原油蒸馏过程的工艺计算及模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原油是极其复杂的混合物,必须经过一系列的加工处理才能得到多种有用的产品。原油蒸馏是根据产品以及下游工艺装置对原料的要求,通过加热、分馏和冷却等方法把原油分割成为不同沸点范围的馏分,一般包括原油的预处理、常压蒸馏和减压蒸馏。
     本文根据原油蒸馏原理,通过Visual Basic编程辅助完成了某炼油企业500万吨/年常减压蒸馏装置中常压塔的设计计算,并根据Visual Basic得到的石油馏分的流量和中段循环回流的取热量用Aspen Plus对常减压装置中的初馏塔和常压塔进行模拟,最后根据减压塔的设计原则用Visual Basic调用Aspen Plus得到减压塔中段循环回流取热量,从而完成减压塔的模拟。具体研究工作包括:
     (1)根据精馏原理建立了原油蒸馏装置的MESH模型;
     (2)根据原油的累积质量收率、累积体积收率曲线和切割方案,得到各石油馏分的质量收率和体积收率,并计算三条蒸馏曲线;
     (3)根据原油的密度曲线得到各石油馏分的密度,进而计算出15.6℃时的相对密度;
     (4)根据各石油馏分的ASTM曲线得到平均沸点、分子量、特性因数、真假临界常数、焦点压力、焦点温度以及偏心因子等基本物性参数;
     (5)根据焓值计算公式得到各石油馏分在一定压力、温度下的焓值;
     (6)根据经验选定各塔段塔板数,并根据物料衡算和能量衡算得到各主要塔板温度和汽液负荷。在求取塔顶、一线、二线和三线温度时,采用四重循环迭代,而且每改变一次温度重新进行一次全塔能量分配,使计算的结果比手工计算更加准确;
     (7)根据Visual Basic计算得到的石油馏分的流量和常压塔中段循环回流取热量,用Aspen Plus软件对初馏塔和常压塔进行模拟;
     (8)对于减压塔的设计,根据减压馏分的切割范围得到减压塔塔顶和侧线馏分的流量,并根据经验选定各塔段的塔板数。通过编程迭代计算顶循和中段循环回流的取热量,最后将其作为Aspen Plus必要的输入数据,由Aspen Plus得到全塔的温度和汽液负荷分布。
     总之,在进行原油蒸馏工艺设计时,首先用Visual Basic编程模拟,得到各石油馏分的产量、汽化段温度、加热炉温度以及各中段循环回流的取热量,然后将其作为Aspen Plus必要的输入数据,用Aspen Plus模拟得到各个塔板的温度和汽液负荷。
Crude oil is an extremely complex mixture. Consequently, it must be processed so that many useful products can be obtained. Crude oil distillation is a process in which heating, fraction, and cooling methods are used to divide petroleum into different distillate fractions on the basis of the requirements of raw materials and downstream processing equipments. Generally, preprocessing, atmospheric distillation and vacuum distillation are included in the process.
     The crude oil distillation device whose processing capacity is 5 million tons per year was investigated and the design of atmospheric column was accomplished with Visual Basic according to the principles of crude oil distillation. And then, the primary and atmospheric columns were simulated by Aspen Plus simulation software according to the flow rates of petroleum fractions and the heat duties of pumparounds obtained by Visual Basic. Finally, the heat duties of pumparounds were calculated by calling Aspen Plus with Visual Basic on the basis of the principles of vacuum column design. Vacuum column was simulated in accordance with the data. The researches done in the paper are as following:
     ⅰ. MESH model was established according to the principles of distillation.
     ⅱ. Based on cumulative weight yield, volume yield and cutting scheme, three distillation curves of petroleum fractions were obtained.
     ⅲ. Densities of petroleum fractions were got on the basis of the density curve, and relative densities at 15.6℃were also calculated.
     iv. Average boiling points, molecular weights, characterization factors, true and pseudo critical constants, focus pressures, focus temperatures and acentric factors were computed from ASTM curves of each petroleum fraction.
     ⅴ. Enthalpies of petroleum fractions at certain pressure and temperature were obtained by enthalpy formulas.
     ⅵ. The number of stages in every section was selected according to the experience, and the temperatures, liquid and vapor flow rates were calculated through material balance and energy balance. Four-variable iteration was applied to calculate the temperatures at the top of column, in No.1, No.2 and No.3 side lines simultaneously. Once each temperature was changed, the residual energy would be recalculated and the energy in the column would be redistributed. Consequently, the results obtained by Visual Basic are more accurate than hand calculation.
