表达禽流感病毒H5血凝素禽腺病毒重组体的构建及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腺病毒因其粘膜免疫优势而被应用于病毒载体的研究中。鸭腺病毒1型病毒是产蛋下降综合征病毒(EDSV)或类似该病毒的一类腺病毒,它的宿主范围很广,致病力相差很大。选用无致病力的鸭腺病毒1型病毒作为载体在基因药物上具有很大的潜力。高致病性禽流感病毒(AIV)感染禽群发病急,应用全病毒灭活疫苗刺激产生的抗体极为缓慢,且不利于疫情抗体监测。AIV表面结构蛋白血凝素(HA)和神经氨酸酶决定了疫苗的免疫效力,很显然,禽流感基因工程标记性疫苗的研究是一个很好的方向。本文通过生物学特性和病毒纤突蛋白分析,筛选到一株低致病力的鸭腺病毒1型病毒,通过突变分析确定了其复制非必需区。AIV的HA是病毒重要的保护性抗原,将其作为靶蛋白构建重组禽腺病毒载体疫苗,并利用Cre-loxP系统的位点特异性重组特性将重组病毒基因组中的GFP报告基因自动敲除,最终获得了只含H5血凝素基因表达盒的禽腺病毒重组体疫苗。同时建立了相应的鉴别重组病毒疫苗与野外感染的AIV或引起产蛋下降的EDSV的核酸检测方法。本文研究主要从以下几个方面展开:
     1.禽腺病毒QU分离株的生物学特性及纤突蛋白分析
     将鹌鹑源腺病毒QU分离株的纤突蛋白基因进行扩增克隆测序,结果显示与鸡源HS株和AV127株腺病毒的同源性极高。该病毒接种雏鸡未出现临床病症及生长障碍,不致死鸡胚,对鸭胚的致死率明显比引起产蛋下降的HS株低。病毒在鸡胚肝细胞、鸭胚成纤维细胞及鸡胚成纤维细胞上生长良好,且在鸡胚肝细胞上的增殖滴度最高。结果表明该毒株系一株类似产蛋下降综合征病毒的低毒力腺病毒毒株,可以用作禽用基因疫苗或基因治疗的候选病毒载体。
     2.禽腺病毒QU株基因组突变分析
     参照鸭腺病毒1型病毒基因组右侧E4区附近序列设计引物,扩增出禽腺病毒QU株DNA的2.7kb片段。将pEGFP-C1质粒上含绿色荧光蛋白基因表达盒的MluⅠ/AseⅠ酶切片段插入QU DNA扩增片段的BglⅡ/StuⅠ酶切位点,构建了含GFP基因的转移质粒载体pADGFP。用脂质体将其与QU株共转染CEF细胞,用96孔板稀释法筛选得到纯化的表达绿色荧光蛋白的重组QU病毒株rQUGFP。该重组病毒的复制效率与亲本毒一致,连续传代后病毒滴度稳定。结果表明,QU株基因组右侧的E4附近区域为病毒的1个复制非必需区。
     3.禽流感病毒H5血凝素基因检测方法的建立
     参照AIV的HA基因序列设计1对引物,对H5亚型AIV核酸进行了扩增,产物大小为176bp。经测试,该引物不与新城疫病毒等鸡的其它传染性病原及鸡肌肉组织的核酸发生交叉反应。敏感性分析发现,从50pg的AIV总RNA中亦能扩增到目的条带。此次建立的方法可以方便地用于以后的AIV血凝素重组禽腺病毒构建的筛选纯化,同时,此对引物亦可扩增到H9亚型AIV的血凝素基因的579bp大小的片段,适用于在一次反应中同时将H9和H5亚型AIV进行快速鉴别。
     4.表达禽流感病毒H5血凝素的禽腺病毒重组体的构建
     将AIV H5血凝素基因插入鸭腺病毒1型QU株基因组,构建了H5血凝素重组禽腺病毒疫苗。利用pEGFP-C1质粒的CMV启动子和polyA尾信号序列,将禽流感病毒H5血凝素全基因的RT-PCR扩增片段插入其中构建了H5血凝素基因表达盒pHAE。通过PCR延伸获得了一段含双loxP的序列,并将GFP表达盒基因插入其中得到了loxP-GFP-loxP顺序的报告基因pLOXH。将pHAE和pLOXH的表达盒片段串连插入pAD16中,构建了含H5血凝素和GFP表达盒的转移质粒载体pHAGFP。在脂质体介导下将其与病毒DNA共转染CEF细胞,获得了表达H5和GFP的腺病毒重组体rQUHAGFP。通过二次转染,利用Cre-loxP位点特异性重组自动敲除了重组病毒中的GFP基因,最终获得了只含H5血凝素基因表达盒的重组腺病毒rQUHA。试验结果表明,rOUHA的一步生长曲线与亲本毒OU一样,经过连续传代后重组病毒仍然稳定复制并表达HA血凝素。
     5.禽流感病毒H5血凝素重组禽腺病毒的免疫及监测
     对AIVH5血凝素重组禽腺病毒疫苗的免疫效力进行了测试。将SPF鸡经口鼻途径分别接种rQUHA重组病毒和QU株病毒,免疫6d后重组病毒免疫鸡群的抗AIV和鸭腺病毒1型病毒抗体开始上升,12d后分别达到5.31og2和7.51og2,此时QU株免疫鸡群的抗腺病毒HI抗体滴度达7.51og2。结果表明,重组病毒可以刺激机体产生HA特异抗体,而自身的HI抗体产生水平未受影响。根据AIV核蛋白基因序列和禽腺病毒的目的基因插入位置的缺失序列设计引物,对鸭腺病毒1型和AIV的特异扩增片段分别为151bp和219bp,建立了AIV的一步法RT-PCR和鸭腺病毒1型的PCR检测方法,利于禽群中使用的重组禽腺病毒疫苗与野外感染的AIV或EDSV快速鉴别。
Adenovirus was widely applied into virus vector construction because of its advantageous mucous immunity. Duck adenovirus type 1, including egg drop syndrome virus (EDSV) or EDSV-alike fowl adenovirus, have large range of host, and the virulence of the isolates or strains varied. Then apathogenic duck adenovirus type 1 virus is a promising delivery vector in gene pharmacy for poultry. Genetic marker vaccine against avian influenza virus (AIV) is a trend, because poultry inoculating with-inactivated AIV whole virus vaccine can produce slow antibody and have no help for infection information by surveillance of antibody. The immune efficacy of vaccine are decided mainly by surface glycoprotein of hemagglutinin (HA) and neuraminase of AIV, apparently, genetic marker vaccine is a potential one for control AIV. Now, in this paper, one low virulent duck adenovirus type 1 virus strain was screened through pathogenicity analysis and fiber protein gene sequencing, and then its non-essential region for replication was decided by genome mutation assay. The recombinant adenovirus vector was constructed with insertion of the protective antigen Hemagglutinin gene of AIV subtype H5 and the enhance green fluorescence protein gene. The recombinant vaccine only expressing H5 HA of AIV was obtained by site-specific recombination of Cre-loxP system to self-excise the GFP reporter gene in recombinant virus genome. In addition, the nucleotide detection methods were developed for distinction of the recombinant vaccine from field infection of AIV or EDSV causing egg drop.These studies include:1.The biological feature and fiber protein analysis of fowl adenovirus QUstrainThe fiber protein gene of quail-original adenovirus QU strain was amplified by polyerase chain reaction and sequenced, the result showed that the target fragment is highly homologous with those of chicken original HS strain and AV127 strain. The young specific-pathogen-free chicken, oro-nasally inoculated with the QU strain, presented no clinical sign and growth withdrawing, no lethal to chicken embryo and lower motility rate to duck embryo than HS strain that causes egg drop of laying chickens. The QU strain adapted to chicken embryos liver cell, duck embryos fibroblast cell and chicken embryos fibroblast cell, and the virus titer was highest in chicken embryos liver cell. Above data suggested that the QU strain was apathogenic adenovirus in chicken and some characteristic of the virus assembles egg drop syndrome virus. So, the fowl adenovirus virus may be a candidate vector for poultry gene engineering vaccine or gene therapy.
     2. Mutation analysis of genome of fowl adenovirus QU strain
     The primers were designed for amplification of 2.7kb of fragment on the basis of E4-closly region sequence of duck adenovirus type 1 genome, pADGFP was constructed, in which enhance green fluorescence protein gene cassette of pEGFP-C1 plasmid digested with mluⅠand AseⅠcutter, and inserted into the amplified fragment through the BglⅡand StuⅠendonuclease. The rQUGFP recombinant virus was gained by co-transfection of QU virus and pADGFP plasmid. The one step growth curve of the rQUGFP virus was identical with that of parent QU strain and the titers of serially-passenging recombinant virus were stable. These data suggested that the E4 nearby region of QU strain genome is nonessential for virus replication, and the inserted foreign gene into virus genome could be expressed efficiently.
     3. Development of Detection Method for Hemagglutinin Gene of Avian Influenza Virus Subtype H5
     One pair of primers were designed on the basis of hemagglutinin (HA) gene of avian influenza virus(AIV), allowing detection of AIV subtype H5, and the specific amplicon was 176bp in length. The primers were tested to be specific for AIV with no cross-reaction to RNA from the chicken muscle and other chicken pathogens such as Newcastle disease virus etc. The sensitivity of this assay was about 50pg of total RNA of AIV subtype H5. Our data showed that the establishment of this method was simple and feasible for screening and purification of the following AIV HA-expressing recombinant fowl adenovirus vaccine. In addition, the primer was specific for 579bp of fragment of AIV subtype H9,and available for simultaneous subtyping these two subtype AIV by one-step reverse transcription-polyerase chain reaction.
     4. Construction of recombinant fowl aflenovirus expressing hemagglutinin of avian influenza virus subtype H5
     The amplicon of 2.7kb in length was cloned as pAD16 according to E4-close region of duck adenovirus type 1 QU strain genome. The pHAE plasmid was constructed, the hemagglutinin gene of avian influenza virus type H5 was amplified by RT-PCR and inserted in pEGFP-C1 for its CMV promoter and polyA singal tail. The loxP-GFP-loxP fragment from ploxH, which constructed through GFP cassette gent inserted the double loxP sequence using PCR extended, and the H5 hemagglutinin cassette gene from pHAE plasmid were inserted in pAD16 plasmid, the delivery vector pHAGFP was constructed. The redcombinant virus rQUHAGFP was gained through co-trnasfection of pHAGFP with genome DNA of QU strain. After second co-transfeetion of Cre recombinase plasmid with rQUHAGFP, the GFP reporter gene in the recombinant virus genome was removed self-excisely and the recombinant rQUHA virus only involving H5 hemagglutinin gene cassette was obtained finally. The resulted showed that the recombinant virus was stable for replication by one step growth curve test and. also serially passenging recombinant vaccine can consistently expressed the H5 hemagglutinin.
     5. Immunization and surveillance of avian influenza virus H5 hemagglutinin-expressing recombinant fowl adenovirus
     The immune efficacy of a recombinant fowl adenovirus vaccine expressing H5 bemagglutinin(HA) of avian influenza virus was confirmed. The specific pathogen flee chickens were inoculated oro-nasally with recombinant rQUHA virus and fowl adenovirus QU strain. The antibodies against H5 HA of avian influenza virus and duck adenovirus virus increased six days after immunization and the antibodies arrived at the level of 5.31og2 and 7.5log2 respectively after 12 days. At the time the antibodies to QU strain were 7.53log2 HI titer. The results demonstrated that the recombinant vaccine might activate chicken to produce antibodies against H5 HA as well as QU virus antigen. According to the nucleoprotein gene of avian influenza virus and the deletion region of duck adenovirus type 1 virus genome through insertion of target gene, two oligonucleotide primers were designed, the 219bp of fragment specific for AIV and 151 bp for duck adenovirus type 1. The development of detection method of both one step RT-PCR for AIV and PCR for duck adenovirus type 1 were useful for differentiation of the recombinant vaccine from field egg drop syndrome virus or avian influenza virus infection in poultry.
引文
[1] Saif Y M,Barnes H J,Glisson J R.Disease of poultry.11th ed.,Iowa:Iowa State University Press,2002.135-160.
    [2] Schreazel M,Oaks J L,Rotstein D,et al.Characterization of a new species of adenovirus in falcons.J Clin Microbiol,2005,43(7):3402-13.
    [3] Li P, Bellett A J,Parish C R.Structural organization and polypeptide composition of the avian adenovirus core.J Virol, 1984,52(2):638-49.
    [4] Chiocca S,Kurzbauer R, Schaffner G, et al.The complete DNA sequence and genomic organization of the avian adenovirus CELO.J Virol,1996,70(5):2939-49.
    
