ω-3多不饱和脂肪酸对胃癌治疗作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]二十二碳六烯酸(DHA)和二十碳五烯酸(EPA)属于ω-3多不饱和脂肪酸(ω-3 Poly Unsaturated Fatty Acids, co-3 PUFAs)家族成员。ω-3多不饱和脂肪酸在机体中有很多方面的有益作用,已在多种疾病的预防及治疗方面得到了广泛的应用。其主要有益的作用可概括为:(1)提供能量,作为脂肪乳剂提供机体需要的营养支持;(2)下调炎症细胞因子,减轻SIRS,降低IL-1、TNFα,启到免疫调节的作用;(3)抗炎、减少多器官创伤炎症应激;(4)心血管病的治疗中有降脂、抗凝等有益作用。近来,越来越多的实验证据表明ω-3多不饱和脂肪酸(DHA、EPA)在肿瘤治疗方面有着重要的有益作用。同时,我们前期的研究也从细胞培养及荷瘤小鼠水平证实,ω-3多不饱和脂肪酸(DHA、EPA)可以抑制肿瘤细胞增殖并联合化疗药物达到化疗增敏的作用。
     [研究目的]在细胞培养水平及荷瘤小鼠水平,研究co-3多不饱和脂肪酸(ω-3 PUFAs)单用及联合氟尿嘧啶(5-FU)对胃癌治疗作用的影响,在前期研究基础上进一步探讨ω-3PUFA对胃癌治疗作用的机制。
     第一部分体外实验:细胞培养水平探讨ω-3多不饱和脂肪酸单用及联合氟尿嘧啶对胃癌细胞系作用
     [细胞培养研究方法]
     体外实验方法:①首先采用96孔板体外培养细胞,MTT实验检测DHA及5-FU单用或联用对胃癌细胞SGC7901的抑制作用;②使用DCFH-DA活性氧探针检测胃癌细胞SGC7901经DHA及5-FU单用或联用干预后细胞内活性氧的变化情况;③使用荧光素酶双报告基因法检测经DHA及5-FU单用或联用干预后细胞内NF-κB信号通路的激活或抑制情况;④使用RT-PCR方法,检测经药物干预后胃癌细胞NF-κB信号通路下游与肿瘤增殖侵袭相关的基因MMP2、COX2、CyclinDl的mRNA表达的差异;⑤使用Westernblot方法,检测经药物干预后胃癌细胞NF-κB信号通路下游与肿瘤增殖侵袭相关的基因MMP2、COX2、CyclinDl的蛋白表达的差异;⑥使用MDA检测试剂盒检测经药物干预后胃癌细胞内脂质过氧化水平;⑦PI流式细胞分析方法检测DHA及5-FU单用或联用对胃癌细胞周期的影响。
     [体外实验结果]
     ①MTT实验:DHA及5-FU均可达到抑制肿瘤细胞增殖的作用,DHA联合5-FU化疗可以进一步抑制肿瘤细胞增殖作用,达到化疗增敏的作用。
     ②DCFH-DA活性氧测定:DHA及5-FU均可增加肿瘤细胞内的活性氧产生,DHA联合5-FU化疗可以进一步增加肿瘤细胞内的活性氧产生,达到化疗增敏作用。
     ③NF-κB信号通路双荧光素酶报告基因检测:肿瘤细胞内NF-κB信号通路本身激活明显,DHA可抑制NF-κB信号通路,而5-FU化疗则可激活NF-κB信号通路。DHA联合5-FU化疗可以抑制化疗引起的NF-κB信号通路升高水平。
     ④RT-PCR实验结果:5-FU化疗可激活NF-κB信号通路,并相应使得下游基因与肿瘤增殖侵袭相关的基因MMP2.COX2.CyclinDl的mRNA表达水平升高。联合DHA则可以抑制化疗引起的NF-KB信号通路下游基因MMP2.COX2.CyclinDl的mRNA表达升高水平。
     ⑤Westernblot实验结果:与RT-PCR结果类似,5-FU化疗可激活NF-KB信号通路,并相应使得下游基因MMP2.COX2.CyclinDl的蛋白表达水平升高。联合DHA则可以抑制化疗引起的NF-κB信号通路下游基因MMP2.COX2.CyclinDl的蛋白表达升高水平。
     ⑥MDA测定:DHA可增加肿瘤细胞内的脂质过氧化产物MDA的产生,5-FU化疗则对肿瘤细胞的脂质过氧化产物无明显影响。
     ⑦DHA及5-FU对细胞周期的影响:PI流式细胞分析结果提示DHA能阻滞肿瘤细胞进入S期,5Fu使得S期细胞数量也明显减少,两药联合产生G0/G1期阻滞作用更加明显。各单药组均能降低胃癌细胞株SGC7901的增殖指数,联合用药组降低PI的程度显著强于其余各组(P<0.05)。DHA产生G0/G1期阻滞的作用可能与降低CvclinDl的表达有关。
     第二部分荷瘤小鼠实验:探讨ω-3多不饱和脂肪酸单用及联合氟尿嘧啶对小鼠前胃癌治疗作用
     [荷瘤小鼠研究方法]
     体内实验方法:小鼠前胃癌细胞系(MFC)皮下注射615小鼠构成荷瘤小鼠模型,将荷瘤小鼠分为四组:第1组无干预荷瘤小鼠组,第2组给予口服鱼油干预荷瘤小鼠组,第3组给予化疗干预荷瘤小鼠组,第4组给予口服鱼油及联合化疗干预荷瘤小鼠组。口服鱼油药物为北京百慧制药公司生产的高纯度(DHA、EPA>80%,乙酯型)软胶囊,按每天2g/kg给予小鼠灌胃。化疗方式为临床使用的5-FU静脉注射剂,自皮下种植瘤细胞后每隔两天(20mg/kg)给予一次小鼠腹腔注射治疗,干预14天后处死小鼠。在实验期间仔细记录及检测以下指标:①小鼠一般情况、饮食量及荷瘤小鼠体重的时间变化记录;②肿瘤体积及去瘤小鼠体重的时间变化;③实验结束后,提取各组小鼠肿瘤组织RNA,使用RT-PCR方法比较肿瘤侵袭及增殖相关基因MMP2、COX2、cyclinDl的mRNA表达差异情况:④提取各组小鼠肿瘤组织蛋白,使用Westernblot方法比较肿瘤组织CyclinDl基因蛋白表达差异情况;⑤使用RT-PCR方法比较各组荷瘤小鼠肿瘤组织炎性因子IL-1β. IL-6基因mRNA表达差异情况;⑥提取各组小鼠肿瘤组织蛋白,使用MDA检测试剂盒检测各组荷瘤小鼠肿瘤组织内脂质过氧化水平;⑦小鼠肿瘤组织及肺组织石蜡切片HE染色观察。
     [体内实验结果]
     ①小鼠一般情况、饮食量及荷瘤小鼠体重的时间变化记录:鱼油干预的小鼠一般情况良好,无明显不适症状;5-Fu腹腔注射化疗本身可明显影响小鼠进食。各组荷瘤小鼠随着肿瘤不断的增长,饮食量也逐渐减少,一般状况也明显恶化,体重明显下降,出现恶液质症状。在给予鱼油的荷瘤小鼠组(第2、4组),较相应的无鱼油干预组(第1、3组),小鼠体重下降程度明显减轻。口服鱼油可以改善肿瘤恶液质。
     ②肿瘤体积及去瘤小鼠体重的时间变化记录:有化疗干预的第3、4组荷瘤小鼠肿瘤体积较第1、2组小鼠肿瘤体积明显要小(P<0.05)。而给予鱼油干预的荷瘤小鼠组(第2组及第4组)相对于无鱼油干预的荷瘤小鼠组(第1组及第4组),小鼠肿瘤体积未见明显的降低(P>0.05)。去瘤小鼠体重与小鼠体重记录相似,在肿瘤明显增大后,各组小鼠的去瘤体重均出现明显降低。在给予鱼油的荷瘤小鼠组,较无鱼油给予组,小鼠去瘤体重明显较高(P<0.05)。
     ③下游基因MMP2、COX2、cyclinDl基因mRNA表达情况:给予鱼油或者化疗干预均抑制了肿瘤组织中COX2、CyclinD1、MMP2的表达(第2、3、4组均较第1组明显降低,p<0.05)。
     ④肿瘤组织CyclinDl基因蛋白表达情况,Westernblot检测:给予鱼油或者化疗干预均抑制了肿瘤组织中CyclinDl的表达(第2、3、4组均较第1组明显降低,p<0.05)。⑤肿瘤组织炎性因子IL-1β、IL-6基因mRNA表达情况:相对于对照组(第1组),在给予化疗或鱼油干预后(第2、3、4组)小鼠瘤组织的IL-1β、IL-6基因表达被强烈抑制(p<0.01)
