用户名: 密码: 验证码:
冷等离子体脱除分子筛模板剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微孔和介孔分子筛由于具有规则的孔结构、大的比表面积、高的孔隙率、可调控的孔分布、独特的择形选择性、固体酸性、离子交换性等特点而广泛地应用于化学工业中,通常被用作载体、吸附剂、催化剂等。随着新能源技术和环境技术等的发展,微孔和介孔分子筛的应用将会越来越广泛。
     通常分子筛材料的合成需要引入有机模板剂,又称结构导向剂。有机模板剂对于分子筛骨架结构的形成起着至关重要的作用。但是,刚刚合成的分子筛,模板剂分子往往存在于孔道或者笼中,只有模板剂被脱除以后,分子筛的孔道才能开放。目前,最常用的脱除模板剂的方法是热焙烧方法。这种方法通常需要严格控制操作条件,如温度、升温速率、气氛等。尽管热焙烧方法可以有效地脱除模板剂,但是可能会引起分子筛骨架结构的破坏或收缩,因此,开发一种低温、高效、便捷的模板剂脱除方法意义重大。
     本文采用室温下启动、大气压下操作、以空气或氧气为等离子体发生气的介质阻挡放电等离子体方法来脱除ZSM-5、Hβ、MCM-41分子筛以及氧化锆(C77Zr)样品的模板剂。实验结果表明,介质阻挡放电等离子体可以有效地脱除ZSM-5、Hβ、MCM-41分子筛以及C77Zr样品的模板剂。与热焙烧方法相比,介质阻挡放电方法脱模板剂的速率提高了大约8倍。在脱除模板剂过程中,介质阻挡放电等离子体的热效应并不明显。介质阻挡放电方法制备的样品骨架收缩程度也比热焙烧方法小。吡啶吸附的红外光谱结果表明,介质阻挡放电等离子体可以增加分子筛表面Br?nsted酸和Lewis酸位。另外,介质阻挡放电等离子体脱模板剂过程中不使用任何化学试剂。因此,可以说,介质阻挡放电方法是一种快速的、方便的、环境友好的脱除分子筛模板剂的方法。
     在使用介质阻挡放电等离子体脱除MCM-41分子筛模板剂的过程中,观察到了具有靶波特征的等离子体斑图。之后,又在SBA-15和SiO2粉末存在下也观察到了类似的斑图现象,这是首次观察到在大气压环境下粉末形成的斑图。它可以为等离子体的相关学科提供便于操作的实验方法或模型。
     氧原子以及臭氧等强氧化性物质对模板剂的脱除起主要作用,而高能电子的轰击也会使模板剂分子分解。C77Zr样品上的活性炭模板剂也可以通过氧气介质阻挡放电等离子体脱除,这也证明,氧化作用是介质阻挡放电方法脱除模板剂的主要因素。
     为了证明介质阻挡放电方法脱除模板剂的有效性,以脱除模板剂后的MCM-41分子筛作为载体制备了Pd/MCM-41催化剂,并成功用于Suzuki反应,获得了很好的催化活性。
     实验还采用介质阻挡放电等离子体方法在脱除分子筛模板剂的同时分解负载在上面的PdCl2,制备了PdO/HZSM-5催化剂,用于甲烷催化燃烧反应,发现等离子体一步法制备的催化剂催化活性很好。因此,介质阻挡放电等离子体可以在脱除分子筛模板剂的同时分解催化剂前驱体用来一步法制备催化剂,由此简单、快速、高效地制备催化剂。
Microporous and mesoporous molecular sieves possess uniform pore structure, large surface area, high porosity, controllable and narrowly distributed pore sizes, unique shape selectivity, solid acidity, and ion exchangeability. These materials can be applied as supports, adsorbents and catalysts in the chemical industry. With the development of new energy technology, environmental technology and many others, microporous and mesoporous materials will have more and more applications.
     Microporous and mesoporous molecular sieves are normally synthesized in the presence of organic templates. The template performs as a structure-directing agent that is critical for control of the frameworks. However, the template molecules remain trapped within the frameworks and have to be removed from the pores after the synthesis. At present, the most commonly method used to remove the template is the thermal calcination under strictly controlled conditions (i.e., temperature, heating rate and atmosphere type). Although the templates can be burnt off effectively, the thermal route may cause shrinkage of the frameworks. Alternatives to the conventional calcination are desired.
     In the present work, we attempt to remove the template from ZSM-5, Hβ, MCM-41 molecular sieves and zirconia (C77Zr) using a novel dielectric-barrier discharge (DBD) plasma technique. The DBD plasma, which is initiated at room temperature and operated at atmospheric pressure, has been successfully applied for the template removal from materials above mentioned. The template removal rate from the molecular sieves using DBD is about eight times higher than that using the conventional thermal calcination. The thermal effect is not significant during the template removal using DBD. The experiments indicated that the shrinkage of framework structure for plasma prepared sample is less than that for thermally treated sample. Upon FT-IR analyses, the DBD plasma can lead to enhanced Br?nsted acid and Lewis acid sites. In addition, there is no hazardous reagent used during the DBD template removal. According to the present results, we would suggest that the DBD plasma technique could be a fast, facile and environmental friendly alternative to the conventional thermal calcination for the template removal.
     In addition, during the template removal from MCM-41, the DBD plasma patterns with characteristics of target waves were observed. The similar patterns were also observed in the presence of SBA-15 and SiO2. This is the first time that the DBD plasma patterns like this were observed. It provides a convenient model for the related subjects of plasmas.
