高频感应钎焊金刚石砂轮的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石磨料具有硬度高、导热性、耐磨性好等优良的性能,因此金刚石工具在石材、硬质合金、玻璃、陶瓷等硬脆材料的加工中获得了广泛的应用。然而传统的多层烧结与单层电镀金刚石砂轮由于结合剂对金刚石磨粒的把持强度低且容屑空间小,金刚石工具的优势未得以充分发挥。钎焊金刚石工具由于实现了金刚石与活性钎料的冶金结合,因此钎料对金刚石磨粒有很强的把持力,且磨粒间容屑空间大。本课题利用感应钎焊工艺研制了磨粒有序排布的单层钎焊金刚石砂轮。
     本文完成的研究工作主要包括:
     (1)研制了一套感应钎焊工艺试验装置,根据感应加热设备与线圈间阻抗匹配的要求,通过实验测量及理论计算设计了相应的感应加热线圈,制作了感应钎焊气体保护装置。在分析强磁场干扰下热电偶输出电势信号的基础上设计了相应的信号调理电路,获得了准确的钎焊温度信号,结合模糊控制方法开发了基于虚拟仪器的感应钎焊温控系统,为研究金刚石感应钎焊工艺奠定了基础。
     (2)利用扫描电镜、能谱仪和X射线衍射仪分析了钎焊工艺参数对金刚石界面化合物和微观结构的影响,结合不同钎焊工艺时金刚石磨粒的静态抗压强度及钎焊试样磨削花岗石的研究,获得了优化的钎焊工艺,磨削花岗石的实验同时也表明感应钎焊金刚石工具比炉中钎焊金刚石工具有更优异的加工性能。
     (3)研制了局部感应加热条件下连续感应钎焊金刚石砂轮的装置,利用带导磁体的平面线圈实现钎焊部位的局部加热,结合工件的连续旋转完成了金刚石砂轮的感应钎焊过程,该工艺的特点是砂轮表面钎料熔化区域窄,金刚石磨粒在钎焊时不易发生移位,易于获得磨粒有序排布的金刚石砂轮。
     (4)利用感应钎焊金刚石砂轮进行了硬质合金的磨削试验研究,并与同规格的电镀金刚石砂轮进行了对比实验。结果表明,单层钎焊金刚石砂轮较为锋利,相对于电镀金刚石砂轮有更长的工具寿命。对磨削过程中金刚石磨粒的磨损状态进行跟踪观察,结果发现钎焊金刚石的磨损机理主要是磨耗磨损,试验中未出现磨粒脱落,表明采用感应钎焊工艺制作的单层金刚石砂轮对磨粒有很强的把持力,有助于充分发挥超硬磨料本身的加工性能。
Diamond tools have been extensively utilized in grinding hard and brittle materials such as stone, tungsten carbide, glass and ceramics, because of the excellent performances of Diamond abrasive, including extremely high-hardness, high-thermal conductivity, high-wearing feature and so on. However, owing to the limited storage space for chips and poor bonding force between diamond grits and matrix, it is not cost-effective with traditional multiplayer sintered and monolayer electroplated Diamond tools. Due to the chemical metallurgical reaction between grains and matrix, brazing diamond tools have sufficient storage space for chips and high bonding strength between diamonds and brazing filler. The monolayer diamond grinding wheels with rhythmed grain distribution are developed with induction brazing.
     The main contents in this paper are as follows:
     1. Experiment platform for high-frequency induction brazing diamond has been established, including inductor suitable to induction heating power, inertia gas protecting device. Based on the analysis of signal characteristics of thermocouple under strong electromagnetic disturbance, a real thermal potential representing the brazing temperature was obtained through the processing of signal conditioning circuit designed to regulate the measured signal, a temperature control system based fuzzy-control and virtual instrument was developed, the preparative work laid foundation of induction brazing process.
     2. The reaction products and the interfacial microstructure under the different conditions have been detected by scanning electron microscope (SEM), energy dispersion spectrometer (EDS), and X-ray diffraction (XRD), which combining with the tests of grinding granite and the compressive strength of the grain, processing parameters are recommended for brazing diamond with Ni-Cr filler alloy under high frequency induction heating. Performance of an induction brazed diamond wheel is remarkable than furnace brazed diamond tool while machining granite.
