高温钎焊金刚石磨料热损伤分析及其控制对策的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温钎焊单层金刚石工具具有磨粒出露高、容屑空间大、磨粒把持强度高等特点,因此具有高锋利度、高加工效率和磨料利用充分等性能优势,在难加工材料高效、重负荷加工中已显示出传统金刚石工具无法比拟的优异性能。但在其推广应用中发现现有的单层钎焊金刚石工具存在磨料非正常损耗的现象,包括在磨料顶部出现的过大的磨耗平台和较为频繁发生的微破碎、小块破碎和大块崩裂现象,偶尔在重负荷加工中还能观察到磨料原本出露的部分在钎料爬升高度的位置上被齐根切断,形成火山口状形貌。种种现象表明磨料在钎焊时已受到不同程度的热损伤。
     本文在分析国内外关于高温钎焊金刚石工具研究现状的基础上,围绕钎焊金刚石的热损伤形式、机理及控制等关键问题开展了深入的基础研究工作,并成功地研制了少无热损伤的钎焊单层金刚石工具,为开发新一代钎焊金刚石工具开辟了新途径。
     本文完成的具有创新意义的研究工作主要包括:
     (1)通过对现有工艺条件下,镍基钎料真空钎焊金刚石表面形貌的观察和分析以及焊后金刚石力学性能(静压强度、冲击强度与耐磨性)的测试,提出了钎焊高温、化学侵蚀及金刚石工作面上的残余拉应力是导致钎焊金刚石热损伤的主要因素。
     (2)开发了氩气保护条件下镍基钎料钎焊金刚石的新工艺方法。钎焊金刚石中没有出现微裂纹,耐磨性能下降较小。该工艺方法由于减小了镍基钎料的硬度,钎焊残余应力也随之减小。
     (3)采用自主研制的新型银基活性钎料真空钎焊金刚石试验进一步减小了钎焊金刚石的热损伤。钎焊金刚石表面没有出现石墨化与微裂纹;力学性能测试结果表明焊后金刚石基本上保持焊前的力学性能。
     (4)通过套料钻的对比加工试验表明,由于减小了钎焊金刚石的热损伤,镍基钎料氩气保护钎焊与银基活性钎料真空钎焊金刚石套料钻较镍基钎料真空钎焊金刚石套料钻具有更长的寿命,且钎焊金刚石磨损形式以正常磨耗为主。通过控制钎焊金刚石热损伤,研制的新一代钎焊金刚石工具可在确保对磨料的高结合把持强度的同时确保磨料在焊后仍可保持磨料原有强度、硬度和耐磨性。因此,课题研究成果的后续推广应用有望加快单层钎焊金刚石工具工业化生产的进程。
With the features of high grain protrusion, large swarf clearance space and high bonding strength, brazed monolayer diamond tools have the advantages of high sharpness, machining efficiency and grains utilization ratio. Thus, brazed monolayer diamond tools are superior in high efficiency and heavy duty processing of difficult-to-cut materials to conventional diamond tools. But, there exit abnormal attrition of grains such as big wear flat, frequent micro-fracture and macro-fracture in the coarse of application. Occasionally, the grains are broken on the location of grain protrusion and the crater-shaped appearance is formed. These phenomena show that brazed diamond grains have suffered thermal damaged in brazing process.
     Based on the analysis of present research status of brazed monolayer diamond tools at home and abroad, the thermal damage forms, mechanism and control strategy of brazed diamond are studied. And the new-type brazed monolayer diamond tools with little thermal damage have been successfully developed.
     The main creative contents in this paper are summarized as follows:
     (1) The surface morphologies of the bazed diamond grits with Ni-based filler alloy by vacuum brazing are analyzed, and the as-brazed mechanical properties (such as static compressive strength, impact toughness and wear resistance) are tested. The results show that the key factors resulted thermal damage of brazed diamond are high brazing temperature, chemical erosion and brazing tensile residual stress.