     The oxidation with active oxygen species like O and O3 is important for the template removal. In addition, energetic electron bombardment resulted in the decomposition of template moleculars. The removal of activated carbon template from the C77Zr sample confirmed the oxidation mechanism of the template removal using DBD plasma.
     In order to confirm the effectiveness of this novel plasma template removal method, the plasma prepared and thermally calcined MCM-41 samples were tested as catalyst support. Suzuki reaction was carried out over the MCM-41 supported Pd catalysts. The plasma prepared MCM-41 supported Pd catalyst shows a slightly higher yield, compared to the calcined MCM-41 supported Pd catalyst.
     In this work, DBD plasma has also been successfully applied for removing the template from the HZSM-5 and decomposing the PdCl2 to PdO simultaneously. Such prepared catalyst presents a higher catalytic activity over the catalyst prepared by thermal calcination in the reaction of methane combustion. The DBD plasma method is a good method for template removal and decomposition of catalyst precursor simultaneously, which represents a simple and fast method for catalyst preparation.
引文
[1] Wang X J, Yan C L, Synthesis of nano-sized NaY zeolite composite from metakaolin by ionothermal method with microwave assisted, Inorganic Materials, 2010, 46(5): 517~521
    [2] Ren N, Yang Z J, Lv X C, et al., A seed surface crystallization approach for rapid synthesis of submicron ZSM-5 zeolite with controllable crystal size and morphology, Microporous and Mesoporous Materials, 2010, 131(1-3): 103~114
    [3] Kazemian H, Modarress H, Kazemi M, et al., Synthesis of submicron zeolite LTA particles from natural clinoptilolite and industrial grade chemicals using one stage procedure, Powder Technology, 2009, 196(1): 22~25
    [4] Shin J, Camblor M A, Woo H C, et al., PST-1: A synthetic small-pore zeolite that selectively adsorbs H2, Angewandte Chemie-International Edition, 2009, 48(36): 6647~6649
    [5] Sava D F, Kravtsov V C, Eckert J, et al., Exceptional stability and high hydrogen uptake in hydrogen-bonded metal-organic cubes possessing ACO and AST zeolite-like topologies, Journal of the American Chemical Society, 2009, 131(30): 10394
    [6] Zhou R F, Zhong S L, Lin X, et al., Synthesis of zeolite T by microwave and conventional heating, Microporous and Mesoporous Materials, 2009 , 124(1-3): 117~122
    [7] Moliner M, Serna P, Cantin A, et al., Synthesis of the Ti-Silicate form of BEC polymorph of beta-zeolite assisted by molecular modeling, Journal of Physical Chemistry C, 2008, 112(49): 19547~19554
    [8] McKeen J C, Yan Y S, Davis M E, Proton conductivity of acid-functionalized zeolite beta, MCM-41, and MCM-48: effect of acid strength, Chemistry of Materials, 2008, 20(16): 5122~5124
    [9] Covarrubias C, Quijada R, Rojas R, Ethylene polymerization using dealuminated ZSM-2 zeolite nanocrystals as an active metallocene catalyst support, Applied Catalysis A-General, 2008, 347(2): 223~233
    [10] Kruk M, Jaroniec M, Ko C H, et al., Characterization of the porous structure of SBA-15, Chemistry of Materials, 2000, 12(7): 1961~1968
    [11] Zhao D Y, Sun J Y, Li Q Z, et al., Morphological control of highly ordered mesoporous silica SBA-15, Chemistry of Materials, 2000, 12(2): 275
    [12] Luan Z H, Hartmann M, Zhao D Y, et al., Alumination and ion exchange of mesoporous SBA-15 molecular sieves, Chemistry of Materials, 1999, 11(6): 1621~1627
    [13] http://www.iza-structure.org/databases
    [14] Braschi I, Blasioli S, Gigli L, et al., Removal of sulfonamide antibiotics from water: Evidence of adsorption into an organophilic zeolite Y by its structural modifications, Journal of Hazardous materials, 2010, 178(1-3): 218~225
    [15] Gabrienko A A, Arzumanov S S, Toktarev A V, et al., H/D exchange of molecular hydrogen with Bronsted acid sites of Zn- and Ga-modified zeolite BEA, Physical Chemistry Chemistry Physics, 2010, 12(19): 5149~5155
    [16] Wang Y, Li X G, Xue Z Y, et al., Preparation of zeolite ANA crystal from zeolite Y by in situ solid phase iso-structure transformation, Journal of Physical Chemistry B, 2010, 114(17): 5747~5754
    [17] Na K, Choi M, Park W, et al., Pillared MFI zeolite nanosheets of a single-unit-cell thickness, Journal of the American Chemical Society, 2010, 132(12): 4169~4177
    [18] Qi J, Zhao T B, Li F Y, et al., Study of cracking of large molecules over a new type meso-ZSM-5 composite zeolite, Journal of Porous Materials, 2010, 17(2): 177~184