    [5] Zsak L,Kisary J.Grouping of fowl adenoviruses based upon the restriction patterns of DNA generated by BamHI and HindIII.Intervirology, 1984,22(2):110-4.
    
    [6] Zsak L,Kisary J.Studies on egg drop syndrome (EDS) and chick embryo lethal orphan (CELO) avian adenovirus DNAs by restriction endonucleases.J Gen Virol, 1981,56(Pt 1):87-95.
    
    [7] Shinagawa M,Iida Y,Matsuda A,et al.Phylogenetic relationships between adenoviruses as inferred from nucleotide sequences of inverted terminal repeats.Gene,1987,55(l):85-93.
    
    [8] Alestrom P.Stenlund A,Li P,et al.A common sequence in the inverted terminal repetitions of human and avian adenoviruses.Gene,1982,18(2): 193-7.
    
    [9] Alestrom P,Stenlund A,Li P,et al.Sequence homology between avian and human adenoviruses.J Virol,1982,42(1):306-10.
    
    [10]Akopian T A,Kruglyak V A,Rivkina M B,et al.Sequence of an avian adenovirus (CELO) DNA fragment (0-11.2%).Nucleic Acids Res,1990,18(9):2825.
    
    [11] Li P,Bellett A J,Parish C R.DNA-binding proteins of chick embryo lethal orphan virus: lack of complementation between early proteins of avian and human adenoviruses.J Gen Virol,1984,65(Pt 10):1817-25.
    
    [12] Li X,Tikoo S K.Genetic organization and sequence analysis of pVIII, fiber and early region 4 of bovine adenovirus type 7.Virus Genes,2002,25(1):59-65.
    
    [13] Tan P K,Michou A I,Bergelson J M,et al.Defining CAR as a cellular receptor for the avian adenovirus CELO using a genetic analysis of the two viral fibre proteins.J Gen Virol,2001,82(Pt 6):1465-72.
    
    [14] Chiocca S,Kurtev V,Colombo R,et al.Histone deacetylase 1 inactivation by an adenovirus early gene product.Curr Biol,2002,12(7):594-8.
    
    [15] Glotzer J B,Saltik M,Chiocca S,et alActivation of heat-shock response by an adenovirus is essential for virus replication.Nature,2000,407(6801):207-11.
    
    [16] Misiurina O,Neugodova G L,Naroditskii B S.[Transcription of anti-apoptotic proteins from CELO and EDS avian adenoviruses at early stages of infection].Mol Gen Mikrobiol Virusol,2000,(4):15-7.
    
    [17] Chiocca S,Baker A,Cotten M.Identification of a novel antiapoptotic protein, GAM-1, encoded by the CELO adenovirus.J Virol, 1997,71(4):3168-77.
    
    [18] Hacker D L,Derow E,Wurm F M.The CELO adenovirus Garnl protein enhances transient and stable recombinant protein expression in Chinese hamster ovary cells.J Biotechnol,2005,117(1):21-9.
    
