柴油机进气预混甲醇的台架试验和醇气混合过程数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国缺油、少气、富煤。随着煤制甲醇工艺的成熟,甲醇被视为最具潜力的内燃机替代燃料。甲醇十六烷值很低,柴油机直接燃用甲醇比较困难,但通过合适的掺烧手段,完全可以燃用甲醇。在柴油机掺烧甲醇的常见方式中,进气预混甲醇的掺烧方式显示出良好的推广应用前景。然而涡轮增压柴油机应用该方式掺烧甲醇时,还需开展柴油机进气状态对甲醇掺烧量的影响、甲醇在进气道的雾化混合过程以及预混甲醇对柴油机进气温度影响方面的大量深入研究。本文针对柴油机进气预混甲醇的特点,开展了涡轮增压柴油机进气预混甲醇的台架试验和进气预混甲醇混合过程的数值模拟。
     为研究涡轮增压柴油机在宽广工况范围内掺烧甲醇的工作过程,依据进气预混甲醇雾化混合的特点,设计一套甲醇低压喷射系统,用进气压力和柴油机转速信号作为运行工况的辨识信号和甲醇喷射的控制信号,完成4B26涡轮增压柴油机进气喷射甲醇的改造。台架试验表明,设计的甲醇喷射系统可满足双燃料发动机的运行要求,能适应柴油机整个运行工况范围内甲醇喷射的灵活控制。柴油机在双燃料模式运行时,要达到较好的燃油经济性,不同负荷点的甲醇掺烧比需要优化。当柴油机进气压力高于130kPa时,进气状态是影响双燃料工作过程的主要因素,甲醇的掺烧量受爆燃的限制,推迟柴油的供油提前角,可降低高负荷掺烧甲醇的爆燃倾向。柴油机掺烧甲醇后,燃油经济性获得改善,排气温度下降,NOx和碳烟排放能得到同时降低,但HC和CO排放增加。
     用数值模拟的方法研究柴油机进气预混甲醇的缸内温度和甲醇蒸气的分布特点,以指导甲醇/柴油双燃料发动机的改造。柴油机进气预混甲醇涉及进气系统和甲醇喷射两大系统,深入理解柴油机进气流动和醇气混合机理是掌握电控喷射甲醇的重要内容。尝试以KIVA-3V程序为计算仿真平台,详细分析柴油机进气预混甲醇的气液两相混合的模拟过程,发展和完善了液滴碰撞和附壁液膜在内的醇气混合数学模型。对柴油机精确造型的螺旋进气道—气门—气缸结构化六面体网格的划分方法进行研究,借助ICEM-CFD软件,生成初始计算网格。添加程序代码,完善气门运动模型的算法,使4B26柴油机的模型网格能在KIVA-3V程序上顺利通过检查。
     完成计算程序所需的输入文件,以试验数据为初始和边界条件,建立基于KIVA-3V的涡轮增压柴油机精确造型的整机进气压缩瞬态仿真模型。对柴油机进气压缩的气体流程进行详细的数值模拟研究。结果表明,缸内速度流场结构的变化对柴油机的转速和负荷不敏感,不同转速下的缸内流场变化过程相似,压缩过程中缸内始终存在涡流运动。这一规律对于柴油机进气喷射甲醇而言,意味着通过合适的喷射方式,克服甲醇的雾化混合过程和缸内浓度分布因柴油机转速和负荷的剧烈变化而出现较大差异。
     对柴油机进气预混甲醇的瞬态混合过程进行了模拟。计算表明,附壁甲醇的蒸发对甲醇的混合过程非常重要。对于特定的发动机工况,存在一个较佳甲醇喷射时刻,能较好折衷附壁甲醇量和液膜蒸发过程,甲醇喷射方向的选择要以减少甲醇附壁为原则。当甲醇不直接喷到气门表面时,气道甲醇在气门开启前主要以液态形式存在,甲醇的雾化混合主要在进气过程中进行,进入气缸的甲醇基本为气态形式。当甲醇直接喷到气门表面时,甲醇液滴与高温气门表面发生碰撞,导致甲醇液滴快速蒸发,气门开启时,大部分甲醇液滴已变为气态形式。壁面温度主要对附壁液膜的蒸发产生影响,进气温度对甲醇液滴和附壁液膜的蒸发都会产生影响,进气温度对甲醇蒸发的作用强于壁面温度的作用。在引燃柴油喷射时,不同甲醇喷射方向和喷射时刻的缸内甲醇蒸气存在一定的浓度分层,气缸轴向浓度分层比较明显,而径向趋于均匀。进气预混甲醇能降低进气的温度,在甲醇掺烧量较大的1800r/min和2200r/min两个转速,在压缩上止点前10°CA,缸内温度比不预混甲醇的缸内温度分别下降52K和43K。
China is abundant in coal resource, less storage in natural gas and poor in oil. Methanol, made from coal, is the most promising alternative fuel for internal combustion engines. Methanol applied directly to diesel engines is very difficult because of the lower cetane number of methanol, while using an appropriate method of methanol blended, diesel engines can well operate on diesel and methanol, and intake premixed methanol appears to be an attractive means in several usual ways of diesel engines fueled with methanol. However, when methanol is used in turbocharged diesel engines, it is very necessary to do many researches on methanol premixed ratio and methanol atomization at different operation conditions, as well as intake temperature descent with methanol premixed. In the paper, experimental study on a turbocharged diesel engine with methanol premixed is conducted, and methanol/air mixture formation is simulated.
