols, Journal of aerosol science, vol.28, pp.599-611,1997.
    [50]T. Matsoukas, The coagulation rate of charged aerosols in ionized gases, Journal of colloid and interface science, vol.187, pp.474-483,1997.
    [51]Y. Koizumi, M. Kawamura, F. Tochikubo, T. Watanabe, Estimation of the agglomeration coefficient of bipolar-charged aerosol particles, Journal of Electrostatics, vol.48, pp.93-101, 2000.
    [52]C. J. Yu, F. Xu, Z. Y. Luo, W. Cao, B. Wei, X. Gao, et al., Influences of water vapor and fly ash addition on NO and SO2 gas conversion efficiencies enhanced by pulsed corona discharge, Journal of Electrostatics, vol.67, pp.829-834,2009.
    [53]F. Xu, Z. Luo, W. Bo, L. Zhao, X. Gao, M. Fang, et al., Experimental investigation on charging characteristics and penetration efficiency of PM2.5 emitted from coal combustion enhanced by positive corona pulsed ESP, Journal of Electrostatics, vol.67, pp.799-806, 2009.
    [54]赵爽,电凝并脱除可吸入颗粒物的实验研究,杭州:浙江大学,2006.
    [55]徐飞,脉冲放电电凝并结合碱液吸收烟气多种污染物协同脱除研究,浙江大学,2009.
    [56]魏波,脉冲电晕放电过程中OH自由基的光学测量,浙江大学,2010.
    [57]R. CRYNACK, R. TRUCE, W. HARRISON, Reducing Fine Particle Emissions from US Coals Using the Indigo Bi-Polar Agglomerator.
    [58]R. R. Crynack, R. J. Truce, W. A. Harrison, Results Of The Indigo Agglomerator Testing At Watson Power Station,th International Conference on Electrostatic Precipitation in South Africa,(available at indigotechnologies. com. au). KEY WORDS Fine Particles, PM2.5
    [59]R. Truce, L. Wilkinson, Electrostatic Precipitation,in Enhanced Fine Particle and Mercury Emission Control Using the Indigo Agglomerator Springer,2009, pp.206-214.
    [60]王洁,声波团聚及联合其他方法脱除燃煤飞灰细颗粒的研究,浙江大学,2012.
    [61]E. de Sarabia, Acoustic agglomeration of submicron particles in diesel exhausts:First results of the influence of humidity at two acoustic frequencies, Journal of aerosol science, vol.31,2000.
    [62]D. T. Shaw, K. W. Tu, Acoustic particle agglomeration due to hydrodynamic interaction between monodisperse aerosols, Journal of Aerosol Science, vol.10, pp.317-328,1979.
    [63]T. L. Hoffmann, W. Chen, G. H. Koopmann, L. Song, A. W. Scaroni, Experimental and numerical analysis of bimodal acoustic agglomeration, American Society of Mechanical Engineers(Paper)., pp.1-9,1991.
    [64]M. T. Cheng, P. S. Lee, A. Berner, D. T. Shaw, Orthokinetic agglomeration in an intense acoustic field, Journal of Colloid and Interface Science, vol.91, pp.176-187,1983.
    [65]M. Volk Jr, W. J. Moroz, Sonic agglomeration of aerosol particles, Water, Air, and Soil Pollution, vol.5, pp.319-334,1976.
    [66]J. Liu, J. Wang, G. Zhang, J. Zhou, K. Cen, Frequency comparative study of coal-fired fly ash acoustic agglomeration, Journal of Environmental Sciences, vol.23, pp.1845-1851, 2011.
    [67]J. Wang, J. Liu, G. Zhang, J. Zhou, K. Cen, Orthogonal design process optimization and single factor analysis for bimodal acoustic agglomeration, Powder Technology, vol.210, pp. 315-322,2011.
    [68]王文选,肖志均,夏怀祥,火电厂脱硝技术综述,电力设备,vol.7, pp.1-5,2006.