     ⑥脂质过氧化,MDA检测:给予鱼油明显增加了肿瘤组织中MDA的含量(第2、4组较第1、3组明显增高,p<0.05)。化疗干预组并未明显增加肿瘤组织的MDA含量(第1、3组比较无明显差异,p>0.05)
     ⑦小鼠肿瘤组织及肺组织石蜡切片HE染色观察:各组间小鼠肿瘤组织及肺组织未见明显差异。
     [本研究结论]
     1.体外细胞培养水平:ω-3PUFA可以通过抑制NF-KB/IkB信号通路及下游与肿瘤增殖侵袭相关的基因MMP2、COX2、CyclinDl的表达,并可以通过增加细胞内过氧化应激反应达到化疗增敏作用,降低胃癌细胞株SGC7901的PI增殖指数。
     2.体内荷瘤小鼠水平:ω-3PUFA可以通过降低肿瘤组织表达炎性因子IL-1β、IL-6的表达而改善小鼠恶液质状况;co-3PUFA联合化疗可以在化疗同时,抑制肿瘤增殖侵袭相关的基因MMP2、COX2、CyclinDl的表达,联合co-3PUFA治疗可能对肿瘤化疗有一定的有益作用。
     3.相对于化疗药物的明显的副作用,ω-3多不饱和脂肪酸同时具有抑炎、调节血脂,以及几乎毫无副作用等优点,本实验结果为临床肿瘤病人应用ω-3PUFA(EPA/DHA)治疗提供了进一步的实验依据。
[Background] Docosahexaenoic acid (DHA) and Eicosapentaenoic Acid (EPA) areω-3 polyunsaturated fatty acids (co-3PUFAs).ω-3PUFAs have many beneficial effects and have been widely used in prevention and treatment of various diseases. The main beneficial effects can be summarized as following:(1)Provide energy and nutrition support in fat emulsion; (2)Reduce inflammatory cytokines, such as IL-1,IL-6,TNFa, and regulate the immune effect; (3) Reduce inflammation in multiple organ trauma stress; (4)Treatment of cardiovascular disease by lipid-lowering, anticoagulant and other beneficial effects. Recently, more and more empirical evidences show thatω-3 polyunsaturated fatty acids have a significant beneficial effect in cancer treatment. Meanwhile, our preliminary studies in vitro and in vivo have further confirmed that co-3 polyunsaturated fatty acids can also sensitize effect of chemotherapy when combined with chemotherapy drugs.
     [Research Objective] In vitro cell culture level and in vivo tumor-bearing mice level, we investigate the anticancer mechanism of co-3PUFA and 5-Fuorouracil (5-FU) alone or in combination in treatment of gastric cancer, thus may provide new ideas for comprehensive treatment of gastric cancer.
     Part I:In vitro cell culture level, investigate the effect ofω-3 polyunsaturated fatty acid alone or combined with 5-FU chemotherapy to treat gastric cancer cell lines
     [Cell Culture Methods]
     In vitro method:①In vitro culturing cells in 96-well plates, MTT assay was used to investigate the inhibition effect of DHA and 5-FU alone or in combination to treat gastric cancer cells SGC7901;②Use DCFH-DA probe to detect ROS level of gastric cancer cell SGC7901 treated by DHA and 5-FU alone or in combination;③Use dual luciferase reporter gene assay to detect NF-κB signaling pathway changes of gastric cancer cell SGC7901 treated by DHA and 5-FU alone or in combination;④After gastric cancer cells treated by DHA and 5-FU alone or in combination, use RT-PCR method to detect mRNA expression of tumor proliferation and invasion-related gene MMP2, COX2, CyclinDl,which is the downstream gene of NF-κB signaling pathway;⑤After gastric cancer cells treated by DHA and 5-FU alone or in combination, use Westernblot method to detect protein expression of tumor proliferation and invasion-related gene MMP2, COX2, CyclinDl;⑥Use MDA assay kit to investigate the lipid peroxidation status of gastric cancer cells treated by DHA and 5-FU alone or in combination;⑦Use PI flow cytometry to detect gastric cancer cell cycle after treated by DHA and 5-FU alone or in combination.