     To investigate the turbocharged diesel engine operating with methanol premixed within the range of full conditions, a methanol injection system was designed according to the characteristics of methanol premixed in induction system. Used the intake pressure and engine speed signals as identification of engine operating conditions and methanol injection control, 4B26 diesel engine was reformed to the dual fuel engine with methanol premixed. The test results show that the methanol injection system meets the demand of the dual fuel engine, controlling the methanol injection flexibly at different operation conditions. In dual fuel operation mode, methanol premixed ratio should be optimized so as to achieve better fuel economy than diesel used only. When the intake pressure is higher than 130kPa, the inlet flow state plays an important role in combustion process of dual fuel mode, and the mass of methanol blended is limited by knock, and knock tendency can be reduced by means of diesel fuel injection timing delayed. Compared to single diesel direct injection, the dual fuel mode can get better fuel economy and lower exhaust temperature. Although diesel compound combustion produces high CO and HC emissions than diesel combustion only, methanol premixed in port can reduce NOx and soot emissions simultaneously.
     Utilized numerical simulation tool, cylinder air temperature and methanol distribution characteristics of diesel engine intake methanol premixed were studied to guide the methanol/diesel dual fuel engine modification. Methanol sprayed into induction system covers diesel engine induction process and methanol injection system. It is important to investigate the mechanism of intake flow and air-methanol mixture formation inside internal combustion engine, which is one of the essential theories of methanol electronic control injection. Based on KIVA-3V code, the numerical model of air and methanol mixing process in diesel engine, including droplet collision and wall film dynamic model, was analyzed and developed. The structured hexahedral mesh for exact helical intake port-valve-cylinder shape was studied and the initial grid of 4B26 model was generated with ICEM-CFD software. Added and modified valve motion model algorithm, the grid can succeed in checking under KIVA-3V code.
     Completed input files of KIVA-3V code and used tested data as the initial and boundary conditions, the transient simulation model for 4B26 turbocharged engine with induction and compression stroke was created. The process of the diesel engine induction and compression at different conditions were simulated. The calculations show that the structure of cylinder velocity fields is insensitive to engine speed and load, and has similar change process at different operation conditions. During the compression stroke, there is always vortex motion in cylinder. The flow characteristics in cylinder mean that the diesel engine operating condition has little effect on the process of methanol atomization and contribution in cylinder by methanol injection control.