    [19] Cai F,Weber J M.Organization of the avian adenovirus genome and the structure of its endopeptidase.Virology, 1993,196(1):358-62.
    [20] Hess M,Blocker H,Brandt P.The complete nucleotide sequence of the egg drop syndrome virus: an intermediate between mastadenoviruses and aviadenoviruses.Virology, 1997,238(1): 145-56.
    [21] Yamaguchi S,Imada T, Kawamura H,et al.Pathogenicity and distribution of egg-drop syndrome-1976 virus (JPA-1) in inoculated laying hens.Avian Dis, 1981,25(3):642-9.
    [22] 俞乃胜,龙沛然,等.鹌鹑腺病毒的分离及病原特性的研究.畜牧兽医学报,2002,33(3):271-275.
    [23] 金奇,曾力宇.禽减蛋综合征病毒AAⅦ2株全基因组文库的构建及核苷酸序列分析.中国科学:C辑,1999,29(5):543-548.
    [24] 李梅,李永明.鸡减蛋综合征病毒的致病性研究.微生物学杂志,2001,21(2):52-53.
    [25] 史秋梅.鸡减蛋综合征病毒的分离和初步鉴定.中国兽药杂志,2000,34(4):38-39.
    [26] 周伟光,刘大程,关平原,等.产蛋下降综合征病毒DNA限制性酶切分析的研究.畜牧与饲料科学,2004,25(6):40-41.
    [27] 张春杰,李道敏,吴庭才,等.豫西地区减蛋综合征病毒基因组酶切图谱分析.动物医学进展,2003,24(3):100-102.
    [28] 李银聚,张春杰,吴庭才,等.减蛋综合征病毒基因组不同酶切图谱的比较研究.河南科技大学学报:农学版,2003,23(2):30-32.
    [29] 李文贵,俞乃胜.鹑源减蛋综合征病毒QAVc—94株的酶切图谱分析.中国预防兽医学报,2001,23(2):87-90.
    [30] 吴彤,韩丽珍,等.禽腺病毒贵州分离株H S—1的核酸酶切分析与蛋白抗原鉴定.中国兽医杂志,2001,37(1):5-8.
    [31] 韩丽珍,李永明.3株减蛋综合征病毒毒株核酸酶切谱分析.中国兽医科技,2000,30(8):11-14.
    [32] 周锦萍,李刚.鸡源和鸭源减蛋综合征病毒DNA酶切图谱分析.南京农业大学学报,1999,22(2):71-75.
    [33] 李刚,周锦屏.鸭源和鸡源减蛋综合征病毒(EDSV)酶切图谱的分析.中国兽医学报,1997,17(6):551-554.
    [34] Dan A,Ruzsics Z,Russell W C, et al.Analysis of the hexon gene sequence of bovine adenovirus type 4 provides further support for a new adenovirus genus (Atadenovirus).J Gen Virol,1998,79 (Pt 6): 1453-60.
    [35] Harrach B,Meehan B M,Benko M,et al.Close phylogenetic relationship between egg drop syndrome virus, bovine adenovirus serotype 7, and ovine adenovirus strain 287.Virology, 1997,229(1):302-8.
    [36] 曾力宇,单金钢.鸡减蛋综合征病毒(EDSV)的基因组特点.科学通报,1998,43(5):524-527.
    [37] 李茂祥,金奇.减蛋综合征病毒(EDSV)pⅧ蛋白基因的克隆与分析.中国兽医学报,1997,17(4):409-410.
    [38] 李茂祥,殷震.减蛋综合征病毒33K蛋白基因克隆及结构分析.中国兽医学报,1999,19(3):221-225.
    [39] 李茂祥,金奇.减蛋综合征病毒pⅧ基因和E3区序列测定及结构分析.中国兽医学报,1998,18(1):27-31.
    [40] 金奇,李茂祥.鸡减蛋综合征病毒(EDSV—76)基因组E1区结构特点分析.病毒学报,1998,14(3):253-256.
    [41] Caterina K M,Frasca S, Jr.,Girshick T, et al.Development of a multiplex PCR for detection of avian adenovirus, avian reovirus, infectious bursal disease virus, and chicken anemia virus.Mol Cell Probes,2004,18(5):293-8.
    [42] Singh A,Oberoi M S,Grewal G S,et al.The use of PCR combined with restriction enzyme analysis to characterize fowl adenovirus field isolates from northern India.Vet Res Commun,2002,26(7):577-85.
    [43] 谢芝勋,I.Khan M.应用PCR检测禽腺病毒.中国兽医学报,2000,20(4):332-334.
    [44] 刘大程,周伟光,关平原,等.产蛋下降综合征病毒PCR检测方法的建立.中国兽医科技,2004,34(11):56-59.
    [45] 吴庭才,郑祥海,张春杰,等.应用降落PCR检测减蛋综合征病毒的研究.中国兽医科技,2003,33(7):11-13.
    [46] 张兹钧,胡木枝.用聚合酶链反应检测产蛋下降综合症病毒核酸的研究.病毒学报,1996,12(2):156-161.
    [47] 段玉友,葛天同.产蛋下降综合征(EDS—76)病毒DNA探针的制备及应用研究.中国兽医学报,1995,15(3):219-223.
    [48] 胡木枝,金由辛.减蛋综合征病毒核酸序列分析及基因扩增研究.中国兽医科技,1996,26(1):20-21.
    [49] 李文贵,宋建领.减蛋综合征病毒套式PCR检测技术的研究.中国兽医科技,2000,30(12):5-8.
    [50] 汪铭书,程安春,等.光生物素标记六邻体蛋白基因探针检测减蛋综合征病毒的研究.中国兽医科技,2002,32(2):13-15.
    [51] Johason M A,Pooley C,Ignjatovic J. et al.A recombinant fowl adenovirus expressing the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus.Vaccine,2003,21 (21-22):2730-6.
    [52] Ding H,Wang R,Marcel R, et al.Adenovirus-mediated expression of a truncated PDGFbeta receptor inhibits thrombosis and neointima formation in an avian arterial injury model.Thromb Haemost,2001,86(3):914-22.
    [53] GoffF L,Mederle-Mangeot I,Jestin A,et al.Deletion of open reading frames 9, 10 and 11 from the avian adenovirus CELO genome: effect on biodistribution and humoral responses.J Gen Virol,2005,86(Pt 7):2019-27.
    [54] Avdeeva S V, Voronov D A,Khaidarova N V, et al.[The CELO-ANG recombinant avian adenovirus with human angiogenine gene inducing neovascularization in the anterior tibial muscle of rat].Mol Gen Mikrobiol Virusol,2004,(4):38-40.
    [55] Logunov D Y, Ilyinskaya G V, Cherenova L V, et al.Restoration of p53 tumor-suppressor activity in human tumor cells in vitro and in their xenografts in vivo by recombinant avian adenovirus CELO-p53.Gene Ther,2004,11 (1):79-84.
    [56] Krugliak V A,Akopian T A,Naroditskii B S,et al.[Cloning of terminal fragments of the avian adenovirus CELO genome and isolation of a recombinant plasmid carrying the viral oncogene].Mol Gen Mikrobiol Virusol, 1988,(5):27-30.
    [57] Sheppard M,Werner W, Tsatas E,et al.Fowl adenovirus recombinant expressing VP2 of infectious bursal disease virus induces protective immunity against bursal disease.Arch Virol,1998,143(5):915-30.
    [58] Francois A, Eterradossi N,Delmas B,et al.Construction of avian adenovirus CELO recombinants in cosmids.J Virol,2001,75(11): 5288-301.
    [59] Francois A,Chevalier C,Delmas B,et al.Avian adenovirus CELO recombinants expressing VP2 of infectious bursal disease virus induce protection against bursal disease in chickens.Vaccine,2004,22(17-18):2351-60.
    [60] Michou A I,Lehrmann H,Saltik M,et al.Mutational analysis of the avian adenovirus CELO, which provides a basis for gene delivery vectors.J Virol,1999,73(2): 1399-410.
    [61] Shashkova E V, Cherenova L V, Kazansky D B,et al.Avian adenovirus vector CELO-TK displays anticancer activity in human cancer cells and suppresses established murine melanoma tumors.Cancer Gene Ther,2005,12(7):617-26.
    [62] Cherenova L V, Logunov D Y, Shashkova E V, et al.Recombinant avian adenovirus CELO expressing the human interleukin-2: characterization in vitro, in ovo and in vivo.Virus Res,2004,100(2):257-61.
    [1] Tulman E R, Afonso C L,Lu Z,et al.The genome of canarypox virus.J Virol,2004,78(1):353-66.
    [2] Tulman E R,Afonso C L,Lu Z,et al.The genome of a very virulent Marek's disease virus.J Virol,2000,74(17):7980-8.
    [3] Boyle D B,Coupar B E.Construction of recombinant fowlpox viruses as vectors for poultry vaccines.Virus Res, 1988,10(4):343-56.
    [4] Boyle D B,Coupar B E,Gibbs A J,et al.Fowlpox virus thymidine kinase: nucleotide sequence and relationships to other thymidine kinases.Virology, 1987,156(2):355-65.
    [5] Letellier C,Bumy A,Meulemans G.Construction of a pigeonpox virus recombinant: expression of the Newcastle disease virus (NDV) fusion glycoprotein and protection of chickens against NDV challenge.Arch Virol, 1991,118(1-2):43-56.
    [6] Laidlaw S M,Anwar M A,Thomas W, et al.Fowlpox virus encodes nonessential homologs of cellular alpha-SNAP, PC-1, and an orphan human homolog of a secreted nematode protein.J Virol, 1998,72(8):6742-51.
    [7] Jeshtadi A,Henriquet G, Laidlaw S M.In vitro expression and analysis of secreted fowlpox virus CC chemokine-like proteins Fpv060, Fpv061, Fpv116 and Fpv121.Arch Virol,2005,50(9): 1745-62.
    [8] Boulanger D,Baier R,Erfle V, et al.Generation of recombinant fowlpox vires using the non-essential F11L orthologue as insertion site and a rapid transient selection strategy.J Virol Methods,2002,106(1): 141-51.
    [9] Srinivasan V, Schnitzlein W M,Tripathy D N.A consideration of previously uncharacterized fowl poxvirus unidirectional and bidirectional late promoters for inclusion in homologous recombinant vaccines.Avian Dis,2003,47(2):286-95.
    [10] Parks R J,Krell P J,Derbyshire J B,et al.Studies of fowlpox virus recombination in the generation of recombinant vaccines.Vires Res, 1994,32(3):283-97.
    [11] Calvert J G, Nazerian K,Witter R L,et al.Fowlpox virus reeombinants expressing the envelope glycoprotein of an avian reticuloendotheliosis retrovirus induce neutralizing antibodies and reduce viremia in chickens.J Virol, 1993,67(6):3069-76.
    [12] Spehner D,Drillien R, Lecocq J P.Construction of fowlpox virus vectors with intergenic insertions: expression of the beta-galactosidase gene and the measles virus fusion gene.J Virol, 1990,64(2):527-33.
    [13] Binns M M,Britton B S,Mason C,et al.Analysis of the fowlpox virus genome region corresponding to the vaccinia virus D6 to A1 region: location of, and variation in, non-essential genes in poxviruses.J Gen Virol,1990,71 (Pt 12):2873-81.
    [14] Kumar S,Boyle D B.Activity of a fowlpox virus late gene promoter in vaccinia and fowlpox virus recombinants.Arch Virol, 1990,112(3-4): 139-48.
    [15] Zantinge J L,Krell P J,Derbyshire J B,et al.Partial transcriptional mapping of the fowlpox virus genome and analysis of the EcoRI L fragment.J Gen Virol,1996,77 (Pt 4):603-14.
    [16] Lee L E,Witter R L,Reddy S M,et al.Proteetion and synergism by recombinant fowl pox vaccines expressing multiple genes from Marek's disease virus.Avian Dis,2003,47(3):549-58.
    [17] 钱莺娟,张雪莲,陈德胜,等.串联表达马立克氏病病毒糖蛋白B主要抗原决定簇基因的重组鸡痘病毒的构建.病毒学报,2004,20(2):182-185.
    [18] 丁巧玲,陈溥言,等.表达MDV—gB基因的重组鸡痘病毒免疫效果观察.中国兽医科技,2002,32(9):21-22.
    [19] 彭大新,刘秀梵,等.表达马立克氏病病毒CV1988/Rispens株糖蛋白B基因的重组鸡痘病毒疫苗的免疫保护研究.畜牧兽医学报,2001,32(2):139-145.
    [20] 陈素娟,彭大新,等.MDV和AIV主要保护性抗原基因在鸡痘病毒中的联合表达.扬州大学学报:农业与生命科学版,2002,23(4):1-3,7.
    [21] 陈志琳,崔治中,等.表达马立克氏病病毒gI基因的重组鸡痘病毒的构建.扬州大学学报:农业与生命科学版,2002,23(1):6-8.
    [22] 丁巧玲,陈溥言.马立克氏病病毒(MDV)糖蛋白gB在重组鸡痘病毒中的表达.畜牧兽医学报,2003,34(1):64-66.
    [23] Qiao C L,Yu K Z,Jiang Y P, et al.Protection of chickens against highly lethal H5N1 and H7N1 avian influenza viruses with a recombinant fowlpox virus co-expressing H5 haemagglutinin and N1 neuraminidase genes.Avian Pathol,2003,32(1):25-32.
    [24] 韦栋平,刘玉良,邵卫星,等.共表达新城疫病毒F基因和H9亚型禽流感病毒HA基因的重组鸡痘病毒.微生物学报,2004,44(3):286-290.
    [25] 乔传玲,姜永萍,于康震,等.共表达禽流感病毒HA和NA基因的重组禽痘病毒在SPF鸡的免疫效力试验.中国农业科学,2004,37(4):605-608.
    [26] 乔传玲,姜永萍,田国斌,等.表达禽流感HA和NP双基因重组禽痘病毒的免疫保护性.畜牧兽医学报,2004,35(2):178-181.
    [27] 马文军,陈化兰,于康震,等.H7亚型禽流感病毒血凝素基因重组鸡痘病毒活载体疫苗免疫原性评估.中国预防兽医学报,2004,26(1):7-9.
    [28] 陈平,陈素娟,彭大新,等.高效表达H9亚型禽流感病毒HA基因的重组鸡痘病毒的构建及免疫效力试验.中国兽医学报,2004,24(3):216-218.
    [29] 乔传玲,于康震,姜永萍,等.表达禽流感病毒核蛋白基因重组禽痘病毒的构建及其免疫保护性研究.中国农业科学,2003,36(6):704-708.
    [30] 乔传玲,田国斌,等.禽流感重组禽痘病毒rFPV—HA—NA活载体疫苗的研究.免疫学杂志,2003,19(1):46-49.
    [31] 贾立军,彭大新,张艳梅,等.H5亚型禽流感重组鸡痘病毒活载体疫苗的构建及其遗传稳定性与免疫效力.微生物学报,2003,43(6):722-727.
    [32] 冀德君,彭大新,刘红旗,等.表达H9亚型禽流感病毒HA基因重组鸡痘病毒疫苗的遗传稳定性.中国兽医学报,2003,23(4):347-349.
    [33] 程坚,刘秀梵,等.共表达H9亚型禽流行性感冒病毒血凝素基因和鸡Ⅱ型干扰素基因的重组鸡痘病毒及其免疫效力.病毒学报,2003,19(1):52-58.
    [34] 冀德君,刘红旗,等.H9亚型禽流感重组鸡痘病毒疫苗的免疫保护试验.扬州大学学报:农业与生命科学版,2002,23(2):13-16.
    [35] 程坚,彭大新,等.表达H9亚型禽流感流毒血凝素基因的重组鸡痘病毒及其免疫效力.微生物学报,2002,42(4):442-447.
    [36] Shaw I,Davison T F.Protection from IBDV-induced bursal damage by a recombinant fowlpox vaccine, fpIBD1, is dependent on the titre of challenge virus and chicken genotype.Vaccine,2000,18(28):3230-41.
    [37] Heine H G, Boyle D B.Infectious bursal disease virus structural protein VP2 expressed by a fowlpox virus recombinant confers protection against disease in chickens.Arch Virol, 1993,131 (3-4):277-92.
    [38] Bayliss C D,Peters R W, Cook J K,et al.A recombinant fowlpox virus that expresses the VP2 antigen of infectious bursal disease vires induces protection against mortality caused by the virus.Arch Virol, 1991,120(3-4): 193-205.
    [39] 夏志平,金宁一,金扩世,等.共表达新城疫病毒F基因、传染性法氏囊病病毒VPO基因的重组鸡痘病毒的抗原性和免疫原性.兽医大学学报,2003,23(3):214-217.
    [40] 许凌峰,夏志平,等.新城疫病毒F基因与传染性法氏囊病毒VPO基因在鸡痘病毒中共表达.中国生物制品学杂志,2002,15(5):263-265.
    [41] 刘小军,陈楠.表达鸡传染性法氏囊病病毒VP2重组鸡痘病毒的构建.农业生物技术学报,2000,8(2):186-189.
    [42] Taylor J,Edbauer C,Rey-Senelonge A,et al.Newcastle disease virus fusion protein expressed in a fowlpox virus recombinant confers protection in chickens.J Virol, 1990,64(4): 1441-50.
    [43] Iritani Y, Aoyama S,Takigami S,et al.Antibody response to Newcastle disease virus (NDV) of recombinant fowlpox virus (FPV) expressing a hemagglutinin-neuraminidase of NDV into chickens in the presence of antibody to NDV or FPV.Avian Dis,1991,35(4):659-61.
    [44] 吴艳涛,彭大新.表达新城疫病毒F48E8株融合蛋白基因的重组鸡痘病毒及其免?….生物工程学报,2000,16(5):591-594.
    [45] Wang X,Schnitzlein W M,Tripathy D N,et al.Construction and immunogenicity studies of recombinant fowl poxvirus containing the S1 gene of Massachusetts 41 strain of infectious bronchitis virus.Avian Dis,2002,46(4):831-8.
    [46] Singh P, Schnitzlein W M,Tripathy D N.Reticuloendotheliosis virus sequences within the genomes of field strains of fowlpox virus display variability.J Virol,2003,77(10):5855-62.
    [47] Paoletti E,Taylor J,Meignier B,et al.Highly attenuated poxvirus vectors: NYVAC, ALVAC and TROVAC.Dev Biol Stand, 1995,84:159-63.
    [48] Taylor J,Trimarchi C,Weinberg R, et al.Efficacy studies on a canarypox-rabies recombinant virus.Vaccine, 1991,9(3):190-3.
    [49] Wild F, Giraudon P, Spehner D,et al.Fowlpox virus recombinant encoding the measles virus fusion protein: protection of mice against fatal measles encephalitis .Vaccine, 1990,8(5):441-2.
    [50] Vazquez-Blomquist D,Iglesias E,Gonzalez-Horta E E,et al.The HIV-1 chimeric protein CR3 expressed by poxviral vectors induces a diverse CD8+ T cell response in mice and is antigenic for PBMCs from HIV+ patients.Vaccine,2003,22(2):145-55.
    