    [69]王银章,烟气脱硝技术在火电厂项目中的应用研究,华北电力大学(北京),2008.
    [70]毛剑宏,大型电站锅炉SCR烟气脱硝系统关键技术研究,浙江大学,2011.
    [71]王斌,SCR脱硝技术及其在燃煤电厂中的应用,电力科学与工程,vol.3,pp.61-63,2003.
    [72]S. Masuda, H. Nakao, Control of NOx by positive and negative pulsed corona discharges, Industry Applications, IEEE Transactions on, vol.26, pp.374-383,1990.
    [73]S. Masuda, Pulse corona induced plasma chemical process:a horizon of new plasma chemical technologies, Pure Appl. Chem, vol.60, pp.727-731,1988.
    [74]J. S. Clements, A. Mizuno, W. C. Finney, R. H. Davis, Combined removal of SO2, NOx, and fly ash from simulated flue gas using pulsed streamer corona, Industry Applications, IEEE Transactions on, vol.25, pp.62-69,1989.
    [75]G. Dinelli, L. Civitano, M. Rea, Industrial experiments on pulse corona simultaneous removal of NOx and SO2 from flue gas, in Proc.1988 Industry Applications Society Annual Meeting,1988., Conference Record of the 1988 IEEE, pp.1620-1627.
    [76]Y. Lee, W. Jung, Y. Choi, J. Oh, S. Jang, Y. Son, et al., Application of pulsed corona induced plasma chemical process to an industrial incinerator, Environmental science & technology, vol.37, pp.2563-2567,2003.
    [77]K. R. Parker, Applied electrostatic precipitation, Chapman & hall,1996.
    [78]S. Oglesby, G. B. Nichols, Electrostatic precipitation, M. Dekker,1978.
    [79]M. Robinson, Electrostatic precipitation, Air pollution control, vol.1, pp.227-335,1971.
    [80]H. J. White, Electrostatic precipitation of fly ash, Journal of the Air Pollution Control Association, vol.27, pp.15-22,1977.
    [81]尚伟,黄超,王菲,超细颗粒物PM25控制技术综述,环境科技,vol.21, pp.75-78,2008.
    [82]A. Jaworek, A. Krupa, Airborne particle charging by unipolar ions in AC electric field, Journal of Electrostatics, vol.23, pp.361-370,1989.
    [83]Y. Koizumi, F. Tochikubo, T. Watanabe, J. Hautanen, Bipolar-charged submicron particle agglomeration, Journal of electrostatics, vol.35, pp.55-60,1995.
    [84]H. J. White, Particle charging in electrostatic precipitation, American Institute of Electrical Engineers, Transactions of the, vol.70, pp.1186-1191,1951.
    [85]谭百贺,王连泽,吴子牛,双极荷电颗粒在外加交变电场中的静电凝聚,清华大学学报:自然科学版,pp.301-304,2009.
    [86]张向荣,王连泽,朱克勤,外电场对荷电颗粒静电凝聚的影响,清华大学学报(自然科学版,vo1.45,2005.
    [87]赵志斌,刘建民,吴彦,王荣毅,脉冲放电粒子荷电机理的研究,环境科学学报,vol.19, pp.113-119,1999.
    [88]蔡灏兢,路淼,依成武,脉冲放电除尘中颗粒的荷电研究,能源环境保护,vol.20, pp.19-21,2006.
    [89]J. R. Brock, M. Wu, Field charging of aerosol particles, Journal of colloid and interface science, vol.45, pp.106-114,1973.
    [90]J. S. Clements, A. Mizuno, R. H. Davis, Particle charging with an electron beam precharger, Florida State Univ., Tallahassee (USA). Dept. of Physics,1984.
    [91]D. B. O'Hara, J. S. Clements, W. C. Finney, R. H. Davis, Aerosol particle charging by free electrons, Journal of Aerosol Science, vol.20, pp.313-330,1989.