     The transient mixing process of methanol injected into the diesel engine induction system was simulated. The calculations show that methanol film evaporation is important to the methanol mixing formation. There is a better methanol injection timing at a given engine operation condition, which can obtain a good compromise between methanol film mass and film evaporation. Methanol injection orientation is determined by the principle of decreasing methanol film. When methanol is not directly sprayed onto inlet valve surface, methanol is almost in liquid state before the valve is opened. The methanol vaporization mainly carries out in engine induction stroke, nearly gaseous methanol into cylinder. When sprayed directly onto the valve surface, methanol droplets collide with the hot surface of the valve, resulting in rapid evaporation of droplet. Most of the methanol droplets have become gaseous form before the valve opened. High air temperature, making both droplets and film vaporize fast, has more influence on methanol mixture process than hot port wall which mostly improves film evaporation. At the time of diesel injected, methanol concentration in cylinder is stratified more obviously at cylinder axis direction than that at cylinder radial direction under different methanol injection orientation and timing. Methanol premixed can reduce the intake temperature. At 1800r/min and 2200r/min with high methanol premixed ratio, the cylinder temperature with methanol premixed is decreased by 52K and 43K respectively before top death center 10°CA compared with that without methanol premixed
引文
[1]李莹莹.中国石油发展现状、问题与前景分析[J].中国能源,2010,32(12):18-20
    [2]中国石油进口数据[EB/OL]中国石化新闻网,[2011-01-10]
    [3]苏万华,赵华,王建昕等.均质压燃低温燃烧发动机理论与技术[M].北京:科学技术出版社,2010:1~13
    [4]欧阳明高.我国节能与新能源汽车发展战略与对策[J].汽车工程2006,28(4);317~321
    [5]蒋德明,黄佐华.内燃机替代燃料燃烧学[M].西安:西安交通大学出版社,2007:1-27
    [6]史绍熙.汽车发动机燃烧技术的新进展.燃烧科学与技术,2001,7(1):1-15
    [7]唐开元,欧阳光耀.高等内燃机学.北京:国防工业出版社,2008:215~226
    [8]周玉明,内燃机废气排放及控制技术[M].北京:人民交通出版社,2001:169-170
    [9]崔心存.内燃机的代用燃料[M].北京:中国石化出版社,2007:32~327
    [10]N John Beck, Robert L. Barkhimer, William P. Johnson, et al. Evolution of heavy-duty natural gas engines-stoichiometric, carbureted and spark ignited to lean-burn, fuel-injected and micro-pilot[C]. SAE paper No.972665
    [11]William E. Liss, Shiro Okazaki, George H. Acker, et al. Fuel issues for liquefied natural gas vehicles[C]. SAE paper No.922360
    [12]Roberta J Nichols. The methanol story:a sustainable fuel for the future[J]. Journal of scientific & industrial research.2003,62:97~105
    [13]C. Hammel-smith, J. Fang, M. Powders, et al. Issues Associated with the use of higher ethanol blends(E17-E24)[R]. Prepared under task No. BFP2.A101. National Renewable Energy Laboratory,2002,
    [14]Anton C.Vosloo. Fischer-Tropsch:a futuristic view[J]. Fuel Processing Technology , 2001,71:149~155.