    [19] Tachikawa T, Yamashita S, Majima T, Probing photocatalytic active sites on a single titanosilicate zeolite with a redox-responsive fluorescent dye, Angewandte Chemie-International Edition, 2010, 49(2): 432~435
    [20] Abello S, Bonilla A, Perez-Ramirez J, Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching, Applied Catalysis A-General, 2009, 364(1-2): 191~198
    [21] Shimada H, Sato K, Honna K, et al., Design and development of Ti-modified zeolite-based catalyst for hydrocracking heavy petroleum, Catalysis Today, 2009, 141( 1-2) : 43~51
    [22]徐如人,庞文琴于吉红等,分子筛与多孔材料化学,科学出版社,北京,2004
    [23] Kresge C T, Leonowicz M E, Roth W J, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359: 710~712
    [24] Van Grieken R, Sotelo J L, Menendez J M, et al., Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5, Microporous and Mesoporous Materials, 2000, 39(1-2): 135~147
    [25] Song W, Justice R E, Jones C A, et al., Synthesis, characterization, and adsorption properties of nanocrystalline ZSM-5, Langmuir, 2004, 20(19): 8301~8306
    [26] Aguado J, Serrano D P, Escola J M, et al., Low temperature synthesis and properties of ZSM-5 aggregates formed by ultra-small nanocrystals, Microporous and Mesoporous Materials, 2004, 75(1-2): 41~49
    [27] Reding G, Maurer T, Kraushaar-Czarnetzki B, Comparing synthesis routes to nano-crystalline zeolite ZSM-5, Microporous and Mesoporous Materials, 2003, 57(1): 83~92
    [28] Dedecek J, Kaucky D, Wichterlova B, Al distribution in ZSM-5 zeolites: an experimental study, Chemical Communications, 2001, 11: 970~971
    [29] Rodriguez-Gonzalez L, Hermes F, Bertmer M, et al., The acid properties of H-ZSM-5 as studied by NH3-TPD and Al-27-MAS-NMR spectroscopy, Applied Catalysis A-General, 2007, 328(2): 174~182
    [30] Zhang J Z, Long M A, Howe R F, Molybdenum ZSM-5 zeolite catalysts for the conversion of methane to benzene, Catalysis Today, 1998, 44(1-4): 293~300
    [31] Lobree L J, Aylor A W, Reimer J A, et al., NO reduction by CH4 in the presence of O2 over Pd-H-ZSM-5, Journal of Catalysis, 1999, 181(2): 189~204
    [32] Kim J H, Kunieda T, Niwa M, Generation of shape-selectivity of p-xylene formation in the synthesized ZSM-5 zeolites, Journal of Catalysis, 1998, 173(2): 433~439
    [33] Degnan T F, Chitnis G K, Schipper P H, History of ZSM-5 fluid catalytic cracking additive development at Mobil, Microporous and Mesoporous Materials, 2000, 35-6: 245~252
    [34] Camblor M A, Corma A, Valencia S, Characterization of nanocrystalline zeolite Beta, Microporous and Mesoporous Materials, 1998, 25(1-3): 59~74
    [35] Kunkeler P J, Zuurdeeg B J, van der Waal J C, et al., Zeolite Beta: The relationship between calcination procedure, aluminum configuration, and Lewis acidity, Journal of Catalysis, 1998, 180(2): 234~244
    [36] Mintova S, Valtchev V, Onfroy T, et al., Variation of the Si/Al ratio in nanosized zeolite Beta crystals, Microporous and Mesoporous Materials, 2006, 90(1-3): 237~245
    [37] Zhang K, Huang C H, Zhang H B, et al., Alkylation of phenol with tert-butyl alcohol catalysed by zeolite H beta, Applied Catalysis A-General, 1998, 166(1): 89~95
    [38] Zhang Y J, Wang Y Q, Bu Y F, et al., Beckmann rearrangement of cyclohexanone oxime over H beta zeolite and H beta zeolite-supported boride, Catalysis Communications, 2005, 6(1): 53~56
    [39] Bjorgen M, Kolboe S, The conversion of methanol to hydrocarbons over dealuminated zeolite H-beta, Applied Catalysis A-General, 2002, 225(1-2): 285~290
    [40] Selvam P, Bhatia S K, Sonwane C G, Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves, Industial & Engineering Chemistry Research, 2001, 40(15): 3237~3261
    [41] Grun M, Unger K K, Matsumoto A, et al., Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology, Microporous and Mesoporous Materials, 1999, 27(2-3): 207~216
    [42] Vallet-Regi M, Ramila A, del Real R P, et al., A new property of MCM-41: Drug delivery system, Chemistry of Materials, 2001, 13(2): 308~311
    [43] Mehnert C P, Ying J Y, Palladium-grafted mesoporous MCM-41 material as heterogeneous catalyst for Heck reactions, Chemistry Communications, 1997, 22: 2215~2216
    [44] Wang Y, Zhang Q H, Shishido T, et al., Characterizations of iron-containing MCM-41 and its catalytic properties in epoxidation of styrene with hydrogen peroxide, Journal of Catalysis, 2002, 209(1): 186~196
    [45] Uphade B S, Yamada Y, Akita T, et al., Synthesis and characterization of Ti-MCM-41 and vapor-phase epoxidation of propylene using H2 and O2 over Au/Ti-MCM-41, Applied Catalysis A-General, 2001, 215(1-2): 137~148