     (2) The novel process of furnace brazing diamond under argon atmosphere has been developed. There is not any micro crack on the surface of diamond grits. Furthermore, the wear resistance of breazed diamond decreases slightly in comparison to the wear resistance of original diamond. Due to decreasing the strength of Ni-based filler alloy, the brazing residual stress in the brazed diamond is decreased.
     (3) The thermal damage of brazd diamond is further decreased by vacuum brazing with the self-developed new-type Ag-based filler alloy. There don’t exit micro cracks and graphite on the surface of brazed diamond. The test results of mechanical properties show that the brazed diamond has the same excellent mechanical property as original diamond.
     (4) By the comparison machining tests, the service life of brazed diamond core drills made by furnace brazing under argon atmosphere with Ni-based filler alloy and by vacuum brazing with new-type Ag-based filler alloy are longer than those made by vacuum brazing with Ni-based filler alloy. Furthermore, the attrition form of former brazed diamond core drills is a normal wear.
     Owe to the effective control of the thermal damage of brazed diamond, the new-type brazed monolayer diamond tools could not only have the high bond strength, but also have the same advantage in strength, hardness and wear resistance as original diamond. Thus, the application of research result in this paper can promote industrialization of brazed monolayer diamond tools.
引文
[1] H.J. Xu, Y.C. Fu, B. Xiao, et al. Fabrication of monolayer brazed diamond tools with optimum grain distribution. Key Engineering Materials, 2004,259:6-9
    [2]傅玉灿,徐鸿钧.一种适于国内引进开发的新型超硬磨料砂轮-国外单层高温钎焊超硬磨料砂轮制造技术述评.中国机械工程,1999, 10(4):375-377
    [3] Inasaki I, howes T D. Abrasive machining in the future. Annals of the CIRP, 1993, 42(2): 723~731
    [4] Albert Huizing, Hubert Jan Van Daal. Method of joining diamond to metal. US Patent B23K35/30C, 3192620,1965-07-06
    [5] Chattopadhyay A. K, Chollet L., Hintermann H. E. Experimental investigation on induction brazing of Diamond with Ni-Cr Hardfacing Alloy Under Argon Atmosphere. Journal of materials science, 1991, 26:5093-5100
    [6] Chattopadhyay A. K, Chollet L., Hintermann H. E. On performance of brazed monolayer diamond grinding wheel. Annals of the CIRP, 1991, 40(1):347-350
    [7] Chattopadhyay A. K, Hintermann H. E. Induction Brazing of Diamond with Ni-Cr Hardfacing Alloy under Argon Atmosphere. Surface and Coating Technology, 1991, 45: 293-298
    [8] Hintermann H. E, Chattopadhyay A. K. New Generation Superabrasive Tool with Monolayer Configuration. Diamond and Related Materials, 1992(1):1131-1143
    [9] Suzumura, Akio and Yamazaki. Solidification Phenomena and Bonding Strength at the Interface of Diamond and Active-Metal-Brazing-Filler. Welding Society, 1994, 4(12): 509-514
    [10] Kuo Cheng, Tzu Lin. Brazing Characteristics of Diamond on Various Substrates with Different Brazing Alloys. Proceedings of the 1995 MRS Meeting, San Francisco, CA, USA. 1995:17-20
    [11] Chen S. M, Lin S. T. Brazing Diamond Grits onto a Steel Substrate Using Copper Alloys as the Filler Metals. Journal of Materials Engineering and Performance, 1996, 6(5):761-766