     3. Experiment devices have been designed and illustrated for induction brazing of diamond wheels, the method of local heating combine with continual revolving of the workpiece was adopted to fabricate the grinding wheel by plane inductor fixed with magnetic flux concentrator. During the process of induction brazing, small melting area of brazing filler alloy on the grinding wheel was achieved, the diamond grains could hardly be removed from their original position, which was key to acquire the monolayer diamond grinding wheels with rhythmed grain distribution.
     4. Experiments of grinding tungsten carbide were conducted to measure the grinding forces under different grinding parameters, and compared with the electroplated Diamond wheel. The experiment results illustrated the lower grinding force, and longer life could be reached with induction brazing diamond wheel than electroplated grinding wheel. Worn behaviour of the brazing diamond grits are traced in the whole grinding process, the fallout of Diamond grits was not found and the abrasion wear was the leading worn patterns of diamond grits, which indicates that the strong joining to the grains has been realized in the induction brazing, it will benefit to utilize the outstanding machining ability of Diamond superabrasive grains.
引文
[1]王秦生.超硬材料制造.北京,中国标准出版社,2001
    [2]任敬心,康仁科.难加工材料的磨削,北京,国防工业出版社,1999
    [3]郭志猛,宋月清,陈宏霞,等.超硬材料与工具,北京,冶金工业出版社,1996
    [4]段明扬,王子文,杨玲.硬质合金刀具刃磨,北京,机械工业出版社,1991
    [5]万隆,陈石林,刘小磐.超硬材料与工具,北京,化学工业出版社,2006
    [6]肖冰.单层超硬磨料工具高温钎焊的基础研究,[博士学位论文],南京,南京航空航天大学,2001
    [7]李晨辉,熊惟皓,吕海波.Cr在金刚石工具胎体材料中的应用,粉末冶金技术,2001,19(6):343~347
    [8]秦喜杰,殷声,赖和怡.金刚石工具胎体材料中碳化物形成元素的行为,粉末冶金技术,1992,10(2):87~91
    [9]徐西鹏,黄文德.稀土在金刚石圆锯片节块烧结中的作用.稀土,1997,18(1):25~28
    [10] Y.H. Wang, J.B Zang, M.Z. Wang, etc. Properties and applications of Ti-coated diamond grits, Journal of Materials Processing Technology, 2002, 129: 369~372
    [11] X.F. Liu, Y.Z. Li. The microanalysis of the bonding condition between coated diamond and matrix, International Journal of Refractory Metals & Hard Materials, 2003, 21: 119~123
    [12]刘雄飞,陈凡,吕海波.金刚石镀膜对金刚石强度以及与胎体结合性能的影响,粉末冶金技术,1997,15(3):182~185
    [13]汤凤林,杨凯华,段隆臣.金刚石表明金属化(镀膜)的试验研究,探矿工程,2000,5:14~17
    [14]王明智,王艳辉,臧建兵.微蒸发镀Ti或Ti-Cr合金对工具烧制过程中金刚石的保护作用,金刚石与磨料磨具工程,1996,1(91):7~9
    [15]臧建兵,赵玉成,王明智.超硬材料表面镀覆技术及应用,金刚石与磨料磨具工程,2000(3):8~12
    [16]臧建兵,赵玉成,王明智.超硬材料表面镀覆技术及应用(续),金刚石与磨料磨具工程,2000(4):7~12
    [17]王秦生.超硬材料电镀制品,北京,中国标准出版社,2001
    [18] Yundong Li, Anqing Zhao, Baoan Wang, etc. Matrix microstructure deteriorations resultingfrom diamond incorporation in electroplated metal-diamond composites, Surface & coatings technology, 2008, 202: 1357~1363