    [15]Yoshiyuki Kidoguchi,Changlin Yang, Kei Miwa. Effects of Fuel Properties on Combustion and Emission Characteristics of a Direct-Injection Diesel Engine[C]. SAE Paper No 2000-01-1851
    [16]Theo Fleisch, Chris McCarthy, Arun Basu, et al. A new clean diesel technology:demonstration of ULEV emissions on Navistar diesel engine fueled with Dimethyl Ether[C]. SAE paper No. 950061
    [17]谢克吕,李忠.甲醇及其衍生物[M].北京:化学工业出版社,2002:1-44
    [18]江一蛟等.甲醇-汽油混合燃料的应用技术[R].西南化工研究院,1982,6
    [19]叶淑贞等.汽油-酒精混合燃料在汽油机上的应用研究[c].中国代用燃料学术会议,厦门,1991
    [20]张以祥,曹湘洪,史济春.燃料乙醇与车用乙醇汽油[M].北京:中国石化出版社,2004
    [21]周溪华.我国现代煤化工技术发展路线探讨[J].中外能源2008,13(3):25~26
    [22]蒋一子.关于新世纪采用主体能源的新汽车的思考——煤质甲醇、甲醇内燃汽车、甲醇- 氢燃料电池汽车[N].科技导报.2002/4:46~48
    [23]李琼玖,王建华.水电解制氢技术的进展及其在煤制甲醇中的应用[J].中外能源.2008,13(3):40~43
    [24]Hubin M., Gadd D. G, Schindler K. P. European programs on emissions, fuels and engine technologies (EPEFE)—Light duty diesel study[C]. SAE Paper No.961073
    [25]Signer M., Heinze P,. Mercogliano R., et al. European programmes on emissions, fuels and engine technologies (EPEFE)—Heavy duty diesel study[C]. SAE Paper No.961074
    [26]Thomas W. Ryan, Jimell Erwin. Robert L. Mason, et al. Relationships between Fuel Properties and Composition and Diesel Engine Combustion Performance and Emissions.[C] SAE Paper No.941018
    [27]Udayakumar R., Sundaram, S. Sivakumar, K. Engine Performance and Exhaust Characteristics of Dual Fuel Operation in DI Diesel Engine with Methanol[C]. SAE Paper No 2004-01-0096
    [28]Tamil Porai, P.. Chandrasekaran, SSubramaniyam, S. et,al. Combustion and performance of a diesel engine with oxygenated diesel blend[C]. SAE Paper No 2004-01-0082
    [29]Theodoros C. Zannis, Constantine D. Rakopoulos, et al. Theoretical Study Concerning the Effect of Oxygenated Fuels on DI Diesel Engine Performance and Emissions [C]. SAE Paper No 2004-01-1838
    [30]Yao CH.D., Cheung, C.S., ChuanHui Cheng, et al. Effect of Diesel-methanol Compound Combustion on Diesel Engine Combustion and Emissions [J]. Energy Conversion & Management,2008,49:1696-1704
    [31]Hakan B. An Experimental Study on the Performance Parameters of an Experimental CI Engine Fueled with Diesel-Methanol-Dodecanol Blends [J]. Fuel.2008,87:158~164
    [32]谢洁,王锡斌,卢红兵等.柴油—甲醇微乳化燃料的制各及燃烧特性研究[[J].内燃机工程.2004,24(4):1~5
    [33]张俊强,卢红兵,王锡斌等.直喷式柴油机燃用甲醇/柴油混合燃料的燃烧特性及排放特性[J].燃烧科学与技术.2004,10(1):171-175
    [34]方显忠.柴油机掺烧含羟基液体或燃料的研究[博士学位论文].吉林:吉林大学,2006
    [35]姚春德,王银山,李云强等.柴油机清洁燃用甲醇的组合燃烧法[J].农业机械学报,2005,36(6):24~27
    [36]王银山.组合燃烧柴油机控制策略的研究与应用[博士学位论文].天津:天津大学,2005
    [37]Naker Jeffrey.D., Dennis L. Siebers. Effects of Gas Density and Vaporization on Penetration and Dispersion on Diesel Spray[C]. SAE Paper No.960034
    [38]张登攀,袁银男,杜家益等.生物柴油自由喷雾的试验研究[J].内燃机工程,2010,31(6):11~16
    [39]Stradling. Richard, Paul Gadd, Meinrad Signer, et al. The Influence of Fuel Properties and Injection Timing on the Exhaust Emissions and Fuel Consumption of an Iveco Heavy-Duty Diesel Engine [C]. SAE Paper No 971635
    [40]Nils-Olof Nylund and Pivi Aakko et al. Effects of Physical and Chemical Properties of Diesel Fuel on NOx Emissions of Heavy-Duty Diesel Engines[C]. SAE paper No 972997
    [41]邓元望,朱梅林,向东等.燃料性质对发动机排放性能的影响[J].小型内燃机与摩托车2001,(30)4
    [42]郭和军,刘治中,姚如杰.燃料成份和性质对柴油机排放的影响[J].小型内燃,1999,(28)2
    [43]Kouremenos. D.A., Hountalas D. T., Kouremenos A. D.. Experimental Investigation of the Effects of Fuel Composition on the Formation of Pollutants in Direct Injection Diesel. Engines[C]. SAE Paper No 1999-01-0189
    [44]Akihiko Azetsu, Yuki Sato,Yoshifumi Wakisaka. Effects of Aromatic Components in Fuel on Flame Temperature and Soot Formation in Intermittent Spray Combustion[C] SAE Paper No. 2003-01-1913
    [45]Kidoguchi Y, Yang C, Kato R. Effects of Fuel Cetane Number and Aromatics on Combustion Process and Emissions of a Direct Injection Diesel Engine [J]. JSAE review,2000(21):469~ 475.