    [46] Salavati-Niasari M, Template synthesis and characterization of host ( nanoporesof zeolite Y ) / guest ( Co(II)-tetraoxodithiatetraaza macrocyclic complexes ) nanocomposite materials, Polyhedron, 2008, 27(15): 3207~3214
    [47] Zones S I, Hwang S J, Olmstead M M, et al., A Most Unusual Zeolite Templating: Cage to Cage Connection of One Guest Molecule, Journal of Physical Chemistry C, 2010, 114(19): 8899~8904
    [48] Bai Y, Dang W, Li Q, et al., Preparation of ZSM-5 zeolite involves using tetra-methyl guanidine as template agent under neutral condition, China, CN101628721-A, 2010
    [49] Chen P, Chen X B, Chen X S, et al., Preparation and catalytic activity of titanium silicalite-1 zeolite membrane with TPABr as template, Journal of Membrane Science, 2009, 330(1-2): 369~378
    [50] Bu X, Feng P, Stucky G D, Large-cage zeolites structures with multidimensional 12-ring channels, Science, 1997, 278: 2080
    [51] Wang B C, Tian Z J, Li P, et al., Synthesis of ZSM-23/ZSM-22 intergrowth zeolite with a novel dual-template strategy, Materials Research Bulletin, 2009, 44(12): 2258~2261
    [52] Sang S Y, Chang F X, Liu Z M, et al., Difference of ZSM-5 zeolites synthesized with various templates, Catalysis Today, 2004, 93-5: 729~734
    [53] Jia M J, Seifert A, Thiel W R, Mesoporous MCM-41 materials modified with oxodiperoxo molybdenum complexes: Efficient catalysts for the epoxidation of cyclooctene, Chemistry Material, 2003, 15: 2174~2180
    [54] Zhao D Y, Huo Q S, Feng J L, et al., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, Journal of the American Chemical Society, 1998, 120(24), 6024~6036
    [55] Zhang Y, Qian X, Zhu Z, Preparation method of ordered macro porous inorganic oxide material. China, CN1556067-A, 2005
    [56] Liang H, Zhang Y, Liu Y, Ceria modified three-dimensionally ordered macro-porous Pt/TiO2 catalysts for water-gas shift reaction. Journal of Rare Earths, 2009, 27(3): 425~430
    [57] Li Y F, Sun Z Q, Zhang J H, et al., Polystyrene@TiO2 core–shell microsphere colloidal crystals and nonspherical macro-porous materials, Journal of Colloid and Interface Science, 2008, 325(2): 567~572
    [58] Mateo E, Paniagua A, Guell C, et al., Study on template removal from silicalite-1 giant crystals, Materials Research Bulletin, 2009, 44 (6): 1280~1287
    [59] Motuzas J, Heng S, Lau PPSZ, et al., Ultra-rapid production of MFI membranes by coupling microwave-assisted synthesis with either ozone or calcination treatment, Microporous and Mesoporous Materials, 2007, 99 ( 1-2 ): 197~205
    [60] Gualtieri M L, Gualtieri A F, Hedlund J, The influence of heating rate on template removal in silicalite-1: An in situ HT-XRPD study, Microporous and Mesoporous Materials, 2006, 89(1-3): 1~8
    [61] Gao X T, Yeh C Y, Angevine P, Mechanistic study of organic template removal from ZSM-5 precursors, Microporous and Mesoporous Materials, 2004, 70(1-3): 27~35
    [62] Souza M J B, Silva A O S, Aquino J M F B, et al., Thermal analysis applied to template removal from siliceous MCM-48 nanoporous material, Journal of Thermal Analysis and Calorimetry, 2005, 79(3): 493~497
    [63] Souza M J B, Silva A O S, Aquino J M F B, et al., Kinetic study of template removal of MCM-41 nanostructured material, Journal of Thermal Analysis and Calorimetry, 2004, 75(2): 693~698
    [64] He J, Yang X B, Evans D G, et al., New methods to remove organic templates from porous materials, Materials Chemistry and Physics, 2002, 77: 270~275
    [65] Palmery S, Genoni F, Spano' G, et al., Method for extraction of high-efficiency molecular sieve template agent. EP1101735-A, 2001
    [66] Chatterjee M, Hayashi H, Saito N, Role and effect of supercritical fluid extraction of template on the Ti(IV) active sites of Ti-MCM-41, Microporous and Mesoporous Materials, 2003, 5( 2): 143~155
    [67] Ji H, Fan Y Q, Jin W Q, et al., Synthesis of Si-MCM-48 membrane by solvent extraction of the surfactant template, Journal of Non-crystalline Solids, 2008, 354(18): 2010~2016
    [68] Tanev P T, Pinnavaia T J, A neutral templating route to mesoporous molecular-sieves, Science, 1995, 267: 865~867
    [69] Benjelloun M, Van der Voort P, Cool P, et al., Reproducible synthesis of high quality MCM-48 by extraction and recuperation of the gemini surfactant, Physical Chemistry Chemistry Physics, 2001, 3: 127~131
    [70] Kuhn J, Sutanto S, Gascon J, et al., Performance and stability of multi-channel MFI zeolite membranes detemplated by calcination and ozonication in ethanol/water pervaporation, Journal of Membrane Science, 2009, 339(1-2): 261~274
    [71] Kuhn J, Gascon J, Gross J, et al., Detemplation of DDR type zeolites by ozonication, Microporous and Mesoporous Materials, 2009, 120(1-2) : 12~18