    [12] China Grinding Wheel Corporation. Brazed beads with diamond grit for wire sawing. IRD, 1998, 4:l34-136
    [13] C. M. Sung. Brazed Diamond Grid: A Revolutionary Design for Diamond saws. Diamondand Related Materials,1999,8:1540~1543
    [14] Lowder James T, Tausch Edwin M. Method of manufacturing diamond abrasive tools. US patent B23K1/19, 3894673, 1975-07-15
    [15] Wiand Ronald C. Brazing of diamond. US Patent B24D3/00D, 4776862, 1988-10-11
    [16]林增栋.钎焊法制造金刚石单层工具的研究.金刚石与磨料磨具工程,2004, 141(3):1-5
    [17]肖冰,徐鸿钧,武志斌等. Ni-Cr合金真空单层钎焊金刚石砂轮.焊接学报, 2001,22(2):23-26
    [18]姚正军,徐鸿钧,肖冰,等.Ni-Cr合金Ar气保护炉中钎焊金刚石砂轮的研究.中国机械工程,2001,12(8):956~958
    [19]武志斌,徐鸿钧,姚正军等.NiCr合金钎焊单层金刚石砂轮界面结构的研究.应用科学学报. 2002,20(1):10-13
    [20]卢金斌,徐九华,徐鸿钧等.Ni-Cr合金真空钎焊金刚石界面反应的热力学与动力学分析.焊接学报, 2004,25(1):21-24
    [21]卢金斌,徐九华,徐鸿钧等. Ni-Cr合金真空钎焊金刚石界面微结构分析.机械科学与技术, 2004,23(7):832-833
    [22]武志斌,徐鸿钧,姚正军等.钎焊单层金刚石砂轮的现存问题及其对策.焊接学报,2001,22(3):36-38
    [23]马伯江,徐鸿钧,傅玉灿等.高频感应钎焊金刚石界面特征.焊接学报, 2005,26(3):50-54
    [24]马伯江,徐鸿钧,傅玉灿.两种钎焊金刚石工具微观结构的对比分析.机械工程材料,2005,29(7):10-13
    [25]肖冰.单层超硬磨料工具高温钎焊的基础研究, [博士学位论文],南京,南京航空航天大学, 2001
    [26]卢金斌.金刚石钎焊机理与工艺基础研究, [博士学位论文],南京,南京航空航天大学, 2004
    [27]马伯江.金刚石磨粒高频感应钎焊的基础研究, [博士学位论文],南京,南京航空航天大学, 2005
    [28]杨志波.金刚石磨粒激光钎焊工艺与机理研究, [博士学位论文],南京,南京航空航天大学, 2007
    [29]孟卫如,徐可为,杨吉军等.金刚石工具真空钎焊钎料的适应性.焊接学报, 2004,25(1): 80-82
    [30] Sheng-Fang Huang, Hsien-Lung Tsai, Shun-Tian Lin. Effects of Brazing Route and Brazing Alloy on the Interfacial Structure between Diamond and Bonding Matrix. MaterialChemistry and Physics, 2004, 2(84):251-258
    [31] Lowder James T, Wielonski Roy F, Georage Kostal. Method of making monolayer abrasive tools. US patent B23K35/32, 5492771, 1996-02-20
    [32] U.E. Klotz, F.A. Khalid H.-R. Elsener. Nanocrystalline phases and epitaxial interface reactions during brazing of diamond grits with silver based Incusil-ABA alloy. Diamond and Related Materials. 2006, 15:1520–1524
    [33] T. Yamazaki, A. Suzumura. Role of reaction product in the solidification of Ag-Cu-Ti filler for brazing diamond. Journal of materials science, 1998, 33:1379–1384
    [34]关砚聪,陈玉全,姚德明.金刚石磨粒用钎料的研制及钎焊工艺.农业机械学报,2005, 36(7):140-143
    [35]关砚聪,陈玉全,姚德明.Ag-Cu-Ti钎料钎焊单晶金刚石磨粒的研究.金刚石与磨料磨具工程,2005, 147(3):23-25
    [36]钟建平,王明智,王艳辉.复合镀钛—镍金刚石的钎焊工艺.金刚石与磨料磨具工程,2001. 5 (125):31-32
    [37]孙凤莲,冯吉才,刘会杰等.Ag-Cu-Ti钎料中Ti元素在金刚石界面的特征.中国有色金属学报, 2001, 11(1):103-106
    [38]卢金斌,徐九华.Ag-Cu-Ti钎料钎焊金刚石的界面微观组织分析.焊接学报, 2007, 28(8):29-32
    [39] Shiue Ren-kae, Eagar Thomas W, Miller Bradley J, et al. Removable bond for abrasive tool. US patent B24D3/06, 6245443, 1998-03-05
    [40] F.A. Khalid, U.E. Klotz, H.-R. Elsener et al. On the interfacial nanostructure of brazed diamond grits. Scripta Materialia. 2004, 50:1139–1143
    [41] Ulrich E. Klotz, Chunlei Liu, Fazal A. Khalid, et al. Influence of brazing parameters and alloy composition on interface morphology of brazed diamond. Materials Science and Engineering A 2008, 495(1~2):265~270
    [42] Wen-Chung Li, Cheng Liang, Shun-Tian Lin. Epitaxial interface of nanocrystalline TiC formed between Cu-10Sn-15Ti alloy and diamond[J]. Diamond and Related Materials. 2002, 11:1366–1373
    [43] A. Trenker, et al. High vacuum brazing of diamond tools. Industrial Diamond Review,2001(1):49-51
    [44]徐鸿钧.新一代超硬磨料工具技术.中国超硬材料,2005, 2(42):9~13.