    [92]M. Pauthenier, M. Moreau-Hanot, La charge des particules spheriques dans un champ ionise, J. Phys. Radium, vol.3, pp.590-613,1932.
    [93]J. L. DuBard, J. R. McDonald, L. E. Sparks, First measurements of aerosol particle charging by free electrons-A preliminary report, Journal of Aerosol Science, vol.14, pp.5-10,1983.
    [94]R. A. Fjeld, R. O. Gauntt, A. R. McFarland, Continuum field-diffusion theory for bipolar charging of aerosols, Journal of aerosol science, vol.14, pp.541-556,1983.
    [95]R. O. Gauntt, R. A. Fjeld, A. R. Mcfarland, Bipolar charging of near-micrometer sized aerosol, Industry Applications, IEEE Transactions on, pp.1636-1641,1984.
    [96]M. M. Pauthenier, M. Moreau-Hanot, Charging of spherical particles in an ionizing field, J. Phys. Radium, vol.3, pp.590-613,1932.
    [97]W. B. Smith, J. R. McDonald, Development of a theory for the charging of particles by unipolar ions, Journal of Aerosol Science, vol.7, pp.151-166,1976.
    [98]J. L. DuBard, J. R. McDonald, L. E. Sparks, First measurements of aerosol particle charging by free electrons-A preliminary report, Journal of Aerosol Science, vol.14, pp.5-10,1983.
    [99]D. B. O'Hara, J. S. Clements, W. C. Finney, R. H. Davis, Aerosol particle charging by free electrons, Journal of Aerosol Science, vol.20, pp.313-330,1989.
    [100]F. F. Chen, M. A. Lieberman, Introduction to plasma physics and controlled fusion/Francis F.,:Plenum Press, New York,1984.
    [101]J. Dutton, A survey of electron swarm data, Journal of Physical and Chemical Reference Data, vol.4, pp.577,1975.
    [102]M. Abdel-Salam, Positive wire-to-plane coronas as influenced by atmospheric humidity, Industry Applications, IEEE Transactions on, pp.35-40,1985.
    [103]H. Ryzko, Drift velocity of electrons and ions in dry and humid air and in water vapour, Proceedings of the Physical Society, vol.85, pp.1283,1965.
    [104]T. Matsoukas, M. Russell, Particle charging in low-pressure plasmas, Journal of applied physics, vol.77, pp.4285-4292,1995.
    [105]G. W. Hewitt, The charging of small particles for electrostatic precipitation, American Institute of Electrical Engineers, Part I:Communication and Electronics, Transactions of the, vol.76, pp.300-306,1957.
    [106]白敏药,依成武,杨波,储金宇,吴春笃,白希尧,电除尘技术研究现状及趋势,环境工程学报,vol.1, pp.15-19,2007.
    [107]唐敏康,谢金亮,脉冲电晕放电等离子体净化柴油机尾气的应用研究,柴油机,vol.4, pp. 17-20,2007.
    [108]赵金先,姜雨泽,脉冲电除尘粒子荷电机制,金属矿山,vol.5, pp.52G-53G,2003.
    [109]X. Fei, L. Zhongyang, W. Bo, W. Lina, G. Xiang, F. Mengxiang, et al., Electrostatic Precipitation,in Electrostatic Capture of PM2.5 Emitted from Coal-fired Power Plant by Pulsed Corona Discharge Combined with DC Agglomeration Springer,2009, pp.242-246.
    [110]K. Yan, Electrostatic precipitation, Springer,2009.
    [111]王鹏,骆仲泱,徐飞,侯全辉,高翔,岑可法,复合式静电除尘器脱除电厂排放PM2.5研究,环境科学学报,vol.27, pp.1789-1792,2007.
    [112]毛程奇,白敏菂,依成武,白希尧,电除尘器中带电粒子输运特性的实验研究[J],高电压技术,vol.33, pp.182-185,2007.
    [113]俞群,电除尘器技术发展现状及新技术简介,硫磷设计与粉体工程,vol.5, pp.10-13, 2006.