     ⅶ. Based on the flow rates of petroleum fractions and the heat duties of pumpaounds in atmospheric column calculated by Visual Basic, primary and atmospheric columns were simulated by Aspen Plus simulation software.
     ⅷ. As to the design of vacuum column, the flow rates of the petroleum fractions at the top of column and in the side lines were obtained according to the cutting range. And then, the numbers of stages at each column section were selected on the basis of experience. After that, the heat duties at the top cycle and of the pumparouds were calculated by programming which were considered as the critical input data and were input into Aspen Plus. Finally, the distribution of temperature, liquid and vapor flow rates on each stage were obtained by Aspen Plus simulation software.
     In brief, when designing the process of crude oil distillation, accomplish the simulation by programming with Visual Basic firstly to obtain the critical process parameters, such as the flow rates of petroleum fractions, the temperature at vaporization section, the temperature in the heating furnace, heat duties of pumparounds, and so on. And then input the data into Aspen Plus, and run the simulation to get the temperatures, liquid and vapor flow rates on each stage.
引文
[1]林世雄.石油炼制工程[M].北京:石油工业出版社,1985
    [2]陈绍洲.石油加工工艺学[M].上海:华东理工大学出版社,1997
    [3]李淑陪.石油加工工艺学(上册)[M].北京:中国石化出版社,1991
    [4]William Leffler. Petroleum Refining in Nontechnical Language[M]. America:PennWell Corp,2008
    [5]邬国英,李为民.石油化工概论[M].北京:中国石化出版社,2006
    [6]闵恩泽.石油化工[M].北京:化学工业出版社,2009
    [7]James H. Gary, Glenn E. Handwerk.Petroleum Refining:Technology and Economics[M]. America:CRC Press,2007
    [8]沈本贤.石油炼制工艺学[M].北京:中国石化出版社,2009
    [9]Robert Meyers. Handbook of Petroleum Refining Processes[M]. America:McGraw-Hill Professional Press,2003
    [10]K. Liebmann, V. R. Dhole.Integrated crude distillation design[J]. Computers & Chemical Engineering.1995,19(1):119-124
    [11]Massimiliano Errico, Giuseppe Tola. Energy saving in a crude distillation unit by a preflash implementation[J]. Applied Thermal Engineering.2009,29(8):1642-1647
    [12]黄彦芬等.常减压蒸馏装置操作工[M].北京:中国石化出版社,2008
    [13]Surinder Parkash.石油炼制工艺手册[M].北京:中国石化出版社,2007
    [14]James G. Speight. The Chemistry and Technology of Petroleum[M]. America:CRC Press,2006
    [15]William F. Parish. The distillation of petroleum for the manufacture of lubricating oils[J]. Journal of the Franklin Institute.1997,203(6):781-809
    [16]雷培德,李端阳,汪静,等.化工过程模拟技术及HYSIM模拟系统在化工生产中的应用[J].湖北化工.2002,(6):4-6
    [17]Pinto, J. M., Joly, M., Moro, L. F. L.. Planning and scheduling models for refinery operations[J]. Computers and Chemical Engineering.2000,24(9-10):2259-2276
    [18]杨光辉.化工流程模拟技术及应用[J].计算机与信息化.2008,37(8):35-38
    [19]朱开宏,等.化工过程流程模拟[M].北京:中国石化出版社,1993
    [20]Seo J. W.. Design Optimization of Crude Oil Distillation[J]. Chemical Engineering Technology.2000,23(2):157-166
    [21]Morten Hovd, Rune Michaelsen. Model predictive control of a crude oil distillation column[J]. Computers & Chemical Engineering.1997,21(1):893-897
    [22]张志檩.国外石油化工信息技术应用进展[J].石油化工信息动态.1998,(6):11-17
    [23]经文魁.化工过程稳态模拟技术的现状和发展趋势[J].现代化工.1995,(2):17-20
    [24]Zhao C. Introduction of a useful industrial flowsheet simulation progra—Aspen Plus[J]. Power System Engineering.2003,19(2):56-58
    [25]王健红,陈晓春,魏杰,等.化工装置动态模拟与优化工艺软件平台[J].化工进展,1997,16(4):49-51
    [26]李文波,毛鹏生,王长英,等.化工流程模拟技术的现状与发展[J].化工时刊.1998,12(6):3-6