    [45] Chien-Min Sung, Ming-Fong Tai. Reactive of transition metals with carbon: impications tomechanisms of diamond synthesis under high pressure. International journal of refractory metal & hard meterials, 1997,15:237-256
    [46]方啸虎.超硬材料科学与技术.北京:中国建材工业出版社, 2000
    [47] Harrington J.A, Harley R.T, Walker C.T. Raman scattering by localized modes. Solid state common, 1970(8):407
    [48] F. P. Bundy, W. A. Bassett. M. S. Weathers, R. J. Hemley, H. K. Mao and A. F. Goncharov. The pressure-temperature phase and transformation diagram for carbon:updated through 1994. Carbon, 1996, 2 (34):141-153
    [49] K.T. Jacob. Determination of the Gibbs energy of diamond using a solid state cell. Solid State Communications, 1995, 94(9): 763-765
    [50]邓福铭.超高压高温烧结中金刚石表面石墨化过程再研究.高压物理学报, 2001, 15(3): 235-239
    [51] Mc Swain R H, Bates C E.控制铸铁中石墨形成的表面能与界面能的关系[C].铸铁冶金学,北京:机械工业出版社, 1983:280
    [52]万隆,陈石林,刘小磐.超硬材料与工具.北京:化学工业出版社, 2006:95-98
    [53] Borse Dietrich. Method for processing diamond particles. US patent C04B41/91, 5035771, 1991-07-30
    [54]全国磨料磨具标准化技术委员会, JB/T 7988.2-1999,超硬磨料抗压强度测定方法,北京:中国标准出版社, 2001
    [55]臧建兵,王艳辉,王明智.金刚石热稳定性的几个方面和影响因素的探讨.金刚石与磨料磨具工程, 1997,5(101):5-7
    [56]全国磨料磨具标准化技术委员会, JB/T 6571-93,人造金刚石或立方碳化硼冲击韧性测定方法,北京:中国标准出版社, 2001
    [57]韩志华,刘景丰.关于人造金刚石冲击韧性的探讨,金刚石与磨料磨具工程, 1998, 103(1): 16-18
    [58]陈燕,傅玉灿,徐九华等.钎焊金刚石磨料耐磨性能评价装置及评价方法.中国专利,公开号: CN101183064. 2008-05-21
    [59]马伯江,徐鸿钧,傅玉灿等.金刚石磨盘磨削的磨粒损伤特性研究,中国机械工程, 2004, 15(12):1085-1088
    [60]黄辉,张国青,徐西鹏.钎焊金刚石磨粒磨损性能研究,福州大学学报,2005, 33(3):313-317
    [61]关振铎.无机材料物理性能.北京:清华大学出版社, 1992:42
    [62]朱宏喜,毛卫民,冯惠平.织构对CVD自支撑金刚石薄膜残余应变的影响.材料研究学报, 2007, 21(2):32-38
    [63]姜伟;鲁伟员;杨缤维等.浓缩法分析金刚石内的杂质元素.超硬材料工程, 2006, 18(3): 6-11
    [64] Min Ya,Yongmin Xing,Fulong Dai,et al,Study of residual stress in surface nanostructured ALSI 316L stainless steel using two mechanical methods , Surface and Coating Technology,2003,168:148~155.