    [114]白敏药,依成武,杨波,储金宇,吴春笃,白希尧,电除尘技术研究现状及趋势,环境工程学报,vol.1, pp.15-19,2007.
    [115]K. Onda, Y. Kasuga, K. Kato, M. Fujiwara, M. Tanimoto, Electric discharge removal of SO2 and NOx from combustion flue gas by pulsed corona discharge, Energy conversion and management, vol.38, pp.1377-1387,1997.
    [116]C. J. Yu, F. Xu, Z. Y. Luo, W. Cao, B. Wei, X. Gao, et al., Influences of water vapor and fly ash addition on NO and SO2 gas conversion efficiencies enhanced by pulsed corona discharge, Journal of Electrostatics, vol.67, pp.829-834,2009.
    [117]R. McAdams, Pulsed corona treatment of gases:system scaling and efficiency, Plasma Sources Science and Technology, vol.16, pp.703,2007.
    [118]W. Yan, W. Ninghui, Z. Yimin, Z. Yanbin, SO2 removal from industrial flue gases using pulsed corona discharge, Journal of electrostatics, vol.44, pp.11-16,1998.
    [119]Y. S. Mok, I. Nam, Positive pulsed corona discharge process for simultaneous removal of SO2 and NOx from iron-ore sintering flue gas, Plasma Science, IEEE Transactions on, vol.27, pp.1188-1196,1999.
    [120]B. WEI. F. XU, L. ZHAO, X. GAO, Study of emission spectroscopy of OH radicals in pulsed corona discharge, Spectroscopy and Spectral Analysis, vol.30, pp.293-296,2010.
    [121]F. Xu, Z. Luo, W. Cao, P. WANG, B. WEI, X. GAO, et al., Simultaneous oxidation of NO, SO2 and Hg0 from flue gas by pulsed corona discharge, Journal of Environmental Sciences, vol.21, pp.328-332,2009.
    [122]E. Van Heesch, G. Winands, A. Pemen, Evaluation of pulsed streamer corona experiments to determine the O* radical yield, Journal of Physics D:Applied Physics, vol.41, pp. 234015,2008.
    [123]H. Chang, Y. Choi, Particulate conversion of SO2 by NH3 injection in a pulsed corona aerosol reactor, Aerosol Science & Technology, vol.32, pp.268-283,2000.
    [124]E. Marode, The mechanism of spark breakdown in air at atmospheric pressure between a positive point and a plane. I. Experimental:Nature of the streamer track. Journal of Applied Physics, vol.46, pp.2005-2015,1975.
    [125]N. Spyrou, B. Held, R. Peyrous, C. Manassis, P. Pignolet, Gas temperature in a secondary streamer discharge:an approach to the electric wind, Journal of Physics D:Applied Physics, vol.25, pp.211,1992.
    [126]Y. Creyghton, E. M. Van Veldhuizen, W. R. Rutgers, Diagnostic techniques for atmospheric streamer discharges, IEE Proceedings-Science, Measurement and Technology, vol.141, pp.141-147,1994.
    [127]F. Fukawa, N. Shimomura, T. Yano, S. Yamanaka, K. Teranishi, H. Akiyama, Application of nanosecond pulsed power to ozone production by streamer corona. Plasma Science, IEEE Transactions on, vol.36, pp.2592-2597,2008.
    [128]R. Ono, T. Oda, Formation and structure of primary and secondary streamers in positive pulsed corona discharge-effect of oxygen concentration and applied voltage, Journal of Physics D:Applied Physics, vol.36, pp.1952,2003.
    [129]G. Winands, Z. Liu, A. Pemen, E. Van Heesch, K. Yan, Analysis of streamer properties in air as function of pulse and reactor parameters by ICCD photography, Journal of Physics D: Applied Physics, vol.41, pp.234001,2008.
    [130]R. Ono, T. Oda, Nitrogen oxide γ-band emission from primary and secondary streamers in pulsed positive corona discharge, Journal of applied physics, vol.97, pp.13302,2005.