    [51] Rosenberg S A,Yang J C,Schwartzentruber D J,et al.Recombinant fowlpox viruses encoding the anchor-modified gp100 melanoma antigen can generate antitumor immune responses in patients with metastatic melanoma.Clin Cancer Res,2003,9(8):2973-80.
    
    [52] Puehler F,Schwarz H.Waidner B,et al.An interferon-gamma-binding protein of novel structure encoded by the fowlpox virus.J Biol Chem,2003,278(9):6905-11.
    
    [53] Kent S J,Zhao A,Dale C J,et al.A recombinant avipoxvirus HIV-1 vaccine expressing interferon-gamma is safe and immunogenic in macaques.Vaccine,2000,18(21):2250-6.
    
    [54] Karaca K,Sharma J M,Winslow B J,et al.Recombinant fowlpox viruses coexpressing chicken type I IFN and Newcastle disease virus HN and F genes: influence of IFN on protective efficacy and humoral responses of chickens following in ovo or post-hatch administration of recombinant viruses. Vaccine, 1998,16(16): 1496-503.
    
    [55] Reddy S K,Sharma J M,Ahmad J,et al.Protective efficacy of a recombinant herpesvirus of turkeys as an in ovo vaccine against Newcastle and Marek's diseases in specific-pathogen-free chickens.Vaccine,1996,14(6):469-77.
    
    [56] Darteil R,Bublot M,Laplace E,et al.Herpesvirus of turkey recombinant viruses expressing infectious bursal disease virus (EBDV) VP2 immunogen induce protection against an IBDV virulent challenge in chickens.Virology, 1995,211(2):481-90.
    
    [57] Sakaguchi M,Nakamura H,Sonoda K,et al.Protection of chickens with or without maternal antibodies against both Marek's and Newcastle diseases by one-time vaccination with recombinant vaccine of Marek's disease virus type l.Vaccine,1998,16(5):472-9.
    
    [58] Sonoda K,Sakaguchi M,Okamura H,et al.Development of an effective polyvalent vaccine against both Marek's and Newcastle diseases based on recombinant Marek's disease virus type 1 in commercial chickens with maternal antibodies.J Virol,2000,74(7):3217-26.
    
    [59] Tsukamoto K,Kojima C,Komori Y,et al.Protection of chickens against very virulent infectious bursal disease virus (IBDV) and Marek's disease virus (MDV) with a recombinant MDV expressing IBDV VP2.Virology,1999,257(2):352-62.
    