     [In vitro Results]
     ①MTT test:Both DHA and 5-FU can inhibit tumor cell proliferation, DHA combined 5-FU chemotherapy can further inhibit tumor cell proliferation and reach the enchancing chemotherapy sensitivity effect.
     ②DCFH-DA Determination of Active Oxygen:Both DHA and 5-FU can increase reactive oxygen species, DHA combined 5-FU chemotherapy, can further increase the ROS level of tumor cells, and reach the enchancing chemotherapy sensitivity effect.
     ③NF-κB signaling pathway by dual-luciferase reporter gene assay:Tumor cells'NF-κB signaling pathway can be significantly activated in itself, DHA inhibited NF-κB signaling pathway, and 5-FU chemotherapy can activate NF-κB signaling pathway. DHA combined 5-FU chemotherapy can inhibit the elevated levels of chemotherapy-induced NF-κB signaling pathway.
     ④RT-PCR results:5-FU chemotherapy can activate NF-κB signaling pathway, and accordingly makes the downstream gene, which is associated with tumor proliferation and invasion, MMP2, COX2, CyclinDl elevated in mRNA expression level. Combining with DHA can inhibit the increased mRNA expression level of chemotherapy-induced NF-κB pathway downstream gene MMP2, COX2, CyclinDl.
     ⑤Westernblot results:Similar with RT-PCR results,5-FU chemotherapy can activate NF-κB signaling pathway, and accordingly makes the downstream gene MMP2, COX2, CyclinDl elevated in protein expression level. Combining with DHA can inhibit the increased protein expression level of chemotherapy-induced NF-κB pathway downstream gene MMP2, COX2, CyclinDl.
     ⑥MDA determination:DHA can increase lipid peroxidation of MDA production in gastric cancer cells SGC7901. However,5-FU chemotherapy has no significant effect in lipid peroxidation.
     ⑦DHA and 5-FU on the cell cycle:PI flow cytometry results suggest that DHA can block tumor cells to enter S phase,5-Fu significantly reduce the number of S phase cells. In combination, two-drug produced the effect of G0/G1 phase arrest more significant. The DHA or 5Fu alone could reduce the proliferation index of SGC7901 gastric cancer cell line, while in combined group the PI was reduced more significantly than any other groups (P<0.05). DHA producing arrest in G0/G1 phase may be related with reducing the expression of CyclinDl.
     Part II:in vivo tumor-bearing mice level, investigate the effect of co-3 polyunsaturated fatty acid alone or combined with chemotherapy to treat the mice pre-gastric carcinoma
     [Tumor Bearing Mice Methods]
     In vivo Methods:Mice pre-gastric cancer cell line (MFC) subcutaneous injected into 615 mice to constitute a tumor-bearing mice model, the mice were divided into four groups: Group 1 tumor-bearing mice without intervention; Group 2 tumor-bearing mice were intervened with oral fish oil; Group 3 mice were intervened with 5FU chemotherapy; Group 4 tumor-bearing mice were intervened with oral fish oil and chemotherapy. Oral fish oil were pharmaceutical drugs made in Beijing BeiHui, which is high-purity (DHA, EPA> 80%, ethyl ester type) soft capsules, and the mice fed with 2g/kg per day. Chemotherapy is using clinical 5-FU intravenous injection, intraperitoneal injected into tumor bearing mouse every two days (20mg/kg), from the day of mice being subcutaneously injected with tumor cells to the day of treated mice being killed after 14 days'intervention. Carefully recorded the following index:①tumor-bearing mice'general status, food intake and body weight changes in time;②mice tumor volume and weight changes;③At the end of experiment, extract tumor tissue RNA of each group mice, using RT-PCR method, compare the mRNA expression of tumor invasion and proliferation related gene MMP2, COX2, cyclinDl;④Extract the tumor tissue protein of each group mice, using Westernblot method to detect CyclinDl expression in protein leverl;⑤sing RT-PCR method, compare the mRNA expression of tumor inflammatory factor related gene IL-1β,1L-6;⑥Extract tumor tissue protein of each group mice, use the MDA assay kit to detect the lipid peroxidation status;⑦make paraffin section of mouse lung and tumor tissue, observation the microscopic tissue with HE staining.
     [In vivo Results]
     ①General status, food intake and body weight changes of tumor-bearing mice:the mice intervened with oral fish oil showed generally good, no obvious symptoms; Intraperitoneal injection of 5-Fu chemotherapy can significantly affect the food intake of the tumor bearing mice. With the growth of tumors, mice in each groups decreased food intake gradually, the mice's general status deteriorated noticeably, body weight decreased, and turn out tumor cachexia symptoms. Mice intervened with oral fish oil (group 2,4), compared with the corresponding non-fish oil intervention groups (group 1,3), the body weight loss were reduced significantly. Oral fish oil can improve cancer cachexia.
     ②Tumor volume and tumor weight changes of the tumor bearing mice:The tumor bearing mice intervened with chemotherapy (group3,4), compared with mice intervened without chemotherapy (group 1,2), tumor volumes were significantly smaller (P<0.05). The tumor bearing mice intervened with oral fish oil (group2,4), compared with mice intervened without oral fish oil (groupl,3), tumor volumes weren't significantly different(P<0.05). Similar with body weight, the carcass weight decreased sharply with tumor volume increased. Mice intervened with oral fish oil, compared to group mice intervened without oral fish oil, carcass weight were significantly higher (P<0.05).
     ③mRNA expression of downstream gene MMP2, COX2, cyclinDl:oral fish oil or 5FU chemotherapy inhibited tumor tissue COX2, CyclinDl, MMP2 in mRNA expression (three genes in 2,3,4 group were significantly lower than those in group 1, p< 0.05).
     ④Tumor tissue gene CyclinDl protein expression by Westernblot test:oral fish oil or 5FU chemotherapy inhibited tumor tissue CyclinDl expression (Cyclin D1 in 2,3,4 group was significantly lower than that in group 1, p<0.05).
     ⑤Tumor tissue inflammatory factor gene IL-1β, IL-6 mRNA expression:compared to the control group (group 1), intervened with chemotherapy or fish oil(2,3,4 group), tumor tissue gene IL-1β, IL-6 mRNA expression were strongly inhibited (p<0.01).
     ⑥Lipid peroxidation by MDA test:oral fish oil significantly increased the MDA level in tumor tissue (group 2 and 4 were significantly higher than group 1 and 3, p<0.05). Chemotherapy did not increase the tumor tissue MDA level (no significant difference between group 1 vs.3, p>0.05).