    [65] Wang Qimin,Shan Baoxiang,Lian Dongxia,Zhang Peiqiang.Measurement of essential mechanical characteristics for MEMS and its components,Journal of Experimental Mechanics,1997,12(4):487~499
    [66] E.Anastassakis,A.Canterero,M.CardonaM,Piezo-Raman measurements and anharmonic parameters in silicon and diamond,Physical Review B,1990,41(11):7529~7535
    [67]杨序纲,吴琪琳.Raman光谱的分析应用.北京:国防工业出版社,2008.
    [68]方容川.固体光谱学.合肥:中国科学技术大学出版社. 2001:5
    [69] Andrea C. Ferrari, John Roberson.碳材料的Raman光谱-从纳米管到金刚石.北京:化学工业出版社. 2007:253-255
    [70] Boppart H, Straatan J V, Silvera I F. Raman spectra of diamond at high pressures. Phys. Rev.B, 1985, 32(2):1 423~1 425
    [71]孙毓超,刘一波,王秦生.金刚石工具与金属性基础.北京:中国建材工业出版社, 1999.10:213
    [72]赵腾伦. ABAQUS 6.6在机械工程中的应用.北京:中国水利水电出版社, 2007
    [73]杨咸启,李晓玲.现代有限元理论技术与工程应用.北京:北京航空航天大学出版社, 2007
    [74]石亦平,周玉蓉. ABAQUS有限元分析实例详解.北京:机械工业出版社, 2006
    [75]庄茁主译. ABAQUS有限元软件6.4版入门指南.北京:清华大学出版社, 1997
    [76]阎承沛.真空热处理工艺与设备设计.北京:机械工业出版社, 1998:14-16
    [77]《工程材料实用手册》编缉委员会.工程材料实用手册第2卷变形高温合金、铸造高温合金.北京:中国标准出版社, 2002.8
    [78]《工程材料实用手册》编辑委员会.工程材料实用手册第1卷结构钢、不锈钢.北京:中国标准出版社, 2002.7
    [79]中国磨料磨具工业公司.磨料磨具技术手册.兵器工业出版社, 1993
    [80] J. Zurek, D.J. Young, E. Essuman, et al. Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases. Materials Science and Engineering: A,In Press.
    [81] Gordon R. Holcomb, David E. Alman. The effect of manganese additions on the reactive evaporation of chromium in Ni–Cr alloys. Scripta Materialia, 2006, 54(10):1821-1825
    [82]张启运,庄鸿寿.钎焊手册.北京:机械工业出版社, 1998
    [83]武志斌,肖冰,徐鸿钧.单层钎焊金刚石砂轮工艺研究初探.机械设计与制造工程, 2001, 30(1):53~54
    [84]肖冰,武志斌,徐鸿钧.银基钎料金刚石砂轮工艺研究.金刚石与磨料磨具工程, 2000, 121(1):4~6
    [85] E·罗格夏特,庄鸿寿.高温钎焊.北京:国防工业出版社, 1989
    [86]汤小文,王子瑜,杨世良.金刚石与钢体的盐浴焊.焊接技术, 1997, 4:24~27
    [87]何德孚.焊接与连接工程学导论(第1版),上海:上海交通大学出版社, 1998
    [88] A.P. Xian. Thermodynamic discussion on Young’s equation in wetting, Zeitschrift Fur Metallkunde. 2000, 91(4):316~322
    [89]陈建,潘复生,顾明元.活性金属/陶瓷润湿机理研究.上海交通大学学报, 2001, 35(3): 364~367
    [90]叶大伦.实用无机材料热力学数据手册(第1版).北京:冶金工业出版社, 1981
    [91]洗爱平.第三组元在金属/陶瓷界面化学浸润中的作用.中国科学(A辑), 1994, 24(3): 323~327