    [60] Sakaguchi M,Urakawa T,Hirayama Y,et al.Marek's disease virus protein kinase gene identified within the short unique region of the viral genome is not essential for viral replication in cell culture and vaccine-induced immunity in chickens.Virology,1993,195(1): 140-8.
    
    [61] Anderson A S,Parcells M S,Morgan R W.The glycoprotein D (US6) homolog is not essential for oncogenicity or horizontal transmission of Marek's disease virus.J Virol, 1998,72(3):2548-53.
    [62] Morgan R W, Gelb J, Jr.,Pope C R,et al.Efficacy in chickens of a herpesvirus of turkeys recombinant vaccine containing the fusion gene of Newcastle disease virus: onset of protection and effect of maternal antibodies.Avian Dis, 1993,37(4): 1032-40.
    [63] 苏春霞,张彦明,张雪莲,等.表达NDV F48E9株F基因的MDV CVI988株转移质粒载体的构建.西北农林科技大学学报,2005,33(1):1-4.
    [64] Cherenova L V, Logunov D Y, Shashkova E V, et al.Recombinant avian adenovirus CELO expressing the human interleukin-2: characterization in vitro, in ovo and in vivo.Virus Res,2004,100(2):257-61.
    [65] Logunov D Y, Ilyinskaya G V, Cherenova L V, et al.Restoration of p53 tumor-suppressor activity in human tumor cells in vitro and in their xenografts in vivo by recombinant avian adcnovirus CELO-p53 .Gene Ther,2004,11 (1): 79-84.
    [66] Avdeeva S V, Voronov D A,Khaidarova N V, et al.[The CELO-ANG recombinant avian adenovirus with human angiogenine gene inducing neovascularization in the anterior tibial muscle of rat].Mol Gen Mikrobiol Virusol,2004,(4):38-40.
    [67] Johnson M A,Pooley C,Ignjatovic J,et al.A recombinant fowl adenovirus expressing the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus.Vaccine,2003,21 (21-22):2730-6.
    [68] Francois A,Eterradossi N,Delmas B,et al.Construction of avian adenovirus CELO recombinants in cosmids.J Virol,2001,75(11):5288-301.
    [69] Shashkova E V, Cherenova L V, Kazansky D B,et al.Avian adenovirus vector CELO-TK displays anticancer activity in human cancer cells and suppresses established murine melanoma tumors.Cancer Gene Ther,2005,12(7):617-26.
    [70] Johnson M A,Pooley C,Lowenthal J W.Delivery of avian cytokines by adenovirus vectors.Dev Comp Immunol,2000,24(2-3):343-54.
    [71] Sheppard M,Werner W, Tsatas E,et al.Fowl adenovirus recombinant expressing VP2 of infectious bursal disease virus induces protective immunity against bursal disease.Arch Virol, 1998,143(5):915-30.
    [72] Chambers P, Samson A C.Non-structural proteins in Newcastle disease virus-infected cells.J Gen Virol,1982,58 Pt 1:1-12.
    [73] Chambers P, Samson A C.A new structural protein for Newcastle disease virus.J Gen Virol,1980,50(1): 155-66.
    [74] Huang Z,Elankumaran S,Panda A,et al.Recombinant Newcastle disease virus as a vaccine vector.Poult Sci,2003,82(6):899-906.
    [75] Engel-Herbert I,Werner O,Teifke J P,et al.Characterization of a recombinant Newcastle disease virus expressing the green fluorescent protein.J Virol Methods,2003,108(1):19-28.
    
    [76] Swayne D E,Suarez D L,Schultz-Cherry S,et al.Recombinant paramyxovirus type 1-avian influenza-H7 virus as a vaccine for protection of chickens against influenza and Newcastle disease.Avian Dis,2003,47(3 Suppl):1047-50.
    
    [77] Huang Z,Elankumaran S,Yunus A S,et al.A recombinant Newcastle disease virus (NDV) expressing VP2 protein of infectious bursal disease virus (IBDV) protects against NDV and IBDV.J Virol,2004,78(18):10054-63.
    
    [78] Peeters B P,de Leeuw O S,Verstegen I,et al.Generation of a recombinant chimeric Newcastle disease virus vaccine that allows serological differentiation between vaccinated and infected animals. Vaccine,2001,19( 13-14):1616-27.
    
    [79] Bian H,Fournier P,Moormann R,et al.Selective gene transfer in vitro to tumor cells via recombinant Newcastle disease virus.Cancer Gene Ther,2005,12(3):295-303.
    
    [80] Bian H,Fournier P,Moormann R,et al.Selective gene transfer in vitro to tumor cells via recombinant Newcastle disease virus.Cancer Gene Ther,2004.
    [1] Sail Y M,Barnes H J,Glisson J R.Disease of poultry. 11th ed.,Iowa:Iowa State University Press,2002.135-160.
    [2] Mounts A W, Kwong H,Izurieta H S,et al.Case-control study of risk factors for avian influenza A (H5N1) disease, Hong Kong, 1997.J Infect Dis,1999,180(2):505-8.
    [3] Chokephaibulkit K,Uiprasertkul M,Puthavathana P, et al.A child with avian influenza A(H5N1) infection.Pediatr Infect Dis J,2005,24(2): 162-6.
    [4] Brown H.WHO confirms human-to-human avian flu transmission.Lancet,2004,363(9407):462.
    [5] Tran T H,Nguyen T L,Nguyen T D,et al.Avian influenza A (H5N1) in 10 patients in Vietnam.N Engl J Med,2004,350(12): 1179-88.
    [6] Abbott A.Chicken flu races through Dutch poultry farms.Nature,2003,422(6929):247.
    [7] Viseshakul N,Thanawongnuwech R,Amonsin A,et al.The genome sequence analysis of H5N1 avian influenza A virus isolated from the outbreak among poultry populations in Thailand.Virology,2004,328(2): 169-76.
    [8] Fouchier R A,Munster V, Wallensten A,et al.Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls.J Virol,2005,79(5):2814-22.
    [9] 刘红旗,程坚,等.我国部分地区H9亚型禽流感病毒血凝素基因序列比较与遗传发生关系分析.微生物学报,2002,42(3):288-297.
    [10] Lee C W, Senne D A,Suarez D L.Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus.J Virol,2004,78(15):8372-81.
    [11] Wilson I A,Skehel J J,Wiley D C.Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution.Nature,1981,289(5796):366-73.
    
    [12] Kawaoka Y,Krauss S.Webster R GAvian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics.J Virol,1989,63(11):4603-8.
    
    [13] Gething M J,Bye J,Skehel J,et al.Cloning and DNA sequence of double-stranded copies of haemagglutinin genes from H2 and H3 strains elucidates antigenic shift and drift in human influenza virus.Nature,1980,287(5780):301-6.
    
    [14] Kurtz J,Manvell R J,Banks J.Avian influenza virus isolated from a woman with conjunctivitis.Lancet,1996,348(9031):901-2.
    
    [15] Shortridge K F,Zhou N N.Guan Y,et al.Characterization of avian H5N1 influenza viruses from poultry in Hong Kong.Virology,1998,252(2):331-42.
    
    
    [16] Peiris J S,Guan Y,Markwell D,et al.Cocirculation of avian H9N2 and contemporary "human" H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment?J Virol,2001,75(20):9679-86.
    
    [17] Subbarao K,Shaw M W.Molecular aspects of avian influenza (H5N1) viruses isolated from humans.Rev Med Virol,2000,10(5):337-48.
    
    [18] Suzuki Y.Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses.Biol Pharm Bull,2005,28(3):399-408.
    
    [19] Matrosovich M N,Gambaryan A S,Teneberg S,et al.Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site.Virology,1997,233(1):224-34.
    
    [20] Rogers G N,Paulson J C.Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology,1983,127(2):361-73.
    
    [21] Gambaryan A S,Tuzikov A B,Pazynina G V,et al.H5N1 chicken influenza viruses display a high binding affinity for Neu5Acalpha2-3Galbetal-4(6-HSO3)GlcNAc-containing receptors. Virology,2004,326(2):310-6.
    
    [22] Matrosovich M,Tuzikov A,Bovin N,et al.Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals.J Virol,2000,74(18):8502-12.
    
    [23] Subbarao K,Chen H,Swayne D,et al.Evaluation of a genetically modified reassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based reverse genetics.Virology,2003,305(1): 192-200.
    