     ⑦Mice lung tumor tissue HE staining of paraffin sections:tumor and lung tissue in each group mice showed no significant difference.
     [Conclusion of this study]
     1. In vitro cell culture level:n-3PUFA can inhibit NF-KB/IkB cell signal pathway and the downstream proliferation and invasion-related gene MMP2, COX2, CyclinDl expression, n-3PUFA can also increase cellular oxidative stress response to enhance chemotherapy sensitizing effect, and reduce the proliferation index of SGC7901 gastric cancer cell line.
     2. In vivo tumor-bearing mice level:co-3PUFA can reduce the expression of tumor tissue inflammatory factors IL-1β, IL-6 and improve cancer cachexia;ω-3PUFA combined with chemotherapy can suppress tumor proliferation and invasion-related gene MMP2, COX2, CyclinDl expression. Combining withω-3PUFA has some beneficial effects in cancer chemotherapy.
     3. Compared to the significant side effects of chemotherapy drugs,ω-3PUFA has anti-inflammation, regulation of blood fat, all without side effects. This experimental result provides the lab basis for the further clinical application ofω-3PUFA to treatment of cancer patients.
引文
1 Tisdale MJ. Cachexia in cancer patients[J]. Nat Rev Cancer,2002,2(11):862-871.
    2 Bozzetti F. Continuing:Biology of cachexia[J]. J Natl Cancer Inst,1999,91(12):1077.
    3 Stewart GD,Skipworth RJ, Fearon KC.Cancer cachexia and fatigue[J]. Clin Med,2006,6(2):140-143.
    4 Esper DH,Harb WA. The cancer cachexia syndrome:a review of metabolic and clinical manifestations[J]. Nutr Clin Pract,2005,20(4):369-376.
    5 Barber MD, Powell JJ, Lynch SF, et al. A polymorphism of the interleukin-1 beta gene influences survival in pancreatic cancer[J]. Br J Cancer,2000,83(11):1443-1447.
    6江志伟,刘寒青,姜军,汪志明,李宁,黎介寿.胃癌病人体质量下降与白细胞介素-6及急性相反应蛋白的相关性.肠外与肠内营养.2005,12(4):210-212.
    7 MacDonald N, Easson AM, Mazurak VC, et al. Understanding and managing cancer cachexia[J]. J Am Coll Surg,2003,197(1):143-161.
    Wigmore SJ, Todorov PT, Barber MD, et al. Characteristics of patients with pancreatic cancer expressing a novel cancer cachectic factor[J]. Br J Surg,2000,87(1):53-58.
    9 Russell ST, Tisdale MJ. Effect of eicosapentaenoic acid (EPA) on expression of a lipid mobilizing factor in adipose tissue in cancer cachexia[J]. Prostaglandins Leukot Essent Fatty Acids,2005, 72(6):409-414.
    10 Barber MD, Ross JA, Voss AC, Tisdale MJ, Fearon KCH (1999) The effect of an oral nutritional supplement enriched with fish oil on weight-loss in patients with pancreatic cancer. Br J Cancer 81:80-86
    11 Fearon KCH, von Meyenfeldt MF, Moses AGW, van Geenen R, Roy A, Gouma DJ, Giacosa A,Van Gossum A, Bauer J, Barber MD, Aaronson NK, Voss AC, Tisdale MJ (2003) Effect of a protein and energy dense n-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia:a randomized double blind trial. GUT 52:1479-1486
    12 Moses A, Slater C, Preston T, Barber M, Fearon K (2004) Reduced total energy expenditure and physical activityin cachectic patients with pancreatic cancer can be modulated by energy and protein dense oral supplement enriched with n-3 fatty acids. Br J Can 90:996-1002
    13 Colomer R, Moreno-Nogueira JM, Garcia-Luna PP, Garcia Peris P, Garcia-de-Lorenzo A, Zarazaga A, Quecedo L, Del Llano J, Usan L, Casimiro C (2007) n-3 Fatty acids, cancer and cachexia:a systemic review of the letterature. Brit J Nutr 97:823-831
    14 Bossola M, Muscaritoli M, Costelli P, Grieco G, Bonelli G, Pacelli F, Rossi Fanelli F, Doglietto GB, Baccino FM (2003) Increased muscle proteasome activity correlates with disease severity in gastric cancer patients. Ann Surg 237:384-389
    15 Bougnoux P, Germain E, Chajes V, Hubert B, Lhuillery C, Body G, et al. Cytotoxic drug efficacy and docosahexaenoic acid level in adipose tissue of patients with locally advanced breast carcinoma. Br J Cancer 1999;79:1765-9.
    16 Chajes V, Lanson M, Fetissof F, Lhuillery C, Bougnoux P. Membrane fatty acids of breast carcinoma: contribution of host fatty acids and tumor properties. Int J Cancer 1995;63:169-75.
    17 Burns CP, Spector AA. Effects of lipids on cancer therapy. Nutr Rev 1990;48:233-40.
    18 Biondo PD, Brindley DN, SawyerMB, Field CJ. The potential for treatment with dietary long-chain polyunsaturated n-3 fatty acids during chemotherapy. J Nutr Biochem 2008; 19:787-96.
    19 Calviello G, Serini S, Piccioni E, Pessina G. Antineoplastic effects of n-3 polyunsaturated fatty acids in combination with drugs and radiotherapy:preventive and therapeutic strategies. Nutr Cancer 2009;61:287-301.
    20 Pardini RS. Nutritional intervention with omega-3 fatty acids enhances tumor response to anti-neoplastic agents. Chem Biol Interact 2006;162:89-105.
    21 Shao Y, Pardini L, Pardini RS. Intervention of transplantable human mammary carcinoma MX-1 chemotherapy with dietary menhaden oil in athymic mice:increased therapeutic effects and decreased toxicity of cyclophosphamide. Nutr Cancer 1997;28:63-73.
    22 Shao Y, Pardini L, Pardini RS. Dietary menhaden oil enhances mitomycin C antitumor activity toward human mammary carcinoma MX-1. Lipids 1995;30:1035-45.
    23 Borgeson CE, Pardini L, Pardini RS, Reitz RC. Effects of dietary fish oil on human mammary carcinoma and on lipid-metabolizing enzymes. Lipids 1989;24:290-5.
    24 Hardman WE, Avula CP, Fernandes G, Cameron IL. Three percent dietary fish oil concentrate increased efficacy of doxorubicin against MDA-MB 231 breast cancer xenografts. Clin Cancer Res 2001;7:2041-9.