    [19] A.K. Chattopadhyay, H.E. Hintermann. New generation superabrasive tool with monolayer configuration, Diamond and Related Materials, 1992, 1: 1131~1143
    [20] A.K. Chattopadhyay, L. Chollet, H.E. Hintermann. On performance of brazed bonded monolayer diamond grinding wheel, Annals of the CIRP, 1991, 40(1): 347~350
    [21]林增栋.钎焊法制造单层金刚石工具的研究,金刚石与磨料磨具工程,2004,6:1~5
    [22]傅玉灿,徐鸿钧.一种适于国内引进开发的新型超硬磨料砂轮—国外单层高温钎焊超硬磨料砂轮制造技术述评,中国机械工程,1999,10(4):375~377
    [23]卢金斌.金刚石钎焊机理与工艺基础研究,[博士学位论文],南京,南京航空航天大学,2004
    [24]张风林,周玉梅,付凯旋,等.Cr、Ti金属粉改善Ag-Cu-Zn合金对金刚石的钎焊性能研究,金刚石与磨料磨具工程,2007,3(159):22~25
    [25] Chattopadhyay A. K, Hintermann H. E. Induction Brazing of Diamond with Ni-Cr Hardfacing Alloy Under Argon Atmosphere. Surface and Coating Technology, 1991, 45: 293~298
    [26] Chattopadhyay A. K, Hintermann H. E. Experimental Investigation on Induction Brazing of Diamond with Ni-Cr Hardfacing Alloy under Argon Atmosphere. Journal of Materials Science, 1991, 20: 5093~5100
    [27] A. Trenker,H. Seidemann. High-vacuum brazing of diamond tools, Industrial Diamond Review, 2002, 1: 49~51
    [28] F.A. Khalid, U.E. Klotz, H.-R. Elsener, etc. On the interfacial nanostructure of brazed diamond grits, Scripta Materialia, 2004, 50: 1139~1143
    [29]马楚凡.一种牙科单层高温钎焊金刚石砂轮的研制,金刚石与磨料磨具工程,2002,2:1~4
    [30]孙凤莲,冯吉才,刘会杰,等.Ag-Cu-Ti钎料中Ti元素在金刚石界面的特征,中国有色金属学报,2001,11(1):103~106
    [31]林增栋.钎焊法制造金刚石单层工具的研究,金刚石与磨料磨具工程,2004,141(3):1~4
    [32]孟卫如,徐可为,杨吉军,等.金刚石工具真空钎焊钎料的适应性,焊接学报,2004,25(1):80~82
    [33] S.F. Huang, H.L. Tsai, S.T. Lin. Effects of Brazing Route and Brazing Alloy on theInterfacial Structure between Diamond and Bonding Matrix. Material Chemistry and Physics, 2004, 2(84): 251~258
    [34]肖冰,武志斌,徐鸿钧. Ni-Cr合金真空钎焊金刚石砂轮的研究,机械科学与技术, 2001,20(6):888~889
    [35]肖冰,徐鸿钧,武志斌. Ni-Cr合金真空钎焊金刚石砂轮,焊接学报,2001,22(2):23~26
    [36] Y.C. Fu, B. Xiao, J.H. Xu, et al. Machining performance of monolayer brazed diamond tools, Key Engineering Materials, 2004, 259: 73~77
    [37]马伯江.金刚石磨粒高频感应钎焊的基础研究,[博士学位论文],南京,南京航空航天大学,2005
    [38]俞勇祥.感应加热技术的应用与发展,今日科技,1999,9:4~5
    [39]刘志儒.金属感应热处理,北京,机械工业出版社,1985
    [40]潘天明.现代感应加热装置,北京,冶金工业出版社,1996
    [41]李恩琪,殷经星,张武成.铸造用感应电炉,北京,机械工业出版社,1997
    [42]唱鹤鸣,杨晓平,张德怠.感应炉熔炼与特种铸造技术,北京,冶金工业出版社,2002
    [43]张增志,韩桂泉,付跃文,等.高频感应熔覆Ni60合金粉末涂层的研究,金属热处理,2003,28(3):43~46
    [44]张增志.高效快速感应熔涂技术,北京,冶金工业出版社,2001
    [45]邹僖.钎焊(第2版),北京,机械工业出版社,1989
    [46] T. Noda, T. Shimizu, M. Okabe, etc. Joining of TiAl and steels by induction brazing, Materials Science and Engineering A, 1997, 239: 613~618