    [24] Khatchikian D,Orlich M,Rott R.Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus.Nature, 1989,340(6229): 156-7.
    [25] Garcia M,Crawford J M,Latimer J W, et al.Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico.J Gen Virol, 1996,77 (Pt 7): 1493-504.
    [26] Horimoto T,Kawaoka Y.The hemagglutinin cleavability of a virulent avian influenza virus by subtilisin-like endoproteases is influenced by the amino acid immediately downstream of the cleavage site.Virology, 1995,210(2):466-70.
    [27] Kawaoka Y, Naeve C W, Webster R G.Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin?Virology, 1984,139(2):303-16.
    [28] Wood G.W.,Banks J.,Strong I.,et al.An avian influenza virus of H10 subtype that is highly pathogenic for chickens but lacks multiple basic amino acids at the haemagglutinin cleavage site.Avian Pathol.,1996,25: 799-806.
    [29] Hulse D J,Webster R G, Russell R J,et al.Molecular determinants within the surface proteins involved in the pathogenicity of H5N1 influenza viruses in chickens.J Virol,2004,78(18):9954-64.
    [30] Ohuchi M, Orlich M,Ohuchi R, et al.Mutations at the cleavage site of the hemagglutinin after the pathogenicity of influenza virus A/chick/Penn/83 (HSN2).Virology, 1989,168(2):274-80.
    [31] Walker J A,Kawaoka Y.Importance of conserved amino acids at the cleavage site of the haemagglutinin of a virulent avian influenza A virus.J Gen Virol,1993,74 (Pt 2):311-4.
    [32] Inkster M D,Hinshaw V S,Schulze I T.The hemagglutinins of duck and human H1 influenza viruses differ in sequence conservation and in glycosylation.J Virol, 1993,67( 12):7436-43.
    [33] Ohuchi M,Ohuchi R, Feldmann A,et al.Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety.J Virol, 1997,71 (11):8377-84.
    [34] Barman S,Adhikary L,Chakrabarti A K,et al.Role of transmembrane domain and cytoplasmic tail amino acid sequences of influenza a virus neuraminidase in raft association and virus budding.J Virol,2004,78(10):5258-69.
    [35] Hughes M T,Matrosovich M,Rodgers M E,et al.Influenza A viruses lacking sialidase activity can undergo multiple cycles of replication in cell culture, eggs, or mice.J Virol,2000,74(11):5206-12.
    [36] Ohuchi M,Feldmann A,Ohuchi R,et al.Neutaminidase is essential for fowl plague virus hemagglutinin to show hemagglutinating activity.Virology, 1995,212(1):77-83.
    [37] Colman P M.A novel approach to antiviral therapy for influenza.J Antimicrob Chemother, 1999,44 Suppl B: 17-22.
    [38] Baigent S J,McCauley J W.Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture.Virus Res,2001,79(1-2): 177-85.
    [39] Luo G, Chung J,Palese P.Alterations of the stalk of the influenza virus neuraminidase: deletions and insertions.Virus Res,1993,29(2): 141-53.
    [40] Castrucci M R,Kawaoka Y.Biologic importance of neuraminidase stalk length in influenza A virus J Virol, 1993,67(2):759-64.
    [41] Goto H,Wells K, Takada A,et al.Plasminogen-binding activity of neuraminidase determines the pathogenicity of influenza A virus.J Virol,2001,75(19):9297-301.
    [42] Lowy R J.Influenza virus induction of apoptosis by intrinsic and extrinsic mechanisms.Int Rev Immunol,2003,22(5-6):425-49.
    [43] Richt J A,Lager K M,Janke B H,et al.Pathogenic and antigenic properties of phylogenetically distinct reassortant H3N2 swine influenza viruses cocirculating in the United States.J Clin Microbiol,2003,41 (7):3198-205.
    [44] Abe T, Mizuta T, Hatta T, et al.Antisense therapy of influenza.Eur J Pharm Sci,2001,13(1):61-9.
    [45] Leneva I A,Goloubeva O,Fenton R J,et al.Efficacy of zanamivir against avian influenza A viruses that possess genes encoding H5N1 internal proteins and are pathogenic in mammals.Antimicrob Agents Chemother,2001,45(4): 1216-24.
    [46] Abe T, Mizuta T, Suzuki S,et al.In vitro and in vivo anti-influenza A virus activity of antisense oligonucleotides.Nucleosides Nucleotides, 1999,18(6-7): 1685-8.
    [47] Abe T, Hatta T, Takai K, et al.Inhibition of influenza virus replication by phosphorothioate and liposomally endocapsulated oligonucleotides.Nucleosides Nucleotides, 1998,17(1-3) :471-8.
    [48] Scholtissek C,Burger H,Kistner O,et al.The nucleoprotein as a possible major factor in determining host specificity of influenza H3N2 viruses.Virology, 1985,147(2):287-94.
    [49] Beard C W.Demonstration of type-specific influenza antibody in mammalian and avian sera by immunodiffusion.Bull. WHO, 1970,42:779-785.
    [50] Beard C W.Avian influenza antibody detection by immunodiffusion.Avian Dis, 1970,14(2):337-41.
    [51] Capua I,Terregino C,Cattoli G, et al.Development of a DIVA (Differentiating Infected from Vaccinated Animals) strategy using a vaccine containing a heterologous neuraminidase for the control of avian influenza.Avian Pathol,2003,32(1):47-55.
    [52] Rowe T,Abemathy R A,Hu-Primmer J,et al.Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays.J Clin Microbiol,1999,37(4):937-43.
    
    [53] Cox R J,Mykkeltvedt E,Robertson J,et al.Non-lethal viral challenge of influenza haemagglutinin and nucleoprotein DNA vaccinated mice results in reduced viral replication.Scand J Immunol,2002,55(1):14-23.
    
    [54] Lambkin R,McLain L,Jones S E,et al.Neutralization escape mutants of type A influenza virus are readily selected by antisera from mice immunized with whole virus: a possible mechanism for antigenic drift.J Gen Virol,1994,75 (Pt 12):3493-502.
    
    [55] Lu Y,Ding J,Liu W,et al.A candidate vaccine against influenza virus intensively improved the immunogenicity of a neutralizing epitope.Int Arch Allergy Immunol,2002,127(3):245-50.
    
    [56] Rimmelzwaan G F,Baars M,van Beek R,et al.Influenza virus subtype cross-reactivities of haemagglutination inhibiting and virus neutralising serum antibodies induced by infection or vaccination with an ISCOM-based vaccine.Vaccine, 1999,17(20-21):2512-6.
    
    [57] Meulemans G,Carlier M C,Gonze M,et al.Comparison of hemagglutination-inhibition, agar gel precipitin, and enzyme-linked immunosorbent assay for measuring antibodies against influenza viruses in chickens.Avian Dis,1987,31(3):560-3.
    
    
    [58] Lu H.A longitudinal study of a novel dot-enzyme-linked immunosorbent assay for detection of avian influenza virus.Avian Dis,2003,47(2):361-9.
    
    [59] Tumpey T M,Alvarez R,Swayne D E,et al.Diagnostic approach for differentiating infected from vaccinated poultry on the basis of antibodies to NS1, the nonstructural protein of influenza A virus.J Clin Microbiol,2005,43(2):676-83.
    
    [60] Wang X,Castro A E,Castro M D,et al.Production and evaluation criteria of specific monoclonal antibodies to the hemagglutinin of the H7N2 subtype of avian influenza virus.J Vet Diagn Invest,2000,12(6):503-9.
    
    [61] Dybkaer K,Munch M,Handberg K J,et al.RT-PCR-ELISA as a tool for diagnosis of low-pathogenicity avian influenza.Avian Dis,2003,47(3 Suppl):1075-8.
    
    [62] Kawakami C,Shimizu H,Watanabe S,et al.[Evaluation of immunochromatography method for rapid detection of influenza A and B viruses].Kansenshogaku Zasshi,2001,75(9):792-9.
    
    [63] Bragstad K,Jorgensen P H,Handberg K J,et al.New avian influenza A virus subtype combination H5N7 identified in Danish mallard ducks.Virus Res,2005,109(2):181-90.
    