    23 Colas S, Maheo K, Denis F, Goupille C, Hoinard C, Champeroux P, et al. Sensitization by dietary docosahexaenoic acid of rat mammary carcinoma to anthracyclines:a role for tumor vascularization. Clin Cancer Res 2006; 12:5879-86.
    2 Colas S, Germain E, Arab K, Maheo K, Goupille C, Bougnoux P. Alpha-tocopherol suppresses mammary tumor sensitivity to anthracyclines in fish oil-fed rats. Nutr Cancer 2005;51:178-83.
    Germain E, Bonnet P, Aubourg L, Grangeponte MC, Chajes V, Bougnoux P. Anthracycline-induced cardiac toxicity is not increased by dietary omega-3 fatty acids. Pharmacol Res 2003;47:111-7.
    28 Hardman WE, Moyer MP, Cameron IL. Fish oil supplementation enhanced CPT-11 (irinotecan) efficacy against MCF-7 breast carcinoma xenografts and ameliorated intestinal side-effects. Br J Cancer 1999;81:440-8.
    29 Kato T, Hancock RL, Mohammadpour H, McGregor B, Manalo P, Khaiboullina S, et al. Influence of omega-3 fatty acids on the growth of human colon carcinoma in nude mice. Cancer Lett 2002; 187:169-77.
    Xue H, Sawyer MB, Field CJ, Dieleman LA, Baracos VE. Nutritional modulation of antitumor efficacy and diarrhea toxicity related to irinotecan chemotherapy in rats bearing the ward colon tumor. Clin Cancer Res 2007;13:7146-54.
    31 Colas S, Paon L, Denis F, Prat M, Louisot P, Hoinard C, et al. Enhanced radiosensitivity of rat autochtonous mammary tumors by dietary docosahexaenoic acid. Int J Cancer 2004; 109:449-54.
    32 Wen B, Deutsch E, Opolon P, Auperin A, Frascogna V, Connault E, et al. N-3 polyunsaturated fatty acids decrease mucosal/epidermal reactions and enhance antitumor effect of ionising radiation with inhibition of tumour angiogenesis. Br J Cancer 2003;89:1102-7.
    33 Minami Y, Miyata H, Doki Y, Yano M, Yamasaki M, Takiguchi S, et al. Omega-3 Fatty acid-containing diet (Racol) reduces toxicity of chemoradiation therapy for patients with esophageal cancer. Gan To Kagaku Ryoho 2008;35:437-40.
    34 Solesvik OV, Rofstad EK, Brustad T. Vascular changes in a human malignant melanoma xenograft following single-dose irradiation. Radiat Res 1984;98:115-28.
    35 Mukutmoni-Norris M, Hubbard NE, Erickson KL. Modulation of murine mammary tumor vasculature by dietary n-3 fatty acids in fish oil. Cancer Lett 2000;150:101-9.
    Rose DP, Connolly JM. Antiangiogenicity of docosahexaenoic acid and its role in the suppression of breast cancer cell growth in nude mice. Int J Oncol 1999;15:1011-5.
    37 Tevar R, Jho DH, Babcock T, Helton WS, Espat NJ. Omega-3 fatty acid supplementation reduces tumor growth and vascular endothelial growth factor expression in a model of progressive non-metastasizing malignancy. J Parenter Enteral Nutr 2002;26:285-9.
    38 Calviello G, Di Nicuolo F, Gragnoli S, Piccioni E, Serini S, Maggiano N, et al. N-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and-2 and HIF-lalpha induction pathway. Carcinogenesis 2004;25:2303-10.
    39 Lhuillery C, Bougnoux P, Groscolas R, Durand G. Time-course study of adipose tissue fatty acid composition during mammary tumor growth in rats with controlled fat intake. Nutr Cancer 1995;24:299-309.
    40 Yang SP, Morita I, Murota SI. Eicosapentaenoic acid attenuates vascular endothelial growth factor-induced proliferation via inhibiting Flk-1 receptor expression in bovine carotid artery endothelial cells. J Cell Physiol 1998;176:342-9.
    41 Tsuji M, Murota SI, Morita I. Docosapentaenoic acid (22:5, n-3) suppressed tube-forming activity in endothelial cells induced by vascular endothelial growth factor. Prostaglandins Leukot Essent Fatty Acids 2003;68:337-42.
    42 Rose DP, Connolly JM. Regulation of tumor angiogenesis by dietary fatty acids and eicosanoids. Nutr Cancer 2000;37:119-27.
    43 Szymczak M, Murray M, Petrovic N. Modulation of angiogenesis by omega-3 polyunsaturated fatty acids is mediated by cyclooxygenases. Blood 2008; 111:3514-21.
    44 Connor KM, SanGiovanni JP, Lofqvist C, Aderman CM, Chen J, Higuchi A, et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 2007; 13:868-73.
    45 Burns CP, North JA. Adriamycin transport and sensitivity in fatty acid-modified leukemia cells. Biochim Biophys Acta 1986;888:10-7.
    46 Zijlstra JG, de Vries EG, Muskiet FA, Martini IA, Timmer-Bosscha H, Mulder NH. Influence of docosahexaenoic acid in vitro on intracellular adriamycin concentration in lymphocytes and human adriamycin-sensitive and-resistant small-cell lung cancer cell lines, and on cytotoxicity in the tumor cell lines. Int J Cancer 1987;40:850-6.
    47 Maheo K, Vibet S, Steghens JP, Dartigeas C, Lehman M, Bougnoux P, et al. Differential sensitization of cancer cells to doxorubicin by DHA:a role for lipoperoxidation. Free Radic Biol Med 2005;39:742-51.
    48 Burns CP, Haugstad BN, Mossman CJ, North JA, Ingraham LM. Membrane lipid alteration:effect on cellular uptake of mitoxantrone. Lipids 1988;23:393-7.
    49 Vibet S, Maheo K, Gore J, Dubois P, Bougnoux P, Chourpa I. Differential subcellular distribution of mitoxantrone in relation to chemosensitization in two human breast cancer cell lines. Drug Metab Dispos 2007;35:822-8.
    50 Abulrob AN, Mason M, Bryce R, Gumbleton M. The effect of fatty acids and analogues upon intracellular levels of doxorubicin in cells displaying P-glycoprotein mediated multidrug resistance. J Drug Target 2000;8:247-56.
    51 Schley PD, Brindley DN, Field CJ. (n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells. J Nutr 2007;137:548-53.
    Girotti AW. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 1998-39:1529-42.