    [72] Kuhn J, Motegh M, Gross J, et al., Detemplation of [B]MFI zeolite crystals by ozonication, Microporous and Mesoporous Materials, 2009, 120(1-2): 35~38
    [73] Heng S, Lau P P S, Yeung K L, et al., Low-temperature ozone treatment for organic template removal from zeolite membrane, Journal of Membrane Science, 2004, 243(1-2): 69~78
    [74] Dattelbaum A M, Amweg M L, Ruiz J D, et al., Surfactant removal and silica condensation during the photochemical calcination of thin film silica mesophases, Journal of Physical Chemistry B, 2005, 109(30): 14551~14556
    [75] Xie L L, Yuan H, Hu L H, et al., Application of UV/ozone treatment to the removal of the organic template from Zeolites, Acta Chimica Sinica, 2007 , 65: 2285~2290
    [76] Li Q H, Amweg M L, Yee C K, et al., Photochemical template removal and spatial patterning of zeolite MFI thin films using UV/ozone treatment, Microporous and Mesoporous Materials, 2005, 87(1): 45~51
    [77] Parikh A N, Navrotsky A, Li Q H, et al., Non-thermal calcination by ultraviolet irradiation in the synthesis of microporous materials, Microporous and Mesoporous Materials, 2004 , 76(1-3): 17~22
    [78] Keene M T J, Denoyel R, Llewellyn P L, Ozone treatment for the removal of surfactant to form MCM-41 type materials, Chemical Communications, 1998, 20: 2203~2204
    [79] Clark T, Ruiz J D, Fan H Y, et al., A new application of UV-ozone treatment in the preparation of substrate-supported, mesoporous thin films, Chemistry of Materials, 2000, 12(12): 3879~3884
    [80] Xia Y D, Mokaya R, Crystalline-like molecularly ordered mesoporous aluminosilicates derived from aluminosilica-surfactant mesophases via benign template removal, Journal of Physical Chemistry B, 2006, 110(18): 9122~9131
    [81] Melian-Cabrera I, Kapteijn F, Moulijn J A, Room temperature detemplation of zeolites through H2O2-mediated oxidation, Chemical Communications, 2005, 21: 2744~2746
    [82] Yang L M, Wang Y J, Luo G S, et al., Simultaneous removal of copolymer template from SBA-15 in the crystallization process, Microporous and Mesoporous Materials, 2005, 81(1-3): 107~114
    [83] Lu A H, Li W C, Schmidt W, et al., Low temperature oxidative template removal from SBA-15 using MnO4- solution and carbon replication of the mesoporous silica product, Journal of Materials Chemistry, 2006, 16(33): 3396~3401
    [84] Tian B Z, Liu X Y, Yu C Z, et al., Microwave assisted template removal of siliceous porous materials, Chemical Communications, 2002, 11: 1186~1187
    [85] He J, Yang X B, Evans D G, et al., New methods to remove organic templates from porous materials, Materials Chemistry and Physics, 2003, 77: 270~275
    [86] Lai T L, Shu Y Y, Lin Y C, et al., Rapid removal of organic template from SBA-15 with microwave assisted extraction, Material Letters, 2009, 63(20): 1693~1695
    [87] Kleitz F, Schmidt W, Schuth F, Evolution of mesoporous materials during the calcination process: structural and chemical behavior, Microporous and Mesoporous Materials, 2001, 44: 95~109
    [88]图片来源:新华网,http://news. xinhuanet. com
    [89] Liu C J, Vissokov G P, Jang B W L, Catalyst preparation using plasma technologies, Catalysis Today, 2002, 72(3-4): 173~184
    [90] Liu C J, Zou J J, Yu K L, et al., Plasma application for more environmentally friendly catalyst preparation, Pure and Applied Chemistry, 2006, 78(6): 1227~1238
    [91] Liu C J, Vissokov G P, Jang B W L. Catalyst preparation using plasma technologies, Catalysis Today, 2002, 72: 173~184
    [92]于开录,刘昌俊,夏清等,低温等离子体技术在催化剂领域的应用,化学进展,2002, 14: 456~461
    [93] Rutkovskii A E, Vishnyakov L R, Chekhovskii A A, et al., Use of plasma technology in creating catalysts on carriers, Powder Metallurgy and Metal Ceramics, 2000, 39(3-4): 207~209
    [94] Dadashova E A, Yagodovskaya T V, Shpiro E S et al., The synthesis of Fe2O3/ZSM-5 catalyst for carbon monoxide hydrogenation in glow discharge of oxygen and argon, Kinetics and Catalysis, 1993, 34: 670~673
    [95] Legrand J C, Diamy A M, Riahi G, et al., Application of a dihydrogen afterglow to the preparation of zeolite-supported metallic nanoparticles, Catalysis Today, 2004, 89(1-2): 177~182
    [96] Furukawa K, Tian S R, Yamauchi H, et al., Characterization of H-Y zeolite modified by a radio-frequency CF4 plasma, Chemical Physics Letters, 2000, 318(1-3): 22~26
    [97] Wang Z J, Xie Y B, Liu C J, Synthesis and Characterization of Noble Metal (Pd, Pt, Au, Ag) Nanostructured Materials Confined in the Channels of Mesoporous SBA-15, Journal of Physical Chemistry C, 2008, 112(50): 19818~19824