    [46]何邦全,王建昕,闫小光.柴油机含氧燃料的研究进展[J].农业机械学报,2003,34(1):134~138
    [47]宫艳峰,刘圣华,蒋德明.含氧燃料对内燃机燃烧和排放性能的影响[J].内燃机,2004(3):21~23
    [48]Miyamoto N., Ogawa H.. Approaches to Extremely Low Emissions and Efficient Diesel Combustion with Oxygenated Fuels[J]. International Journal of Engine Research,2000, 1(1):79~85
    [49]姚春德,王洪夫,刘希波等.采用氧化催化方法降低DMCC发动机HC和CO排放[J].天津大学学报.2007,40(12):1470-1474
    [50]姚春德,彭红梅,刘仪亭等.氧化催化转化器对甲醇压燃尾气中甲醛排放的影响[J].环境科学学报.2008,28(6):1047-1051
    [51]邱先文,夏淑敏,唐琦等.双燃料发动机的开发现状[J].农业机械学报,2002,33(1):121~124
    [52]Karimga, Liuz, Jones W. Exhaust Emissions from Duel Engines at Light Load[C]. SAE Paper No.932822
    [54]Bruce Wadman.段缨,于海涛译.重型汽车双燃料发动机的发展[J].国外内燃机,1997,29(6):53-55.
    [55]Kresimir Gebert, N.John Beak, Robert L. Barkhimer, et al. Strategies to Improve Combustion and Emission Characteristics of Dual Fuel Pilot Ignited natural Gas Engines[C]. SAE Paper No. 971712
    [56]K.Bruce Hodgins, Hardi Gunawan, Philip G. Hill. Intensifier-Injection for Natural Gas Fueling of Diesel Engine[C]. SAE Paper No 921553
    [57]Christopher S.Weaver, Sean H.Turner. Duel Fuel Natural Gas/Diesel Engines:Technology, Performance, and Emissions[C]. SAE Paper No 940548
    [58]Udayakumar R., Sivakumar K., Sivakumar K.. Engine Performance and Exhaust Characteristics of Dual Fuel Operation in DI Diesel Engine with Methanol [C]. SAE Paper No 2004-01-0096
    [59]朱磊.电控LPG—柴油双燃料发动机系统开发与理论研究[硕十学位论文].江苏:江苏大学,2006
    [60]汤东,胡止权,罗福强.双燃料发动机燃烧放热规律的计算与应用[J].农业机械学报.2007,38(2):45-47
    [61]黄钰.柴油—甲醇组合燃烧发动机的控制策略及试验研究[博世学位论文].天津:天津大学.2008
    [62]邹洪波,干利军,刘圣华等.柴油引燃甲醇双燃料发动机滞燃期的研究[J].西安交通大学学报,2007,41(7):784~787
    [63]王利军,邹洪波,宋睿智等.引燃油量对甲醇柴油双燃料发动机燃烧特性的影响[J].西安交通大学学报,2007,41(5):517~520
    [64]姚春德,王洪夫.柴油—甲醇组合燃烧碳烟排放模型[J].天津大学学报,2008,41(3):271~275
    [65]Peter Lynwood Kelly-Zion. Fuel Preparation in the Cylinder of a Port injected, Spark Ignition Engine [PhD thesis], University of Illinois at Urbana-Champaign,1998
    [66]Vannobel,F., Arnold,A., Buschmann,A., Sick V., et.al. Simultaneous Imaging of Fuel and Hydroxyl Radicals in an in-line four Cylinder SI Engine[C]. SAE Paper No932696
    [67]Fox J. W., Min K. D., Cheng W. K., et,al. Mixture Preparation in a SI Engine with Port Fuel Injection during Starting and Warm-up[C]. SAE Paper No 932753
    [68]王晓瑜,陈国华.PFI汽油机油气混合过程三维瞬态数值模拟[J].华中科技大学学报:自然科学板.2007,35(6):92~95