    53 Germain E, Chajes V, Cognault S, Lhuillery C, Bougnoux P. Enhancement of doxorubicin cytotoxicity by polyunsaturated fatty acids in the human breast tumor cell line MDA-MB-231:relationship to lipid peroxidation. Int J Cancer 1998;75:578-83.
    54 Das UN, Begin ME, Ells G, Huang YS, Horrobin DF. Polyunsaturated fatty acids augment free radical generation in tumor cells in vitro. Biochem Biophys Res Commun 1987; 145:15-24.
    55 Bougnoux P. N-3 polyunsaturated fatty acids and cancer. Curr Opin Clin Nutr Metab Care 1999;2:121-6.
    Bougnoux P. N-3 polyunsaturated fatty acids and cancer. Curr Opin Clin Nutr Metab Care 1999;2:121-6.
    57 Vibet S, Goupille C, Bougnoux P, Steghens JP, Gore J, Maheo K. Sensitization by docosahexaenoic acid (DHA) of breast cancer cells to anthracyclines through loss of glutathione peroxidase (GPx1) response. Free Radic Biol Med 2008;44:1483-91.
    58 Fite A, Goua M,Wahle KW, Schofield AC, Hutcheon AW, Heys SD. Potentiation of the anti-tumour effect of docetaxel by conjugated linoleic acids (CLAs) in breast cancer cells in vitro. Prostaglandins Leukot Essent Fatty Acids 2007;77:87-96.
    59 Menendez JA, Lupu R, Colomer R. Exogenous supplementation with omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA; 22:6n-3) synergistically enhances taxane cytotoxicity and downregulates Her-2/neu (c-erbB-2) oncogene expression in human breast cancer cells. Eur J Cancer Prev 2005;14:263-70.
    60 Sun W, Kalen AL, Smith BJ, Cullen JJ, Oberley LW. Enhancing the antitumor activity of adriamycin and ionizing radiation. Cancer Res 2009;69:4294-300.
    61 Oberley TD. Oxidative damage and cancer. Am J Pathol 2002; 160:403-8.
    62 Oberley TD, Oberley LW. Antioxidant enzyme levels in cancer. Histol Histopathol 1997;12:525-35.
    63 Murawaki Y, Tsuchiya H, Kanbe T, Harada K, Yashima K, Nozaka K, et al. Aberrant expression of selenoproteins in the progression of colorectal cancer. Cancer Lett 2008;259:218-30.
    64 Lemaitre D, Vericel E, Polette A, Lagarde M. Effects of fatty acids on human platelet glutathione peroxidase:possible role of oxidative stress. Biochem Pharmacol 1997;53:479-86.
    Crosby AJ, Wahle KW, Duthie GG. Modulation of glutathione peroxidase activity in human vascular endothelial cells by fatty acids and the cytokine interleukin-1 beta. Biochim Biophys Acta 1996;1303:187-92.
    66 Ding WQ, Lind SE. Phospholipid hydroperoxide glutathione peroxidase plays a role in protecting cancer cells from docosahexaenoic acid-induced cytotoxicity. Mol Cancer Ther 2007;6:1467-74.
    Ding WQ, Vaught JL, Yamauchi H, Lind SE. Differential sensitivity of cancer cells to docosahexaenoic acid-induced cytotoxicity:the potential importance of down-regulation of superoxide dismutase 1 expression. Mol Cancer Ther 2004;3:1109-17.
    68郭卫东,于健春,刘玉琴,康维明,彭维朝,顾蓓,董继红.二十碳五烯酸与表阿霉素联合应用对人胃癌细胞株MGC-803的作用[J].中国医学科学院学报.2007,29(3):353-358.
    69郭卫东,于健春,康维明,刘玉琴.ω-3脂肪酸单用及联合表阿霉素对胃癌作用的实验研究[J].外科理论与实践.2008,13(5):423-426.
    70吴全,于健春.ω-3多不饱和脂肪酸增效化疗药物对实体肿瘤作用的研究进展[J].外科理论与实践.2008,13(5):469-472.
    71 吴全,于健春,刘玉琴,康维明,郭卫东.二十二碳六烯酸联合氟尿嘧啶对胃癌细胞SGC7901的协同抑制作用.中华临床营养杂志.2009;17(4):210-214.
    72吴全,于健春,刘玉琴,康维明,郭卫东.二十二碳六烯酸联合氟尿嘧啶对人胃癌细胞株MGC803的影响.中国医学科学院学报.2010,32(1):65-70.
    73柳欣欣,于健春,康维明,马志强,顾蓓,刘玉琴.氧化型DHA抑制NF-KB信号通路达到化疗增敏作用.外科理论与实践.2010,15(1):140-145.
    Zerbini LF, Libermann TA. Life and death in cancer. GADD45 alpha and gamma are critical regulators of NF-kappaB mediated escape from programmed cell death[J]. Cell Cycle. 2005,4(1):18-20.
    75 Denlinger CE, Rundall BK, Keller MD, et al. Proteasome inhibition sensitizes non-small-cell lung cancer to gemcitabine-induced apoptosis[J]. Ann Thorac Surg.2004,78(4):1207-1214.
    76 Jones DR, Broad RM, Madrid LV, el al. Inhibition of NF-kappaB sensitizes non-small lung cancer cells to chemotherapy induced apoplosis[J]. Ann Thorac Surg.2000,70(3):930-937.
    77 Singh RP, Mallikarjuna GU, Sharma G, et al. Oral silibinin inhibits lung tumor growth in athymic nude mice and forms a novel chemocombination with doxorubicin targeting nuclear factor kappaB-mediated inducible chemoresistance[J]. Clin Cancer Res.2004,10(24):8641-8647.
    78 Yamanaka N, Sasaki N, Tasaki A, et al. Nuclear factor-kappaB p65 is a prognostic indicator in gastric carcinoma[J]. Anticancer Res.2004,24(2C):1071-1075.
    79张克君,高焱明,杨金镛,等IκB-a基因转染HCC9204细胞对NF-κB和MMP-9表达的影响[J].中国普外基础与临床杂志.2007,14(2):185-187.
    80 Kucharczak J, SimmonsMJ, FanY, et al. To be,or not to be:NF-kappaB is the answer-role of Rel/NF-kappaB in the regulation of apoptosis[J]. Oncogene.2003,22(56):8961-8982.
    81 Davies B, Waxman J, Wasan H, et al. Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion[J]. Cancer Res.1993,53(22):5365-5369.
    82 Duffy MJ. The role of proteolytic enzymes in cancer invasion and metastasis[J]. Clin Exp Metastasis. 1992,10(3):145-155.