    [98] Wang Z J, Liu Y, Shi P, et al., Al-MCM-41 supported palladium catalyst for methane combustion: Effect of the preparation methodologies, Applied Catalysis B-Environmental, 2009, 90(3-4): 570~577
    [99] Liu C J, Yu K L, Zhang Y P, et al., Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion, Applied Catalysis B-Environmental, 2004, 47(2): 95~100
    [100] Liu C J, Yu K L, Zhang Y P, et al., Remarkable improvement in the activity and stability of Pd/HZSM-5 catalyst for methane combustion, Catalysis Communications, 2003, 4(7): 303~307
    [101] He F, Liu C J, Eliasson B, et al., XPS characterization of zeolite catalyst in plasma catalytic methane conversion, Surface and Interface Analysis, 2001, 32(1): 198~201
    [102] Cheng D G, Zhu X L, Reduction of Pd/HZSM-5 using oxygen glow discharge plasma for a highly durable catalyst preparation, Catalysis Letters, 2007, 118: 260~263
    [103] Liu C, Zhang Y, Xia Q, Intensifying acidity of catalyst by using plasma. China, CN1354045-A, 2002
    [104] Cheng, D, Okumura K, Xie Y B, et al., Stability test and EXAFS characterization of plasma prepared Pd/HZSM-5 catalyst for methane combustion, Applied Surface Science, 2007, 254(5): 1506~1510
    [105] Zhang Y P, Ma P S, Zhu X L, et al., A novel plasma-treated Pt/NaZSM-5 catalyst for NO reduction by methane, Catalysis Communications, 2004, 5(1): 35-39
    [106] Li Y N, Xie Y B, Liu C J, Enhanced activity of bimetallic Pd-based catalysts for methane combustion, Catalysis Letters, 2008, 125(1-2): 130~133
    [107] Zhao Y, Pan Y X, Cui L, et al., Carbon nanotube formation over plasma reduced Pd/HZSM-5, Diamond and Related Materials, 2007, 16(2): 229~235
    [108] Maesen T L M, Kouwenhoven H W, Bekkum H V, et al., Template removal from molecular sieves by low-temperature plasma calcination, Journal of the Chemical Society, Faraday Transactions, 1990, 86: 3967~3970
    [109] Maesen T L M, Bruinsma D S L, Kouwenhoven H W, et al., Use of radiofrequency plasma for low-temperature calcination of zeolites, Journal of the Chemical Society, Chemical Communications, 1987, 1284~1285
    [110] Khan M A, Al-Jalal A A, Enhanced decoking of a coked zeolite catalyst using a glow discharge in Ar-O2 gas mixture, Applied Catalysis A-General, 2004, 272(1-2): 141~149
    [111] Khan M A, Al-Jalal A A, Bakhtiari I A, 'Decoking' of a 'coked' zeolite catalyst in a glow discharge, Analytical and Bioanalytical Chemistry, 2003, 377(1): 89~96
    [112] Al-Jalal A M, Khan MA, Optical Emission and Raman Spectroscopy Studies of Reactivity of Low-Pressure Glow Discharges in Ar-O2 and He-O2 Gas Mixtures with Coked Catalysts, Plasma Chemistry and Plasma Processing, 2010, 30(1): 173~182
    [113] Kuroki T, Fujioka T, Kawabata R, et al., Regeneration of Honeycomb Zeolite by Nonthermal Plasma Desorption of Toluene, IEEE Transactions on Industry Applications, 2009, 45(1): 10~15
    [114] Kuroki T, Hirai K, Kawabata R, et al., Decomposition of Adsorbed Xylene on Adsorbent Using Nonthermal Plasma and Gas Circulation, 2008 IEEE Industry Applications Society Annual Meeting, 2008, 1-5: 403~408
    [115] Paukshtis E A, Stepanov V G, Chesnokov V V, Regeneration of catalysts, sorbents and molecular sieves - includes oxidative burning-up of carbonaceous cpds. in gas contg. nitrogen oxide(s) and oxygen@ in specified ratio. RU2053843-C1, 1996
    [116] Eliasson B, Liu C J, Kogelschatz U, Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites, Industrial & Engineering Chemistry Research, 2000, 39(5): 1221~1227
    [117] Liu C J, Eliasson B, Xue B Z, et al., Zeolite-enhanced plasma methane conversion directly to higher hydrocarbons using dielectric-barrier discharges, Reaction Kinetics and Catalysis Letters, 2001, 74(1): 71~77
    [118] Liu C J, Mallinson R, Lobban L, Comparative investigations on plasma catalytic methane conversion to higher hydrocarbons over zeolites, Applied Catalysis A-General, 1999, 178(1): 17~27
    [119] Li M W, Liu C P, Tian Y L, et al., Effects of catalysts in carbon dioxide reforming of methane via corona plasma reactions, Energy & Fuels, 2006, 20(3): 1033~1038
    [120] Jiang T, Li Y, Liu C J, et al., Plasma methane conversion using dielectric-barrier discharges with zeolite A, Catalysis Today, 2002, 72(3-4): 229~235
    [121] Zhang K, Eliasson B, Kogelschatz U, Direct conversion of greenhouse gases to synthesis gas and C4 hydrocarbons over zeolite HY promoted by a dielectric-barrier discharge, Industrial & Engineering Chemistry Research, 2002, 41(6): 1462~1468