    [64] Soares P B,Demetrio C,Sanfilippo L,et al.Standardization of a duplex RT-PCR for the detection of Influenza A and Newcastle disease viruses in migratory birds.J Virol Methods,2005,123(2): 125-30.
    [65] Malik Y S,Patnayak D P, Goyal S M.Detection of three avian respiratory viruses by single-tube multiplex reverse transcription-polymerase chain reaction assay.J Vet Diagn Invest,2004,16(3):244-8.
    [66] Starick E,Romer-Oberdorfer A,Werner O.Type-and subtype-specific RT-PCR assays for avian influenza A viruses (AIV).J Vet Med B Infect Dis Vet Public Health,2000,47(4):295-301.
    [67] Horimoto T, Kawaoka Y.Direct reverse transcriptase PCR to determine virulence potential of influenza A viruses in birds.J Clin Microbiol, 1995,33(3): 748-51.
    [68] Lee C W, Suarez D L.Application of real-time RT-PCR for the quantitation and competitive replication study of H5 and H7 subtype avian influenza virus.J Virol Methods,2004,119(2):151-8.
    [69] Spackman E,Senne D A,Bulaga L L,et al.Development of multiplex real-time RT-PCR as a diagnostic tool for avian influenza.Avian Dis,2003,47(3 Suppl): 1087-90.
    [70] Spackman E,Senne D A,Bulaga L L,et al.Development of real-time RT-PCR for the detection of avian influenza virus.Avian Dis,2003,47(3 Suppl): 1079-82.
    [71] Lau L T, Banks J,Aherne R, et al.Nucleic acid sequence-based amplification methods to detect avian influenza virus.Biochem Biophys Res Commun,2004,313(2):336-42.
    [72] Collins R A,Ko L S,So K L,et al.A NASBA method to detect high-and low-pathogenicity H5 avian influenza viruses.Avian Dis,2003,47(3 Suppl): 1069-74.
    [73] Shan S,Ko L S,Collins R A,et al.Comparison of nucleic acid-based detection of avian influenza H5NI with virus isolation.Biochem Biophys Res Commun,2003,302(2):377-83.
    [74] Collins R A,Ko L S,Fung K Y, et al.Rapid and sensitive detection of avian influenza virus subtype H7 using NASBA.Biochem Biophys Res Commun,2003,300(2):507-15.
    [75] Collins R A,Ko L S,So K L,et al.Detection of highly pathogenic and low pathogenic avian influenza subtype H5 (Eurasian lineage) using NASBA.J Virol Methods,2002,103(2):213-25.
    [76] Kodihalli S,Haynes J R, Robinson H L,et al.Cross-protection among lethal H5N2 influenza viruses induced by DNA vaccine to the hemagglutinin.J Virol, 1997,71(5):3391-6.
    [77] Philpott M,Easterday B C,Hinshaw V S.Neutralizing epitopes of the H5 hemagglutinin from a virulent avian influenza virus and their relationship to pathogenicity.J Virol,1989,63(8):3453-8.
    [78] Kedzierska K,Turner S J,Doherty P C.Conserved T cell receptor usage in primary and recall responses to an immunodominant influenza virus nucleoprotein epitope.Proc Natl Acad Sci USA,2004,101(14):4942-7.
    [79] Rimmelzwaan G F, Berkhoff E G, Nieuwkoop N J,et al.Full restoration of viral fitness by multiple compensatory co-mutations in the nucleoprotein of influenza A virus cytotoxic T-lymphocyte escape mutants.J Gen Virol,2005,86(Pt 6): 1801-5.
    [80] Crowe S R, Miller S C,Shenyo R M,et al.Vaccination with an acidic polymerase epitope of influenza virus elicits a potent antiviral T cell response but delayed clearance of an influenza virus challenge.J Immunol,2005,174(2):696-701.
    [81] Brugh M,Beard C W, Stone H D.Immunization of chickens and turkeys against avian influenza with monovalent and polyvalent oil emulsion vaccines.Am J Vet Res,1979,40(2): 165-9.
    [82] Saito T, Lim W, Tashiro M.Attenuation of a human H9N2 influenza vires in mammalian host by reassortment with an avian influenza virus.Arch Virol,2004,149(7): 1397-407.
    [83] Matsuoka Y, Chen H,Cox N,et al.Safety evaluation in chickens of candidate human vaccines against potential pandemic strains of influenza.Avian Dis,2003,47(3 Suppl):926-30.
    [84] Halvorson D A.The control of H5 or H7 mildly pathogenic avian influenza: a role for inactivated vaccine. Avian Pathol,2002,31 (1):5 - 12.
    [85] Tian G, Zhang S,Li Y, et al.Protective efficacy in chickens, geese and ducks of an H5N 1-inactivated vaccine developed by reverse genetics.Virology,2005.
    [86] Rimmelzwaan G F, Claas E C,van Amerongen G, et al.ISCOM vaccine induced protection against a lethal challenge with a human H5N1 influenza virus.Vaccine, 1999,17(11-12): 1355-8.
    [87] Kodihalli S,Sivanandan V, Nagaraja K V, et al.A type-specific avian influenza virus subunit vaccine for turkeys: induction of protective immunity to challenge infection.Vaccine, 1994,12(15): 1467-72.
    [88] Swayne D E,Suarez D L,Schultz-Cherry S,et al.Recombinant paramyxovirus type 1-avian influenza-H7 virus as a vaccine for protection of chickens against influenza and Newcastle disease.Avian Dis,2003,47(3 Suppl): 1047-50.
    [89] Beard C W, Schnitzlein W M,Tripathy D N.Protection of chickens against highly pathogenic avian influenza virus (H5N2) by recombinant fowlpox viruses.Avian Dis,1991,35(2):356-9.
    [90] 马文军,陈化兰,于康震,等.H7亚型禽流感病毒血凝素基因重组鸡痘病毒活载体疫苗免疫原性评估.中国预防兽医学报,2004,26(1):7-9.
    [91] 张小荣,焦新安,潘志明,等.以减毒沙门氏菌运送的H5亚型禽流感病毒DNA疫苗的构建及其对小鼠的免疫原性.微生物学报,2004,44(2):157-161.
    [92] 陈平,陈素娟,彭大新,等.高效表达H9亚型禽流感病毒HA基因的重组鸡痘病毒的构 建及免疫效力试验.中国兽医学报,2004,24(3):216-218.
    [93] 乔传玲,姜永萍,于康震,等.共表达禽流感病毒HA和NA基因的重组禽痘病毒在SPF鸡的免疫效力试验.中国农业科学,2004,37(4):605-608.
    [94] 韦栋平,刘玉良,邵卫星,等.共表达新城疫病毒F基因和H9亚型禽流感病毒HA基因的重组鸡痘病毒.微生物学报,2004,44(3):286-290.
    [95] 乔传玲,田国斌,等.禽流感重组禽痘病毒rFPV—HA—NA活载体疫苗的研究.免疫学杂志,2003,19(1):46-49.
    [96] 张强哲,秦曦,梁荣,等.禽流感病毒HA基因真核表达质粒的构建与表达.生物化学与生物物理进展,2003,30(3):483-487.
    [97] 贾立军,张艳梅,李军伟,等.H5亚型禽流感重组鸡痘病毒活载体疫苗的免疫效力.扬州大学学报:农业与生命科学版,2003,24(2):11-13.
    [98] 乔传玲,于康震,姜永萍,等.表达禽流感病毒核蛋白基因重组禽痘病毒的构建及其免疫保护性研究.中国农业科学,2003,36(6):704-708.
    [99] 冀德君,彭大新,刘红旗,等.表达H9亚型禽流感病毒HA基因重组鸡痘病毒疫苗的遗传稳定性.中国兽医学报,2003,23(4):347-349.
    [100] 彭金美,童光志,王云峰,等.抗禽流感病毒多表位DNA疫苗的构建及其免疫效力研究.生物工程学报,2003,19(5):623-627.
    [101] 贾立军,彭大新,张艳梅,等.H5亚型禽流感重组鸡痘病毒活载体疫苗的构建及其遗传稳定性与免疫效力.微生物学报,2003,43(6):722-727.
    [102] 程坚,彭大新,等.表达H9亚型禽流感流毒血凝素基因的重组鸡痘病毒及其免疫效力.微生物学报,2002,42(4):442-447.
    [103] 陈素娟,彭大新,等.MDV和AIV主要保护性抗原基因在鸡痘病毒中的联合表达.扬州大学学报:农业与生命科学版,2002,23(4):1-3,7.
    [104] Webster R G, Taylor J,Pearson J,et al.Immunity to Mexican H5N2 avian influenza viruses induced by a fowl pox-H5 recombinant.Avian Dis, 1996,40(2):461-5.
    [105] Swayne D E,Beck J R, Miclde T R.Efficacy of recombinant fowl poxvirus vaccine in protecting chickens against a highly pathogenic Mexican-origin H5N2 avian influenza virus.Avian Dis, 1997,41 (4):910-22.
    [106] Webster R G, Kawaoka Y, Taylor J,et al.Efficacy of nucleoprotein and haemagglutinin antigens expressed in fowlpox virus as vaccine for influenza in chickens.Vaccine, 1991,9(5):303-8.
    [107] Qiao C L,Yu K Z,Jiang Y P, et al.Protection of chickens against highly lethal H5N1 and H7N1 avian influenza viruses with a recombinant fowlpox virus co-expressing H5 haemagglutinin and N1 neuraminidase genes.Avian Pathol,2003,32(1):25-32.
    [108] Cherbonnel M,Rousset J,Jestin V.Strategies to improve protection against low-pathogenicity H7 avian influenza virus infection using DNA vaccines.Avian Dis,2003,47(3 Suppl): 1181-6.
    [109] Suarez D L,Schultz-Cherry S.The effect of eukaryotic expression vectors and adjuvants on DNA vaccines in chickens using an avian influenza model.Avian Dis,2000,44(4):861-8.
    [110] KodihaUi S,Kobasa D L,Webster R G Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines.Vaccine,2000,18(23):2592-9.
    [111] Kodihalli S,Goto H,Kobasa D L,et al.DNA vaccine encoding hemagglutinin provides protective immunity against H5N1 influenza virus infection in mice J Virol,1999,73(3):2094-8.
    [112] Fynan E F, Webster R G, Fuller D H,et al.DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations.Proc Natl Acad Sci U S A, 1993,90(24): 11478-82.
    [113] Fynan E F, Robinson H L,Webster R G.Use of DNA encoding influenza hemagglutinin as an avian influenza vaccine.DNA Cell Biol, 1993,12(9):785-9.
    [114] Robinson H L,Hunt L A,Webster R G.Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA.Vaccine,1993,11 (9):957-60.
    [1] Saif Y M,Barnes H J,Glisson J R.Disease of poultry. 1 lth ed.,Iowa:Iowa State University Press,2002.135-160.
    [2] Li X,Tikoo S K.Genetic organization and sequence analysis of pⅧ, fiber and early region 4 of bovine adenovirus type 7.virus Genes,2002,25(1):59-65.
    [3] Hess M,Blocker H,Brandt P.The complete nucleotide sequence of the egg drop syndrome virus: an intermediate between mastadenoviruses and aviadenoviruses.Virology, 1997,238(1): 145-56.
    [4] 俞乃胜,龙沛然,等.鹌鹑腺病毒的分离及病原特性的研究.畜牧兽医学报,2002,33(3):271-275.
    [5] 俞乃胜,杨贵树.鹌鹑减蛋综合征病毒株血细胞凝集特性的研究.中国兽医科技,1998,28(4):5-7.
    [1] Francois A,Chevalier C,Delmas B,et al.Avian adenovirus CELO recombinants expressing VP2 of infectious bursal disease virus induce protection against bursal disease in chickeus.Vaccine,2004,22(17-18):2351-60.
    [2] Cherenova L V, Logunov D Y, Shashkova E V, et al.Recombinant avian adenovirus CELO expressing the human interleukin-2: characterization in vitro, in ovo and in vivo.Virus Res,2004,100(2): 257-61.
    [3] Johnson M A,Pooley C,Ignjatovic J,et al.A recombinant fowl adenovirus expressing the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus.Vaccine,2003,21 (21-22):2730-6.
    [4] Sheppard M,Werner W, Tsatas E,et al.Fowl adenovirus recombinant expressing VP2 of infectious bursal disease virus induces protective immunity against bursal disease.Arch Virol, 1998,143(5):915-30.
    [5] Hess M,Blocker H,Brandt P. The complete nucleotide sequence of the egg drop syndrome virus: an intermediate between mastadenoviruses and aviadenoviruses.Virology, 1997,238(1): 145-56.
    [6] Dix I,Leppard K N.Expression of adenovirus type 5 E4 Orf2 protein during lyric infection.J Gen Virol, 1995,76 (Pt 4): 1051-5.
    [7] Alexander H S,Huber P, Cao J,et al.Growth characteristics of fowl adenovirus type 8 in a chicken hepatoma cell line. J Virol Methods,1998,74(1):9-14.
    [8] Fauquet C M,Mayo M A,Maniloff J,et al.Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses.Califonia:Virology division international union of microbiological societies,elsevier academic press,2005.
    [9] Prasher D C,Eckenrode V K,Ward W W,et al.Primary structure of the Aequorea victoria green-fluorescent protein.Gene,1992,111(2):229-33.
    