    83 Chetty C, Bhoopathi P, Rao JS, et al. Inhibition of matrix metalloproteinase-2 enhances radiosensitivity by abrogating radiation-induced FoxM1-mediated G2/M arrest in A549 lung cancer cells[J]. Int J Cancer.2009,124(10):2468-2477.
    84 Ying-Hui Zhi, Mao-Min Song, Pi-Lin Wang, et al. Suppression of matrix metalloproteinase-2 via RNA interference inhibits pancreatic carcinoma cell invasiveness and adhesion[J]. World J Gastroenterol.2009,15(9):1072-1078.
    85 Ewen Me, Lamb J. The activities of cyclinDl that drive tumorigenesis [J].Trends in Mol Med. 2004,10(4):158-162.
    86 Deshpande A, Sicinski P, Hinds PW, et al. Cyclins and cdks in development and cancer:a perspective[J]. Oncogene.2005,24(17):2909-2911.
    Yu Q, GengY, Sicinski P. Specific protection against breast cancers by cyclinD1 ablation[J]. Nature. 2001,411(6841):1017-1021.
    Kozar K, Ciemerych MA, Rebel VI, et al. Mouse development and cell proliferation in the absence of D-cyclins[J]. Cell.2004,118(4):477-491.
    89周立宏,朱迅,曹玉华,等.抗CyclinD1胞内抗体AD5N基因真核表达载体的构建及其对乳腺癌细胞增殖的抑制作用[J].中国免疫学杂志.2008;24(8):703-711.
    90 ArberN, DokiY, Han EK, et al. Antisense to cyclinDl inhibits the growth and tumorigenicity of human colon cancer cells[J]. CancerRes,1997;57(8):1569-1574.
    91 SauterE R, Nesbit M, Litwin S et al. Antisense cyclinD1 induces apoptosis and tumor shrinkage in human squamous carcinomas[J]. CancerRes.1999,59(19):4876-4881.
    92 Barnes CJ, Cameron IL, Hardman WE, et al. Non-steroidal anti-inflammatory drug effect on crypt cell proliferation and apoptosis during initiation of rat colon carcinogenesis[J]. Br J Cancer,1998,77(4):573-580.
    93 Reddy BS, Rao CU, Seibert K. Evaluation of cyclooxygenase-2 inhibitors for potential chemopreventive properties in colon carcinogenesis[J]. Cancer Res,1996,56(20):4566-4569.
    94 Giardiello FM, Offerhans GJ, DuBois RN. The role of non-steroidal anti-inflammatory drugs in colorectal cancer prevention[J]. Eur J Cancer,1995,31A(7-8):1071-1076.
    95 Sawaoka H,Kawano S,Tsuji S,et al. Cyclooxygenase-2 inhibitors suppress the growth gastric cancer xenografts via induction of apoptosis in nude mice[J]. Am J Physiol,1998,274(6):G1061-1067.
    1 Eagle H. Nutrition needs of mammalian cells in tissue culture[J]. Science.1955;122(3168):501-14.
    2陆伟,钱绍诚,王凤梅,等.人肝癌细胞体外氨基酸代谢[J].天津医药.2002;30(11):643-45.
    3 Fu YM, Yu ZX, Li YQ, et al. Specific amino acid dependency regulates invasiveness and viability of androgen-independent prostate cancer cells[J]. Nutr Cancer.2003;45(1):60-73.
    4 Kovacevic Z, Morris HP. The role of glutamine in the oxidative metabolism of malignant cells[J].Cancer Res. 1972;32(2):326-33
    5 Knox WE, Linder M, Friedell GH. A series of transplantable rat mammary tumors with graded differentiation, growth rate, and glutaminase content[J]. Cancer Res.1970;30(2):283-7.
    6 Medina MA. Glutamine and cancer[J]. Nutrition.2001;131(3):2539-42.
    7 Klimberg VS, Souba WW, Salloum RM, et al. Glutamine-enriched diets support muscle glutamine metabolism without stimulating tumor growth[J]. J Surg Res.1990;48(4):319-23.
    8 Bartlett DL, Charland S, Torosian MH. Effect of glutamine on tumor and host growth[J]. Ann Surg Oncol.1995;2(1):71-6.
    9 Torosian MH, Mullen JL, Miller EE, et al. Enhanced tumor response to cycle-specific chemotherapy by parenteral amino acid administration[J]. JPEN J Parenter Enteral Nutr.1983;7(4):337-45.
    10 Torosian MH, Mullen JL, Miller EE, et al.Adjuvant, pulse total parenteral nutrition and tumor response to cycle-specific and cycle-nonspecific chemotherapy [J]. Surgery.1983;94(2):291-9.
    11 Klimberg VS, Nwokedi E, Hutchins LF, et al.Glutamine facilitates chemotherapy while reducing toxicity[J]. J Parenter Enteral Nutr.1992;16(6 Suppl):83S-87S.
    12 Rubio IT, Cao Y, Hutchins LF, et al. Effect of glutamine on methotrexate efficacy and toxicity[J]. Ann Surg. 1998;227(5):772-8; discussion 778-80.
    13周雪峰,陈纪伟,周亚魁,等.谷氨酰胺和精氨酸对荷瘤大鼠5-Fu化疗效果的影响[J].中华国际医学杂志.2003;3(2):122-124.
    14 Rouse K, Nwokeoli E, Woodliff JE, et al. Glutamine enhances selectivity of chemotherapy through Changes in glutathione metabolism[J]. Ann Surg.1995,221(4):420-426.
    15 Shogo Y, Atsushi K, Nobura I, et al. Glutamine supplementation in cancer patients[J]. Nutrition.2001;17(9):766-8.
    16彭维朝,于健春,刘玉琴,等.谷氨酰胺联合丝裂霉素C对人胃癌细胞株MGC-803的作用[J].中国医学院学报.2006;28(3):345-349.
    17 Sauer LA, Dauchy RT, Blask DE, et al. Eicosapentaenoic acid suppresses cell proliferation in MCF-7 human breast cancer xenografts in nude rats via a pertussis toxin-sensitive signal transduction pathway[J]. J Nutr.2005;135(9):2124-9.
    18 De la Torre A, Debiton E, Durand D, et al. Conjugated linoleic acid isomers and their conjugated derivatives inhibit growth of human cancer cell lines[J]. Anticancer Res.2005;25(6B):3943-9.
    19 YiL, Zhang QY, Mi MT. Role of Rho GTPase in inhibiting metastatic ability of human prostate cancer cell line PC-3 by omega-3 polyunsaturated fatty acid[J]. Ai Zheng.2007;26(12):1281-6.