    [131]L. Zhao, Z. Luo, J. Xuan, J. Jiang, X. Gao, K. Cen, Study of Geometry Structure on a Wire-Plate Pulsed Corona Discharge Reactor, Plasma Science, IEEE Transactions on, vol.40, pp.802-810,2012.
    [132]S. V. Pancheshnyi, A. Y. Starikovskii, Two-dimensional numerical modelling of the cathode-directed streamer development in a long gap at high voltage, Journal of Physics D: Applied Physics, vol.36, pp.2683,2003.
    [133]R. Ono, T. Oda, Dynamics of ozone and OH radicals generated by pulsed corona discharge in humid-air flow reactor measured by laser spectroscopy, Journal of applied physics, vol.93, pp.5876-5882,2003.
    [134]P. Tardiveau, E. Marode, A. Agneray, Tracking an individual streamer branch among others in a pulsed induced discharge, Journal of Physics D:Applied Physics, vol.35, pp. 2823,2002.
    [135]J. Y. Won, P. F. Williams, Experimental study of streamers in pure N2 and N2/O2 mixtures and a≈13 cm gap, Journal of Physics D:Applied Physics, vol.35, pp.205,2002.
    [136]S. V. Pancheshnyi, S. M. Starikovskaia, A. Y. Starikovskii, Role of photoionization processes in propagation of cathode-directed streamer, Journal of Physics D:Applied Physics, vol.34, pp.105,2001.
    [137]A. A. Kulikovsky, The role of photoionization in positive streamer dynamics, Journal of Physics D:Applied Physics, vol.33, pp.1514,2000.
    [138]H. H. Kim, G. Prieto, K. Takashima, S. Katsura, A. Mizuno, Performance evaluation of discharge plasma process for gaseous pollutant removal, Journal of electrostatics, vol.55, pp. 25-41,2002.
    [139]K. Wark, C. F. Warner, Air pollution:its origin and control,1981.
    [140]J. Chang, Recent development of plasma pollution control technology:a critical review, Science and Technology of Advanced Materials, vol.2, pp.571-576,2001.
    [141]G. Dinelli, M. Rea, Pulse power electrostatic technologies for the control of flue gas emissions, Journal of electrostatics, vol.25, pp.23-40,1990.
    [142]F. Xu, Z. Luo, W. Cao, P. WANG, B. WEI, X. GAO. et al.. Simultaneous oxidation of NO, SO2 and Hg0 from flue gas by pulsed corona discharge. Journal of Environmental Sciences, vol.21, pp.328-332,2009.
    [143]W. Wang, Z. Zhao, F. Liu, S. Wang, Study of NO/NOx removal from flue gas contained fly ash and water vapor by pulsed corona discharge, Journal of electrostatics, vol.63, pp. 155-164,2005.
    [144]Y. Lee, W. Jung, Y. Choi, J. Oh, S. Jang, Y. Son, et al., Application of pulsed corona induced plasma chemical process to an industrial incinerator, Environmental science & technology, vol.37, pp.2563-2567,2003.
    [145]E. A. Filimonova, R. H. Amirov, H. T. Kim, I. H. Park, Comparative modelling of NOx and SO2 removal from pollutant gases using pulsed-corona and silent discharges, Journal of Physics D:Applied Physics, vol.33, pp.1716,2000.
    [146]G. Dinelli, L. Civitano, M. Rea, Industrial experiments on pulse corona simultaneous removal of NOx and SO2 from flue gas, Industry Applications, IEEE Transactions on, vol.26, pp.535-541,1990.
    [147]B. Held, R. Peyrous, Physical and chemical studies of corona discharges in air, Czechoslovak journal of physics, vol.49, pp.301-320,1999.
    [148]O. Eichwald, M. Yousfi, A. Hennad, M. D. Benabdessadok, Coupling of chemical kinetics, gas dynamics, and charged particle kinetics models for the analysis of NO reduction from flue gases. Journal of applied physics, vol.82, pp.4781-4794,1997.