    [122] Zhang K, Kogelschatz U, Eliasson B, Conversion of greenhouse gases to synthesis gas and higher hydrocarbons, Energy & Fuels, 2001, 15(2): 395~402
    [123]李明伟,刘昌俊,许根慧,等离子体技术在分子筛催化中的应用,化工进展,1999, 6: 53~56
    [124] Liu C J, Marafee A, Mallinson R, et al., Methane conversion to higher hydrocarbons in corona discharge over metal oxide catalysts with OH groups, Applied Catalysis A-General, 1997, 164: 21~33
    [125] Chavadej S, Supat K, Lobban L L, et al., Partial oxidation of methane and carbon dioxide reforming with methane in corona discharge with/without Pt/KL catalyst, Journal of Chemical Engineering of Japan, 2005, 38(3): 163~170
    [126] Indarto A, Choi J W, Lee H, et al., A brief catalyst study on direct methane conversion using a dielectric barrier discharge, Journal of the Chinese Chemistry Society, 2007, 54: 823~828
    [127] Li X S, Shi C, Xu Y, et al., A process for a high yield of aromatics from the oxygen-free conversion of methane: combining plasma with Ni/HZSM-5 catalysts, Green Chemistry, 2007 , 9(6): 647~653
    [128] Liu C J, Mallinson R, Lobban L, Nonoxidative methane conversion to acetylene over zeolite in a low temperature plasma, Journal of Catalysis, 1998, 179(1): 326~334
    [129] Francke K P, Miessner H, Rudolph R, Plasmacatalytic processes for environmental problems, Catalysis Today, 2000, 59(3-4): 411~416
    [130] Li J H, Ke R, Li W, et al., A comparison study on non-thermal plasma-assisted catalytic reduction of NO by C3H6 at low temperatures between Ag/USY and Ag/Al2O3 catalysts, Catalysis Today, 2007, 126(3-4): 272~278
    [131] Kwak J H, Peden C H F, Szanyi J, Non-thermal plasma-assisted NOx reduction over Na-Y zeolites: the promotional effect of acid sites, Catalysis Letters, 2006, 109(1-2): 1~6
    [132] Niu J H, Yang X F, Zhu A M, et al., Plasma-assisted selective catalytic reduction of NOx by C2H2 over Co-HZSM-5 catalyst, Catalysis Communications, 2006, 7(5): 297~301
    [133] Sun Q, Zhu A M, Yang X F, et al., Selective catalytic reduction of NOx in dielectric barrier discharge plasmas, European physical Journal-Applied Physics, 2005, 30(2): 129~133
    [134] Kwak J H, Szanyi J, Peden C H F, Non-thermal plasma-assisted NOx reduction over alkali and alkaline earth ion exchanged Y, FAU zeolites, Catalysis Today, 2004, 89(1-2): 135~141
    [135] Orlando T M, Alexandrov A, Lebsack A, et al., The reactions of NO2 and CH3CHO with Na-Y zeolite and the relevance to plasma-activated lean NOx catalysis, Catalysis Today, 2004, 89(1-2): 177~182
    [136] Rappe K G, Hoard J W, Aardahl C L, et al., Combination of low and high temperature catalytic materials to obtain broad temperature coverage for plasma-facilitated NOx reduction, Catalysis Today, 2004, 89(1-2): 143~150
    [137] Ravi V, Mok Y S, Rajanikanth B S, et al., Studies on nitrogen oxides removal using plasma assisted catalytic reactor, Plasma Science & Technology, 2003, 5(6): 2057~2062
    [138] Kwak J H, Szanyi J, Peden C H F, Nonthermal plasma-assisted catalytic NOx reduction over Ba-Y, FAU: the effect of catalyst preparation, Journal of Catalysis, 2003, 220(2): 291~298
    [139] Tonkyn R G, Barlow S E, Hoard J W, Reduction of NOx in synthetic diesel exhaust via two-step plasma-catalysis treatment, Applied Catalysis B-Environmental, 2003, 40(3): 207~217
    [140] Yoon S, Panov A G, Tonkyn R G, et al., An examination of the role of plasma treatment for lean NOx reduction over sodium zeolite Y and gamma alumina Part 1. Plasma assisted NOx reduction over NaY and Al2O3, Catalysis Today, 2002, 72(3-4): 243~250
    [141] Yoon S, Panov A G, Tonkyn R G, et al., An examination of the role of plasma treatment for lean NOx reduction over sodium zeolite Y and gamma alumina Part 2. Formation of nitrogen, Catalysis Today, 2002, 72(3-4): 251~257
    [142] Kim H H, Ogata A, Futamura S, Effect of different catalysts on the decomposition of VOCS using flow-type plasma-driven catalysis, IEEE Transactions on Plasma Science, 2006, 34(3): 984~995
    [143] Wallis A E, Whitehead J C, Zhang K, The removal of dichloromethane from atmospheric pressure nitrogen gas streams using plasma-assisted catalysis, Applied Catalysis B-Environmental, 2007, 74(1-2): 111~116
    [144] Wallis A E, Whitehead J C, Zhang K, The removal of dichloromethane from atmospheric pressure air streams using plasma-assisted catalysis, Applied Catalysis B-Environmental, 2007, 72(3-4): 282~288
    [145] Chao C Y H, Kwong C W, Hui K S, Potential use of a combined ozone and zeolite system for gaseous toluene elimination, Journal of Hazardous Materials, 2007, 143(1-2): 118~127
    [146] Oh S M, Kim H H, Einaga H, et al., Zeolite-combined plasma reactor for decomposition of toluene, Thin Solid Films, 2006, 506: 418~422