    [47]薛忠明,王奇娟,曲文卿,等.钛合金与不锈钢高频感应钎焊工艺试验研究,航天制造技术,2004,6:31~35
    [48]王适,张弘弢,于宏图.聚晶金刚石复合片高频感应钎焊的试验研究,工具技术,2002,36(8) :19~22
    [49]约翰·戴维斯,彼德·辛普森著,张淑芳译.感应加热手册,北京,国防工业出版社,1985
    [50]沈庆通.感应热处理问答,北京,机械工业出版社,1990
    [51]陈永勇.感应热处理技术的发展,热处理,2004,19(4):7~11
    [52]沈庆通.淬火感应器设计与制造的新发展,金属热处理,1998(6):1~3
    [53]高迎慧,彭咏龙.感应加热电源的负载匹配方案,电源技术应用,2004,7(7):426~430
    [54]刘红艳.中频感应加热负载分析,工业加热,1999(5):35~39
    [55]张宝生,焦向东,吕涛,等.高温测量技术及其在焊接研究中的应用进展,北京石油化工学院学报,2006,14 (2):47~51
    [56]刘占增,曾汉生,丁翠娇.红外辐射温度测量技术,武钢技术,2006,44 (1):21~24
    [57]黄泽铣.热电偶原理及其标定,北京,中国计量出版社,1993
    [58]张锦霞.热电偶使用、维修与检定技术问答,北京,中国计量出版社,2003
    [59]王适.金刚石热稳定性及其刀具受热损伤的研究,[博士学位论文],大连,大连理工大学,2003
    [60]孙毓超,刘一波,王秦生.金刚石工具与金属学基础,北京,中国建材工业出版社,1999
    [61]郑文榜.工频感应电炉微机控制系统,工业加热,1993,6:20~23
    [62]朱刚,尤昌德,冀春生.感应加热工件表面温度闭环控制研究及实现,西安交通大学学报,1997,31(1):94~98
    [63]李国宽,汪秉文,李国安,等.模糊控制在高频感应加热中的应用,中国机械工程,1996,7(1):66~68
    [64] Z.R. Radakovic, V.M. Milosevic, S.B. Radakovic. Application of Temperature Fuzzy Controller in An Indirect Resistance Furnace, Applied Energy, 2002, 73(2): 167~182
    [65] Odejobi A. Odetunji, Owolarafe O. Kehinde. Computer Simulation of Fuzzy Control System for Gari Fermentation Plant, Journal of Food Engineering, 2005, 68(2): 197~207
    [66] Ramirez Mercedes, Haber Rodolfo, Pena Victor. Fuzzy Control of A Multiple Hearth Furnace, Computers in Industry, 2004, 54(1): 105~113
    [67]陈景武,齐铂金,赵晶.利用MATLAB设计感应钎焊温度模糊控制系统,自动化与仪表,2001,16(6):18~21
    [68]郭剑鹰,吕恬生.模糊感应加热控制器设计,机械加工与自动化,2001(12):2~4
    [69]周尚祥,华勤,李仁兴,等.高频感应加热设备温度控制系统的设计,铸造技术,2004,25(4):236~237
    [70]周生国.机械工程测试技术,北京,北京理工大学出版社,1993
    [71]李世平,韦增亮,戴凡. PC计算机测控技术及应用,西安,西安电子科技大学出版社,2003
    [72]李福山,汪金龙.热电偶测温的冷端补偿技术及其实现,郑州工学院学报,1995,16(4):15~18
    [73]蔡兵.基于集成温度传感器的热电偶冷端补偿方法,传感器技术,2005,24(11):18~20
    [74]赵继文.传感器与应用电路设计,北京,科学出版社,2002
    [75]杨乐平,李海涛,肖凯,等.虚拟仪器技术概述,北京,电子工业出版社,2003
    [76]张毅刚,乔立岩.虚拟仪器软件开发环境LabWindows/CVI6.0编程指南,北京,机械工业出版社,2002
    [77]刘君华.虚拟仪器编程语言LabWindows/CVI教程,北京,电子工业出版社,2001
    [78]薛钧义,武自芳.微机控制系统及其应用,西安,西安交通大学出版社,2003
    [79]毕永利,王连明,葛文奇.光电稳定平台控制系统中数字滤波技术研究,仪表技术与传感器,2005(4):54~57
    [80]陈景武.超音频感应钎焊中数字化温度控制的研究,[硕士学位论文],北京,北京航空航天大学,2002
    [81]诸静.模糊控制原理与应用,北京,机械工业出版社,2003
    [82]李国宽,汪秉文,李国安,等.模糊控制在高频感应加热中的应用,中国机械工程,1996,7(1):66~68
    [83]郭剑鹰,吕恬生.模糊感应加热控制器设计,机械加工与自动化,2001(12):2~4
    [84] M.F. Arenas, V.L. Acoff, R.G. Reddy. Physical properties of selected brazing filler metals, Science and Technology of Welding and Joining, 2004, 9(5): 423~429