    [92]王秦生.金刚石烧结制品.北京:中国标准出版社, 2000
    [93]丁文锋.镍基高温合金高效磨削用单层钎焊立方氮化硼砂轮的研制. [博士学位论文],南京,南京航空航天大学, 2006
    [94]李荣久.陶瓷——金属复合材料,北京:冶金工业出版社, 2004, 3:407~408
    [95]陆明炯.实用机械工程材料手册,沈阳:辽宁科学技术出版社, 2004
    [96]于伯龄,姜胶东.实用热分析,北京:纺织工业出版社, 1990
    [97]杨富陶,周世平,王海燕等.钛对Ag-Cu合金性能的影响.贵金属, 1999, 20(2):28~29
    [98]中国机械工程学会焊接学会.焊接手册第2卷(第2版).北京:机械工业出版社, 2001
    [99] S. Mandal, V. Rao, A.K. Ray. Characterization of the brazed joint interface between Al2O3 and (Ag-Cu-Ti). Journal of Materials Science, 2004, 39:5587~5590
    [100] H.J. Liu, J.C. Feng, Y.Y. Qian. Microstructure and strength of the SiC/TiAl joint brazed with Ag-Cu-Ti filler metal, Journal of Materials Science Letters, 2000, 19:1241~1242
    [101]蒋成禹,吴铭芳,于治水等. Al2O3/(Ag72Cu28)97Ti3/Ti-6Al-4V界面结构及性能研究,稀有金属材料与工程, 2001, 8(30):264~267
    [102]黄小丽. ZrO2与金属的钎焊连接. [博士学位论文],北京,北京科技大学, 1995
    [103] T. Yamazaki, A. Suzumura. Role of the reaction product in the solidification of Ag-Cu-Ti filler for brazing diamond, Journal of Materials Science, 1998, 33:1379~1384
    [104] M. Nomura, T. Ichimori, C. Iwamoto, et al. Structure of wetting front in the Ag-Cu-Ti/SiC reactive system, Journal of Materials Science, 2000, 35: 3953~3958
    [105]吴铭芳,于治水,祁凯等. Al2O3/Ag-Cu-Ti钎料/Nb连接的微观结构及性能.硅酸盐学报, 2000, 28(5):475~478
    [106] M.P.D. Evelyn. Industrial Diamond. Technical Information Series, 2001
    [107]杨吉军,孟卫如,贺林.拉伸法评价钎料/金刚石单晶颗粒的界面结合特性.金刚石与磨料磨具工程, 2004, 139(1):49~53
    [108]汤小文,王子瑜,杨世良.金刚石与钢体的盐浴焊.焊接技术, 1997, (4):24~26
    [109] T.Yamazaki, A.Suzumura. Relationship between X-ray Diffraction and Unidirectional Solidification at Interface between Diamond and Brazing Filler Metal. Journal of Material Science, 2000, 35:6155~6160
    [110]陆海荣.钎焊金刚石结合强度的测试分析, [硕士学位论文],南京,南京航空航天大学, 2005
    [111]李立明,朱永伟.金刚石节块的抗弯强度分析.河南科学, 2000, 18(4):363~369
    [112]汤东华,洪跃生.钴基结合剂对金刚石把持力的研究.华侨大学学报, 1994, 15(3):353~357
    [113]国家技术监督局. GB11363-89.焊接头强度试验方法.北京:国家技术监督局, 1990
    [114]朱永法,王莉,姚文清等.金刚石颗粒表面Cr金属化及薄膜间界面扩散反应的研究.高等学校化学学报, 2000, 21(8): 1269-1272
    [115]徐超. CVD金刚石厚膜焊接工艺的研究, [硕士学位论文],哈尔滨,哈尔滨理工大学, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700