    [69]Behnia M., Milton B. E. Fundamentals of Fuel Film Formation and Motion in SI Engine Induction Systems[J] Energy Conversion & Management.2001,42:1751~1768
    [70]Hanson, R. M., Kokjohn, S. L., Splitter, D. A, et al. An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-duty Engine[C]. SAE Paper No 2010-01-0864
    [71]Manente, V. Tunestal, P. and Johansson B.. Partially Premixed Combustion at High Load using Gasoline and Ethanol, a Comparison with Diesel[C]. SAE Paper No 2009-01-0944
    [72]Curran S. J., Prikhodko, V. L. Wagner R. M., et al. In-cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Muti-Cylinder Light-duty Diesel Engine[C]. SAE Paper No 2010-01-2206
    [73]曾培炎,推进替代能源产业化为发展供能源保障[N].人民日报,2006-11-21第02版
    [74]Anthony.A.Amsden, O'Rourke P.J., Butler T.D. KIVA-Ⅱ:A Computer Program forChemically Reactive Flows with Sprays[R]. LA-11560-MS,1989.
    [75]Anthony A. Amsden. KIVA-3:A KIVA Program with Block-Structured Mesh for Complex Geometries[R]. Alamos National Laboratory report, LA-12503-MS,1993.
    [76]Anthony A. Amsden. KIVA-3V:A Block-Structured KIVA Program for Engine with Vertical or Canted Valves[R]. Alamos National Laboratory report, LA-13313-MS,1997.
    [77]Amsden,.A.A. Kiva-3V Release 2:Improvements to Kiva-3v. Los Alamos National Laboratory report, LA-UR-99-915,1999
    [78]Torres, D., O'Rourke, P. Kiva-4.14th International Multidimensional Engine Modeling User's Group Meeting[R], Detroit, MI USA,2004
    [79]Sterno N., Greeves G, and Tullis S.. Improvements of the KIVA Dense Spray Modeling for HSDI Diesel Engines. SAE Paper No.2007-01-0001
    [80]Urip E., Liew K. H. and Yang S. L.. Modeling IC Engine Conjugate Heat Transfer Using the Kiva Code [J]. Numerical Heat Transfer, Part A.2007,52:1-23
    [81]卓斌,刘启华.车用汽油机燃油喷射与电子控制[M].北京:机械工业出版社,2001
    [82]汪淼,王志,帅金石,王建昕.PFI汽油机混合气形成的三维数值模拟[C].2006年APC联合学术年会论文集.
    [83]汪淼,王建昕,沈义涛等.汽油喷雾碰壁和油膜形成的可视化试验与数值模拟[J].车用发动机.2006,166(6):24~28
    [84]黄露,张凡,帅金石等.甲醇与汽油混合汽形成可视化试验与数值模拟[J].车用发动机.2008,175(3):8-12
    [85]宫长明,王舒,刘家郡等.环境温度对点燃式甲醇发动机冷启动性能的影响[J].吉林大学学报(工学版),2009,39(1):27-32
    [86]王利军,刘圣华,邹洪波等.高比例甲醇柴油双燃料发动机燃烧与排放特性的研究[J].西安交通大学学报.2007,41(1):14~17
    [87]姚春德,黄钰,李帅等.甲醇不同替代率对DMCC排放质量影响的试验研究[J].内燃机学报.2008,26(2):134-139
    [88]杨建华,龚金科,吴义虎.内燃机性能提高技术[M].北京:人民交通出版,1999,362-364.