    20 Bocca C, Bozzo F, Martinasso G, et al. Involvement of PPARalpha in the growth inhibitory effect of arachidonic acid on breast cancer cells[J]. Br J Nutr.2008:100(4):739-50.
    21 Allred CD, Talbert DR, Southard RC, et al. PPARgammal as a molecular target of eicosapentaenoic acid in human colon cancer (HT-29) cells[J], J Nutr 2008;138(2):250-6.
    22 Schley PD, Brindley DN, Field CJ.(n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells[J]. J Nutr.2007;137(3):548-53.
    23 Trombetta A, Maggiora M, Martinasso G, et al. Arachidonic and docosahexaenoic acids reduce the growth of A549 human lung-tumor cells increasing lipid peroxidation and PPARs[.l]. Chem Biol Interact.2007; 165(3):239-50.
    24 Zhang BX, Ma X, Zhang W, et al. Polyunsaturated fatty acids mobilize intracellular Ca2+in NT2 human teratocarcinoma cells by causing release of Ca2+from mitochondria[J]. Am J Physiol Cell Physiol.2006;290(5):C1321-33.
    25 Calviello G, Di Nicuolo F, Gragnoli S, et al.n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and-2 and HIF-1 alpha induction pathway [J]. Carcinogenesis.2004;25(12):2303-10.
    26楼健颖 吴丹 林汉庭 金晓立.W-3多不饱和脂肪酸二十二碳六烯酸对胃癌细胞株AGS生长和增殖的影响.中华普通外科杂志.2007;22(8):613-5.
    27 Shrivastava R, Vincent B, Gobron S, et al. Evidence for growth-promoting effects of omega n-3 fatty acids alone and in combination with a specific vitamin and mineral complex in rat neuroblastoma cells[J]. Nutr Neurosci.2005;8(5-6):317-21.
    28郭卫东,于健春,康维明,刘玉琴.W-3脂肪酸单用及联合表阿霉素对胃癌作用的实验研究.外科理论与实践.2008;13(5):423-6.
    29 Calviello G, Di Nicuolo F, Serini S, et al. Docosahexaenoic acid enhances the susceptibility of human colorectal cancer cells to 5-fluorouracil[J]. Cancer Chemother Pharmacol.2005;55(l):12-20.
    30 Kim HH, Lee Y, Eun HC, et al. Eicosapentaenoic acid inhibits TNF-alpha-induced matrix metalloproteinase-9 expression in human keratinocytes, HaCaT cells[J]. Biochem Biophys Res Commun.2008;368(2):343-9.
    31郭卫东,于健春,刘玉琴等.二十碳五烯酸与表阿霉素联合应用对胃癌细胞株MGC-803的作用[J],中国医学院学报, 2007; 29(3):353-8
    32 Girnun GD, Naseri E, Vafai SB, et al. Synergy between PPAR ligands and platinum-based drugs in cancer[J]. Cancer Cell. 2007; 11(5):395-406.
    33 Moffit JS, Aleksunes LM, Maher JM,et al. Induction of hepatic transporters multidrug resistance-associated proteins (Mrp) 3 and 4 by clofibrate is regulated by peroxisome proliferator-activated receptor alpha[J]. J Pharmacol Exp Ther. 2006;317(2):537-45.
    34 Moncada S, Palmer RMJ, Higgs EA.. Nitric oxide:physiology, pathophysiology, and pharmacology [J]. Pharmacol Rev. 1991;43(2):109-42.
    35 Moncada S, Higgs EA, Hodson HF, et al. The L-arginine:nitric oxide pathway[J]. J Cardiovascular-Pharmacol,1991; 17(S3):S 1-S9.
    36 Beckman JS, Beckman TW, Chen J, et al. Apparent hydroxyl radical production by peroxynitrite:implication for endothelial injury from nitric oxide and superoxide[J]. Proc Natl Acad Sci USA,1990;87(4):1620-4.
    37 Stuehr DJ, Nathan CF. Nitric oxide, a macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells[J]. J Exp Med.1989;169(5):1554-5.
    38 EnsorcM, Holtsberg FW, Bomalaski JS, et al. Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomes and hepato-cellular carcinomas in vitro and in vivo[J]. Cancer Res.2002;62(5):5443-50.
    39董矜,田亚平,房征宇.L-精氨酸对Hela细胞增殖的调控作用研究[J].军医进修学院学报.2004;25(2).100-102.
    40 Barbul A. Arginine:biochemistry,physiology,and therapeutic implication[J]. J parenter Enteral Nutr.1986; 10(2):227.
    41 Reynolds JV, Thom AK, Zhang SM, et al. Arginine, protein malnutrition, and cancer[J]. J Surg Res 1988;45(6):513-22
    42 Yeatman TJ, Risley GL, Brunson ME. Depletion of dietary arginie inhibits growth of metastatic tumor[J]. Arch Surg. 1991;126(11):1376-81.
    43郭长江,徐琪寿,韦京豫,等.腹腔注射精氨酸对小鼠S180瘤生长的促进作用[J].氨基酸杂志.1994;4:6-14
    44张俊,周亚魁,陈纪伟,等.精氨酸剂量与肿瘤生长的相关性研究[J].数理医药学杂志,2002,15(2),129-130
    45 Ogilvie GK, Fettman MJ, Mallinckrodt CH, et al.Effect of fish oil, arginine, and doxorubicin chemotherapy on remission and survival time for dogs with lymphoma:a doubl-blind, randomized placebo-controlled study[J]. Cancer. 2000;88(8):1916-28.
    46黄从云,罗伯诚,陈君显,等.精氨酸协同5-FU抑制皮下移植性肝癌的生长[J].癌症.1997;16(3):225-6.
    47周雪峰,陈纪伟,周亚魁,等.谷氨酰胺和精氨酸对荷瘤大鼠5-Fu化疗效果的影响[J].中华国际医学杂志.2003;3(2):122-4.
    48 Nagahama T, Goseki N, Endo M. Doxorubicin and vincristine with methionine depletion contributed to survival in the Yoshida sarcoma bearing rats[J]. Anticancer Res.1998;18(1A):25-31.
    49 Li Y, Ping X, Yu B, Liu F, Ni X, Li J. Clinical trial:prophylactic intravenous alanyl-glutamine reduces the severity of gastrointestinal toxicity induced by chemotherapy--a randomized crossover study. Aliment Pharmacol Ther. 2009;30(5):452-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700