    [147] Oh S M, Kim H H, Ogata A, et al., Effect of zeolite in surface discharge plasma on the decomposition of toluene, Catalysis Letters, 2005, 99(1-2): 101~104
    [148] Ogata A, Einaga H, Kabashima H, et al., Effective combination of nonthermal plasma and catalysts for decomposition of benzene in air, Applied Catalysis B-Environmental, 2003, 46(1): 87~95
    [149] Magureanu M, Mandache N B, Hu J C, et al., Plasma-assisted catalysis total oxidation of trichloroethylene over gold nano-particles embedded in SBA-15 catalysts, Applied Catalysis B-Environmental, 2007, 76(3-4): 275~281
    [150]徐学基,朱定昌,气体放电物理,复旦大学出版社,1996
    [151] Kuai P Y, Liu C J, Huo P P, Characterization of CuO-ZnO catalyst prepared by decomposition of carbonates using dielectric-barrier discharge plasma, Catalysis Letters, 2009, 129(3-4), 493~498
    [152]蒯平宇,霍培培,李艳等,介质阻挡放电等离子体方式制备纳米金属氧化物的方法,中国专利,CN200810053860.6, 2008
    [153]蒯平宇,介质阻挡放电法分解制备铜系催化剂:[博士学位论文],天津:天津大学,2010
    [154] Li Y,Kuai P Y, Huo P P, Liu C J, Fabrication of CuO nanofibers via the plasma decomposition of Cu(OH)2, Materials Letters, 2009, 63(2), 188~190
    [155] Kim S D, Noh S H, Seong K H, et al., Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring. Microporous and Mesoporous Materials, 2004, 72: 185~192
    [156] Majano G, Delmotte L, Valtchev V, et al., Al-Rich Zeolite Beta by Seeding in the Absence of Organic Template, Chemistry of materials, 2009, 21(18): 4184~4191
    [157] Kim Y C, Jeong J Y, Hwang J Y, et al., Influencing factors on rapid crystallization of high silica nano-sized zeolite Y without organic template under atmospheric pressure, Journal of Porous Materials, 2009, 16(3): 299~306
    [158] Wu Z F, Song J W, Ji Y Y, et al., Organic template-free synthesis of ZSM-34 zeolite from an assistance of zeolite L seeds solution, Chemistry of Materials, 2008, 20(2): 357~359
    [159]尹增谦,大气压介质阻挡放电时空动力学研究:[博士学位论文],保定:河北大学,2003
    [160] Kogelschatz U, Dielectric-barrier discharges: Their history, discharge physics, and industrial applications, Plasma Chemistry and Plasma Processing, 2003, 23(1): 1~46
    [161]刘富成,董丽芳,贺亚峰等,介质阻挡流光放电中的螺旋波与靶波,河北大学学报(自然科学版),2004, 24(3): 251~254
    [162]图片来源:http://www.nasa.gov
    [163]图片来源:华夏地理社区美国国家地理中文网站
    [164]图片来源:新华网,http://news.xinhuanet.com
    [165]图片来源:http://www.sina.com.cn 2010年04月26日中国国家天文杂志
    [166]图片来源:http://baike.soso.com/v776916.htm
    [167]许根慧,姜恩永,盛京等,等离子体技术与应用,化学工业出版社,北京,2006
    [168]蔡忆昔,王军,庄凤芝等,放电间隙对介质阻挡放电电学参量的影响,高压电器,2009, 45(2): 81~83
    [169] Zhang M C, Zhang W Q, Pd nanoparticles immobilized on pH-responsive and chelating nanospheres as an efficient and recyclable catalyst for Suzuki reaction in Water, Journal of Physical Chemistry C, 2008, 112: 6245~6252
    [170] Gao D N, Zhang C X, Wang S, et al., Catalytic activity of Pd/Al2O3 toward the combustion of methane, Catalysis Communications, 2008, 9: 2583~2587
    [171] Yin F X, Ji S F, Wu P Y, et al., Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane, Journal of Catalysis, 2008, 257:108~116
    [172] Guerrero S, Araya P, Wolf E E, Methane oxidation on Pd supported on high area zirconia catalysts, Applied Catalysis A-General, 2006, 298: 243~253
    [173] Escandon L S, Ordonez S, Vega A, et al., Oxidation of methane over palladium catalysts: effect of the support. Chemosphere, 2005, 58: 9~17
    [174] Simplicio L M T, Brandao S T, Sales E A, et al., Methane combustion over PdO-alumina catalysts: The effect of palladium precursors, Applied Catalysis B-Environmental, 2006, 63: 9~14
    [175] Demoulin O, Rupprechter G, Seunier I, et al., Investigation of parameters influencing the activation of a Pd/gamma-alumina catalyst during methane combustion, Journal of Physical Chemistry B, 2005, 109: 20454~20462
    [176] Okumura K, Yoshimoto R, Uruga T, et al., Energy-dispersive XAFS studies on the spontaneous dispersion of PdO and the formation of stable Pd clusters in zeolites, Journal of Physical Chemistry B, 2004, 108: 6250~6255
    [177] Liu C J, Yu K L, Zhang Y P, et al., Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion, Applied Catalysis B-Environmental, 2004, 47: 95~100
    [178] Ali A, Alvarez W, Loughran C J, et al., State of Pd on H-ZSM-5 and other acidic supports during the selective reduction of NO by CH4 studied by EXAFS/XANES, Applied Catalysis B-Environmental, 1997, 14: 13~22
    [179] Aylor A W, Lobree L J, Reimer J A, et al., Investigations of the dispersion of Pd in H-ZSM-5, Journal of Catalysis, 1997, 172: 453~462

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700