    [27]Shyamsundar V, Rangaiah G P. A method for simulation and optimization of multiphase distillation[J]. Computers and chemical engineering.2000,24:23-37
    [28]Cardoso M F, Salcedo R L, de Feyo A S. Optimization of reactive distillation processes with simulated annealing[J]. Chemical engineering science.2000,55:5059-5078
    [29]孙红先,赵听友,蔡冠梁.化工模拟软件的应用与开发[J].计算机与应用化学,2007,24(9):1285-1288
    [30]王立行.石油化工过程先进控制技术的现状与发展趋势[J].炼油设计,2000,30(2):6-10
    [31]吴志辉,程华农,李秀喜,等.化工流程模拟中的模块集成技术及其应用[J].华南理工大学学报,2005,33(5):87
    [32]陆恩锡,张慧娟,尹清华.化工过程模拟及相关高新技术[J].化工进展,1999,18(4):63-64
    [33]冯权莉.通用化工流程模拟技术进展与应用[J].云南工业大学学报.1996,12(1):52-57
    [34]Timar J. F.. A New Simulation Method for Equilibrium Stage Processes. AIChE [J],1959,16(2):229-232
    [35]景立新.常减压蒸馏装置扩能改造与换热网络改善[D].贵州:贵州大学,2006
    [36]Jorge M. Montagna, Oscar A. Iribarren. A new strategy for process simulation with the sequential modular approach[J]. Computers in Industry.1989,12(1):23-29
    [37]S. M. Clark, G. V. Reklaitis. Investigation of strategies for executing sequential modular simulations.Computers & Chemical Engineering[J].1984,8(3):205-218
    [38]L. T. Biegler, R. R. Hughes. Feasible path optimization with sequential modular simulators[J]. Computers & Chemical Engineering.1985,9(4):379-394
    [39]P. Tanartkit, L. T. Biegler. A nested simultaneous approach for dynamic optimization problems[J]. Computers & Chemical Engineering.1996,20(6):735-741
    [40]H. A. Kamel, M. W. McCabe. Direct numerical solution of large sets of simultaneous equations[J]. Chemical Engineering Science.2001,56(18):5283-5294
    [41]Resh R. Phansalkar. Solution of large systems of linear simultaneous equations by inverse decomposition[J]. Computers & Structures.1975,5(2):131-144
    [42]F. S. Laganier, J-M. Le Lann. Simultaneous modular dynamic simulation:Application to interconnected distillation columns[J]. Computers & Chemical Engineering.1993, 17(1):287-297
    [43]T. P. Kisala, R. A. Trevino-Lozano.Sequential modular and simultaneous modular strategies for process flowsheet optimization[J]. Computers & Chemical Engineering. 1987,11 (6):567-579
    [44]L. Timar, F. Simon, Z. Csermely. Useful combination of the sequential and simultaneous modular strategy in a flowsheeting programme [J]. Computers & Chemical Engineering.1984,8(4):185-194
    [45]Lang P., Modeling of A Crude Distillation Column[J]. Computers Chemical Engineering,1991,15(2):133-139
    [46]Aspen Technology. Aspen Plus User Guide[M],2001
    [47]Simulation Science Inc.. PRO/Ⅱ User's Guide[M],1999
    [48]刘寒秋.原油蒸馏过程的模拟和优化[D].天津:天津大学,2005
    [49]程华农,王芳.200万吨/年科威特原油常减压装置的模拟与分析[J].计算机与应用化学.2004,21(4):552-556
    [50]郭新连,钱建兵.大型常压塔的工艺模拟计算与设计优化[J].现代化工.2010,30:27-33
    [51]殷卫兵,罗雄麟.原油常减压蒸馏塔的流程模拟[J].化工自动化及仪表.2010,37(5):88-93
    [52]肖丽红.流程模拟技术在常减压蒸馏中的应用[D].北京:北京化工大学,2010
    [53]冀新生.常减压蒸馏装置及其换热网络的优化分析[D].辽宁:大连理工大学,2005
    [54]A. Hendrik, Kooijman, R. Taylor. A nonequilibrium model for dynamic simulation of tray distillation columns[J]. AICHE.1995,41(8):1852-1863
    [55]陈志奎.原油蒸馏过程的数学模型和各类软件(Ⅲ)常减压蒸馏塔系统模型中的设计核算型严格法[J].计算机与应用化学.1999,16(2):125-132
    [56]Bird G. Flowsheet Simulation Models of Crude Distillation and Ammonia Production[J]. Oil Gas.1990,88(30):43-47
    [57]何良知.石油化工工艺计算程序[M].北京:中国石化出版社,1993
    [58]王庆华,仇汝臣.石油馏分焦点温度和焦点压力的数学关联式[J].青岛科技大学学报,2004,25(5):412-414
    [59]包俊杰,张兵,钱锋.VB和ASPEN接口编程在流程模拟中的应用[C].第十七届中国过程控制会议论文集

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700