    [89]Timothy J H, Frederick L D. A Comprehensive Mechanism for Methanol Oxidation [J]. International Journal of Chemical Kinetics,1998,30(11):805~830
    [90]Egolfopoulos F N, Du D X, Law C K.A Comprehensive Study of Methanol Kinetics in Freely-Propagating and Burner-Stabilized Flames Flow and Static Reactions and Shock Tubes [J]. Combust Sci and Tech..1992,83:33-75
    [91]苏万华,林志强,汪洋等.气口顺序喷射、稀燃、全电控柴油/天然气双燃料发动机的研究[J].内燃机学报,2001,19(2):102~108
    [92]张登攀,袁银男,杜家益等.车用发动机停缸模式下转速波动仿真[J].农业机械学报,2010,41(2):25~28
    [93]谢茂昭.内燃机计算燃烧学[M].第二版.大连理工大学出版社,2005.
    [94]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [95]将炎坤.CFD辅助发动机工程的理论与应用[M].北京:科学出版社,2004.
    [96]O'Rourke P. J. and Amsden A.A.. A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model[C]. SAE Paper 2000-02-0271,2000
    [97]O'Rourke P. J. and. Amsden A. A. A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines[C]. SAE Paper 961961,1996.
    [98]王晓瑜.进气道喷油式汽油机油气混合过程三维瞬态数值模拟[博士学位论文].武汉:华中科技大学,2006.
    [99]文华.基于CFD的柴油机喷雾混合过程的多维数值模拟[博十学位论文].武汉:华中科技大学,2004.
    [100]Donald W. Stanton, Christopher J. Rutland. Multi-Dimensional Modeling of Heat and Mass Transfer of Fuel Films Resulting from Impinging Sprays[C]. SAE Paper No 980132
    [101]Donald W. Stanton, Christopher J. Rutland. Multi-Dimensional Modeling of Thin Films and Spray Wall Interactions Resulting from Impinging Sprays[J]. International Journal of Heat and Mass Transfer.1998,41:3037~3054
    [102]Niklas Nordin. A Mesh Independent Collision Condition for Lagrangian Sprays[R]. Thermo and Dynamics Chalmers University of Technology.2001,09.
    [103]O'Rourke P J, Amsden A A. Three dimensional numerical simulation of the UPS-292 stratified charge engine [C]. SAE Paper No 870597.
    [104]Habchi C., Foucart H. and Baritaud T.. Influence of the Wall Temperature on the Mixture Preparation in DI Gasoline Engines [J]. Oil & Gas Science and Technology.1999,54(2): 211~222
    [105]Lippert A. M., Stanton D. W. Reitz R. D., et al. Investigating the Effect of Spray Targeting and Impingement on Diesel Engine Cold Start[C]. SAE Paper No 20000-01-0269
    [106]Rutland C. J. Pieper C.M. and Hessel R. Intake and Cylinder Flow Modeling with a Dual-valve Port[C]. SAE Paper No.930069
    [107]陶文铨.数值传热学.西安:西安交通大学出版社,1988
    [108]张辉亚,张煜盛,莫春兰等.O'Rourke模型的网格依赖性及其改进研究[J].内燃机学报.2006,24(2):127-133
    [109]孙平,冯伟伟,徐毅等.直喷柴油机进气流场的数值模拟研究[J].拖拉机与农用运输车.2008,35(3):38~41
    [110]周天孝,白文.CFD多块网格生成新进展.力学进展[J],1999,29(3):334~368