    [10] Chalfie M,Tu Y,Euskirchen G,et al.Green fluorescent protein as a marker for gene expression.Science, 1994,263(5148):802-5.
    
    [11] Cormack B P,Valdivia R H,Falkow S.FACS-optimized mutants of the green fluorescent protein (GFP).Gene,1996,173(l Spec No):33-8.
    
    [12] Cubitt A B,Heim R,Adams S R,et al.Understanding, improving and using green fluorescent proteins.Trends Biochem Sci,1995,20(11):448-55.
    [1] Saif Y M,Barnes H J,Glisson J R.Disease of poultry. 11th ed.,Iowa:Iowa State University Press,2002.135-160.
    [2] 刘红旗,程坚,彭大新,等.我国部分地区H9亚型禽流感病毒血凝素基因序列比较与遗传发生关系分析.微生物学报,2002,42(3):288-297.
    [3] Chen H,Deng G, Li Z,et al.The evolution of H5N1 influenza viruses in ducks in southern China.Proc Natl Acad Sci U S A,2004,101(28):10452-7.
    [4] Capua I,Alexander D J.Avian influenza: recent developments.Avian Pathol,2004,33(4):393-404.
    [5] Normile D.Avian flu. Mild illnesses confound researchers.Science,2005,307(5706):27.
    [6] 郭元吉,温乐英,王敏,等.从人分离出两株甲型流感H9N2亚型毒株内部基因特性的研究.中华实验和临床病毒学杂志,2003,17(3):225-228.
    [7] Sambrook J,Russell D W.Molecular Cloning: A Laboratory Manual.3rd ed.,New York:Cold Spring Harbor Laboratory Press,2001.
    [8] Swayne D E,Glisson J R,Jackwood M W, et al.A laboratory manual for the isolation and identification of avian pathogens.Fouth ed.,Florida:The american association of avian pathologists, 1998.
    [9] Spackman E,Senne D A,Myers T J,et al.Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes.J Clin Microbiol,2002,40(9):3256-60.
    [10] Payungporn S,Phakdeewirot P, Chutinimitkul S,et al.Single-step multiplex reverse transcription-polymerase chain reaction (RT-PCR) for influenza A virus subtype H5N1 detection.Viral Immunol,2004,17(4):588-93.
    [1] Saif Y M,Barnes H J,Glisson J R.Disease of poultry. 11th ed.,Iowa:Iowa State University Press,2002.135-160.
    [2] Fouchier R A,Munster V, WaUensten A,et al.Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol,2005,79(5):2814-22.
    [3] Chen H,Deng G, Li Z,et al.The evolution of H5N1 influenza viruses in ducks in southern China.Proc Natl Acad Sci U S A,2004,101(28):10452-7.
    [4] Chen H,Smith G J,Zhang S Y, et al.Avian flu: H5N1 virus outbreak in migratory waterfowl.Nature,2005,436(7048): 191-2.
    [5] Swayne D E,Beck J R, Mickle T R.Efficacy of recombinant fowl poxvirus vaccine in protecting chickens against a highly pathogenic Mexican-origin H5N2 avian influenza virus.Avian Dis, 1997,41 (4): 910-22.
    [6] Qiao C L,Yu K Z,Jiang Y P, et al.Protection of chickens against highly lethal H5N1 and H7N1 avian influenza viruses with a recombinant fowlpox virus co-expressing H5 haemagglutinin and N1 neuraminidase genes.Avian Pathol,2003,32(1):25-32.
    [7] Swayne D E,Garcia M,Beck J R, et al.Protection against diverse highly pathogenic H5 avian influenza viruses in chickens immunized with a recombinant fowlpox vaccine containing an H5 avian influenza hemagglutinin gene insert.Vaccine,2000,18(11-12): 1088-95.
    [8] Webster R G,Kawaoka Y, Taylor J,et al.Efficacy of nucleoprotein and haemagglutinin antigens expressed in fowlpox virus as vaccine for influenza in chickens.Vaccine, 1991,9(5):303-8.
    [9] Beard C W, Schnitzlein W M,Tripathy D N.Protection of chickens against highly pathogenic avian influenza virus (H5N2) by recombinant fowlpox viruses.Avian Dis,1991,35(2):356-9.
    [10] De B K,Shaw M W, Rota P A,et al.Protection against virulent H5 avian influenza virus infection in chickens by an inactivated vaccine produced with recombinant vaccinia virus.Vaccine,1988,6(3):257-61.
    [11] Fauquet C M,Mayo M A,Maniloff J,et al.Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses.Califonia:Virology division international union of microbiological societies,elsevier academic press,2005.
    [12] Sternberg N,Sauer B,Hoess R,et al.Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation.J Mol Biol,1986,187(2):197-212.
    
    [13] Stemberg N,Hamilton D,Hoess R.Bacteriophage P1 site-specific recombination. II. Recombination between loxP and the bacterial chromosome.J Mol Biol, 1981,150(4):487-507.
    
    [14] Sternberg N,Hamilton D.Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites.J Mol Biol,1981,150(4):467-86.
    
    [15] Meseda C A,Schmeisser F,Pedersen R,et al.DNA immunization with a herpes simplex virus 2 bacterial artificial chromosome.Virology,2004,318(1):420-8.
    
    [16] Knight J S,Verma S C,Lan K,et al.Molecular genetics of herpesviruses: a recombinant technology approach.Methods Mol Biol,2004,292:333-52.
    
    
    [17] Ng P,Parks R J,Cummings D T,et al.A high-efficiency Cre/loxP-based system for construction of adenoviral vectors.Hum Gene Ther,1999,10(16):2667-72.
    
    [18] Yoon Y G,Cho J H,Kim S C.Cre/loxP-mediated excision and amplification of large segments of the Escherichia coli genome.Genet Anal,1998,14(3):89-95.
    
    [19] Hardy S,Kitamura M,Harris-Stansil T,et al.Construction of adenovirus vectors through Cre-lox recombination.J Virol,1997,71(3):1842-9.
    
    [20] Leslie N R,Sherratt D J.Site-specific recombination in the replication terminus region of Escherichia coli: functional replacement of dif.Embo J, 1995,14(7): 1561-70.
    [1] Saif Y M,Barnes H J,Glisson J R.Disease of poultry. 11th ed.,Iowa:Iowa State University Press,2002.135-160.
    [2] 张小荣,焦新安,潘志明,等.以减毒沙门氏菌运送的H5亚型禽流感病毒DNA疫苗的构建及其对小鼠的免疫原性.微生物学报,2004,44(2):157-161.
    [3] 乔传玲,姜永萍,于康震,等.共表达禽流感病毒HA和NA基因的重组禽痘病毒在SPF鸡的免疫效力试验.中国农业科学,2004,37(4):605-608.
    [4] 贾立军,彭大新。张艳梅,等.H5亚型禽流感重组鸡痘病毒活载体疫苗的构建及其遗传稳定性与免疫效力.微生物学报,2003,43(6):722-727.
    [5] Luschow D,Werner O,Mettenleiter T C,et al.Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene.Vaccine,2001,19(30):4249-59.
    [6] Swayne D E,Garcia M,Beck J R, et al.Protection against diverse highly pathogenic H5 avian influenza viruses in chickens immunized with a recombinant fowlpox vaccine containing an H5 avian influenza hemagglutinin gene insert.Vaccine,2000,18(11-12): 1088-95.
    [7] Swayne D E,Beck J R, Mickle T R.Efficacy of recombinant fowl poxvirus vaccine in protecting chickens against a highly pathogenic Mexican-origin H5N2 avian influenza virus.Avian Dis, 1997,41 (4):910-22.
    [8] 王贵华,金梅林,陈焕春.RT-PCR快速诊断禽流感.中国预防兽医学报,2004,26(1):67-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700