    [85] Chen S. M, Lin S. T. Brazing Diamond Grits onto a Steel Substrate Using Copper Alloys as the Filler Metals. Journal of Materials Engineering and Performance, 1996, 6(5): 761~766
    [86]陈建毅,黄辉,徐西鹏.钎焊超硬磨料工具的研究进展,工具技术,2007,2(41):9~14
    [87]鲍春东,扬慧,徐雪波,等.提高单层金刚石钎焊砂轮综合性能途径及分析.焊接技术,2002,31(6):4-6
    [88]臧建兵,王艳辉,王明智.金刚石热稳定性的几个方面和影响因素的探讨,金刚石与磨料磨具工程,1997,5(101):5~7
    [89]李文超.冶金热力学(第2版),北京:冶金工业出版社,1995
    [90]张斌,李延举,贾非,等.交流电磁场作用下液体金属液面稳定性的研究,铸造技术,2002,23(6):388~389
    [91] Valery I. Rudnev. Elecetromagnetic forces in induction heating, Heat treating Progress, 2005, 25~29
    [92]徐瑞.材料热力学与动力学,哈尔滨,哈尔滨工业大学出版社,2003
    [93] Q.S. Chen, P. Gao, W.R. Hu. Effects of induciton heating on temperature distribution and growth rate in Large-size SIC growth system, Journal of Crystal Growth, 2004, 266: 320~326
    [94] X.P. Xu. Study on thermal wear of diamond segmented tools in circular sawing of granites,Tribology Letters, 2001, 10(4): 245~250
    [95] H.K. T?shoff, J. Asche. Wear of metal-bond diamond tools in the machining of stone. Industrial Diamond Review, 1997, 1:7~13
    [96]徐西鹏,沈剑云,黄辉,等.花岗石加工用金刚石-金属复合材料磨损机理研究,复合材料学报,1998,15(1):101~107
    [97]杨伟光,李晨,吴振芳等.金刚石工具磨损形式的观察与分析,粉末冶金技术,1995,13(1):14~20
    [98]王成勇,谭哲丽,魏昕,等.金刚石圆锯片节块在花岗石锯切过程中磨损形态及影响因素,金刚石与磨粒磨具工程,1995,5(89):9~13
    [99]沈庆通.感应器节能与制造技术,金属热处理,2003,28(8):38~44
    [100]高淑清译.磁通量集中器的神奇性、现实性和益处,国外金属热处理,1996,17(3):29~34
    [101]王滨生.块状导磁体窄深度卡尺感应加热中的应用,金属热处理,2007,32(5):82~83
    [102]邓益中,姚玲珍.感应加热与导磁体的发展,国外金属热处理,2002,23(4):6~8
    [103]朱会文,胡晓平,许建芳.导磁体在汽车零件感应加热中的应用技术,热处理,2003,18(4):36~42
    [104]沈庆通,张宗杰.强力感应器与导磁体的发展,金属热处理,2001,26(8):47~49
    [105]傅莉,高大路,段立宇.高强度摩擦焊接头感应加热区宽度窄化技术,金属热处理,2002,27(6):50~52
    [106] A. E. Fitzgerald, Charles Kingsley, Jr. etc.电机学(第六版),电子工业出版社,2004
    [107]赵雨,王锦辉,刘公强,等.锰锌铁氧体的磁损耗研究,上海交通大学学报,2005,39(12):2102~2104
    [108]李小银.轴承套圈中频感应淬火导磁体的改进,金属热处理,2001,(5):38~39
    [109]赵先仲.机电系统设计,北京,机械工业出版社,2004
    [110]张连生.金属材料焊接,北京,机械工业出版社,2004
    [111]徐灏.密封,北京,冶金工业出版社,2002
    [112]王国栋.硬质合金生产原理,北京,冶金工业出版社,1998
    [113]白佳声,章文宝.硬质合金材料的性能特点及其发展应用前景,上海金属,2001,23(6):10~13
    [114]陆剑中.金属切削原理与刀具(第4版),北京,机械工业出版社,2005
    [115]任敬心,华安定.磨削原理,西安,西北工业大学出版社,1988
    [116] Hwang T. W, Evans C. J, Whitenton E. P and Malkin S.‘‘High Speed Grinding of SiliconNitride with Electroplated Diamond Wheels, Journal of Manufacturing Science and Engineering, 2000, 122: 32~40
    [117] T.W. Hwang, C.J. Evans, S. Malkin, et al. High speed grinding of silicon nitride with electroplated diamond wheels, Journal of Manufacturing Science and Engineering, 2000, 122(2): 42~50
    [118] S. Malkin.磨削技术与理论(蔡光起译),沈阳,东北大学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700