    [111]唐大学,孔七一,李志明等.基于CFD的内燃机三维模拟技术中的网格生成[J].拖拉机与农用运输车.2008,35(4):85-87
    [112]White J A. Elliptic Grid Generation with Orthogonality and Spacing Control on an Arbitrary Number of Boundaries[C]. AIAA-90-1568,1990
    [113]Thompson J.F.. A Reflection on Grid Generation in the 90s:Trends, Needs, and Influences[C]. In 5th International Conference on Grid Generation in Computational Fluid Simulation.1996
    [114]Rubbert P. E., Lee K. D.. Patched Coordinate Systems[J]. Applied Mathematics and Computation.1982:235-252
    [115]蒋勇,范维澄.计算直喷式柴油机螺旋进气道与缸内空气运动的大型微机化程序:IPIC-CFD(Ⅰ)[J].燃烧科学与技术.2000,6(2):150-153
    [116]蒋勇,范维澄.计算直喷式柴油机螺旋进气道与缸内空气运动的大型微机化程序:IPIC-CFD(Ⅱ)[J].燃烧科学与技术.2000,6(4):341-345
    [117]吴子牛、朱自强.可压缩流儿何分区[J].力学进展.1998,28(3):509~520
    [118]倪小丹,刘金武,高为国.基于K3PREP的流体动力学计算(CFD)的块和网格生成规则[J].湖南工程学院学报.2003,13(1):27~29
    [119]刘金武,龚金科,钟志华等.内燃机缸内复杂空间三维动态网格生成技术[J].计算机辅助设计与图形学学报.2006,18(4):487~492
    [120]张志荣,冉景煜,张力等.内燃机缸内气体CFD瞬态分析中动态网格划分技术[J].重庆大学学报(自然科学版).2005,28(11):97-100
    [121]陈国华,王晓瑜.具有屋脊型燃烧室的发动机进气道—缸内—排气道分块结构化网格的建立及动态调整[J].小型内燃机与摩托车.2008,37(2):1-4
    [122]Kuo Tangwei, Chang Shengming. Three-Dimensional Steady Flow Computations in Manifold-Type Junctions and a Comparision with Experiment [C].SAE Paper No.932511
    [123]ANSYS ICEM-CFD/AI*Environment 10.0 User Manual[R]. SAS IP, Inc
    [124]王春发,陈国华,杨万里等.螺旋进气道三维分块结构化贴体网格的生成[J].小型内燃机与摩托车.2003,32(4):23~25
    [125]王春发,陈国华,杨万里.复杂组合气道三维分块结构化贴体网格的生成[J].华东科技大学学报(自然科学版).2004,32(3):14-16
    [126]王春发,陈国华,扬万里.内燃机组合进气道进气系统的数值模拟[J].车用发动机.2004,(1):18~20
    [127]杜微,李向荣,罗生保.KIVA程序微机化移植中的问题探讨[J].柴油机.2000,5:19-23
    [128]罗马吉,黄震,陈国华等.发动机进气流动三维瞬态数值模拟研究[J].空气动力学学报.2005,23(1):74~78
    [129]Furuno Shigeo. The Effect of'Inclination Angle of Swirl Axis' on Turbulence Characteristics in a 4-Valve Lean-Burn Engine with SCV [C]. SAE Paper No.902139,1990
    [130]司鹏昆,侯树梅,张慧明等.螺旋进气道结构参数对气道流通特性的影响[J]内燃机工程.2008,29(3):25~28
    [131]夏兴兰,杨雄,朱忠伟等.数值模拟方法在柴油机进气道改进中的应用[J].内燃机学报.2002,20(5):424-428
    [132]邱卓丹,沈捷.直喷式柴油机螺旋进气道性能试验及评价方法[J].内燃机工程.2005,26 (3):27-30
    [133]周松,戴景敏,王货武.螺旋进气道结构参数对内燃机流场的影响[J].西安交通大学学报.2003,37(5):356~458
    [134]Daniel Kabasin, Kevin Hoyer and Joseph Kazour. Heated Injectors for Ethanol Cold Starts[C]. SAE Paper No 2009-01-0615
    [135]Dodge L., Naegeli D. and Colucci C.. Injector Spray Characterization of Methanol in Reciprocating Engines [R]. National Renewable Energy Laboratory, DE94006948,1994: 3037~3054

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700