    [149]K. Yan, S. Kanazawa, T. Ohkubo, Y. Nomoto, Oxidation and reduction processes during NO x removal with corona-induced nonthermal plasma, Plasma chemistry and plasma processing, vol.19, pp.421-443,1999.
    [150]M. A. Tas, R. Van Hardeveld, E. M. Van Veldhuizen, Reactions of NO in a positive streamer corona plasma, Plasma chemistry and plasma processing, vol.17, pp.371-391, 1997.
    [151]R. Ono, T. Oda, Dynamics and density estimation of hydroxyl radicals in a pulsed corona discharge, Journal of Physics D:Applied Physics, vol.35, pp.2133,2002.
    [152]R. Ono, T. Oda, Dynamics of ozone and OH radicals generated by pulsed corona discharge in humid-air flow reactor measured by laser spectroscopy, Journal of applied physics, vol.93, pp.5876-5882,2003.
    [153]G. J. Roth, M. A. Gundersen, Laser-induced fluorescence images of NO distribution after needle-plane pulsed negative corona discharge, Plasma Science, IEEE Transactions on, vol.27, pp.28-29,1999.
    [154]F. Fresnet, G. Baravian, S. Pasquiers, C. Postel, V. Puech, A. Rousseau, et al., Time-resolved laser-induced fluorescence study of NO removal plasma technology in N2/NO mixtures, Journal of Physics D:Applied Physics, vol.33, pp.1315,2000.
    [155]I. Orlandini, U. Riedel, Chemical kinetics of NO removal by pulsed corona discharges, Journal of Physics D:Applied Physics, vol.33, pp.2467,2000.
    [156]M. Derakhshesh, J. Abedi, M. Omidyeganeh, Modeling of hazardous air pollutant removal in the pulsed corona discharge, Physics Letters A, vol.373, pp.1051-1057,2009.
    [157]S. Zheng, L. Zhang, Y. Liu, W. Wang, X. Wang, Modeling of the production of OH and O radicals in a positive pulsed corona discharge plasma, Vacuum, vol.83, pp.238-243,2008.
    [158]F. Tochikubo, H. Arai, Numerical simulation of streamer propagation and radical reactions in positive corona discharge in N2/NO and N2/O2/NO, Japanese journal of applied physics, vol.41, pp.844,2002.
    [159]H. Lin, X. Gao, Z. Luo, S. Guan, K. Cen, Z. Huang, Removal of NOx from flue gas with radical oxidation combined with chemical scrubber, Journal of Environmental Sciences, vol.16, pp.462-465,2004.
    [160]林赫,高翔,骆仲泱,岑可法,裴梅香,黄震,采用直流电晕自由基簇射系统脱除烟气中NOx的研究,燃烧科学与技术,vol.10, pp.207-211,2004.
    [161]B. WEI, F. XU, L. ZHAO, X. GAO, Study of emission spectroscopy of oh Radicals in pulsed corona discharge, Spectroscopy and Spectral Analysis, vol.30, pp.293-296,2010.
    [162]L. Zhao, Z. Luo, J. Xuan, J. Jiang, X. Gao, K. Cen, Study of Geometry Structure on a Wire-Plate Pulsed Corona Discharge Reactor, Plasma Science, IEEE Transactions on, vol.40, pp.802-810,2012.
    [163]S. Xu, G. Xiang, Planar Laser-Induced Fluorescence Diagnostics for Spatiotemporal OH Evolution in Pulsed Corona Discharge, Plasma Science, IEEE Transactions on, vol.41, pp. 485-493,2013.
    [164]祁君田,燃煤电厂电除尘器设计中值得注意的问题,热力发电,vol.33, pp.4-6,2004.
    [165]张殿印,王纯,除尘器手册,化学工业出版社,2005.
    [166]祁君田,党小庆,张滨渭,现代烟气除尘技术,化学工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700