鱼类适应性免疫系统的早期发生以及Ikaros基因的克隆和表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大多数鱼类从受精卵开始就一直生活在水中,而它们所赖以生存的水环境充满了大量的微生物,无时无刻不对它们进行攻击,产生威胁。成年鱼类在抵御病原物进行自身免疫保护时,先天性免疫系统首先发挥作用,然后是适应性免疫系统发生反应。而作为鱼类的胚胎,各种免疫器官尚未发育成熟,它们是如何成功抵御微生物的侵袭而存活下来的呢?适应性免疫系统又是在什么时期开始具有功能活性的?一直以来,这方面的议题一直是发育免疫学的研究热点。我们实验室之前已经研究了鱼类先天性免疫系统的发生。在此基础上,本文首先在斑马鱼中鉴定了适应性免疫系统标志性基因的表达以及对脂多糖(LPS)的免疫应答,并进行了分析讨论。我们还从重要的养殖鱼类半滑舌鳎中分离出一个免疫相关转录因子Ikaros,并对其进行了分析和表达研究。
     本论文第一部分主要研究了适应性免疫系统的早期发生和发育。我们选择的适应性免疫系统的关键基因是Rag2、AID、TCRAC、IgLC-1、mIg、sIg和Mznf297,首先对它们在斑马鱼的不同发育时期以及成鱼中的表达模式进行了研究,然后用LPS对斑马鱼的胚胎/幼鱼以及成鱼进行感染,进一步分析上述基因表达水平的变化。根据实验结果,我们发现除了Rag2和Mznf297之外,其余5个基因在胚胎发生早期以及幼鱼时期表达量都非常低,随着斑马鱼胚胎发育的进行,表达量也相应提高。而对于Rag2和Mznf297,在胚胎发育早期即原肠期,我们检测到了异常的高水平表达,推测可能是因为母源性的mRNA在发育早期大量存在于胚胎中导致。而随着幼鱼发育,二者的表达水平逐步稳定升高。当我们用LPS对胚胎/幼鱼进行感染后,发现大多数基因都做出了迅速应答,表达水平产生了明显变化。除IgLC-1和sIg之外,其余基因在受精后8天就发生了表达量的显著性提高,这表明适应性免疫系统在此时期已经可以对病原感染做出应答。而IgLC-1和sIg分别是在受精后23天和13天对LPS的刺激具有了较强的反应,表达量开始显著提升。据此,我们能够初步证明,斑马鱼胚胎/幼鱼的适应性免疫系统在个体发育的早期已经逐步建立起来,并且对抗原的侵袭具有了一定的反应能力,其发育成熟的时间可能会稍早于之前认为的4-6周。
     在本论文的第二部分,我们从重要的经济鱼类半滑舌鳎中分离出了一个关键的血细胞分化相关因子-Ikaros基因。Ikaros的cDNA编码430个氨基酸,其开放阅读框为1290 bp。用Ikaros基因的氨基酸序列与其他物种的Ikaros以及家族其他成员包括Helios、Aiolos和Eos的氨基酸序列构建系统进化树,发现半滑舌鳎中的Ikaros与包括青鳉、鰤鱼、虹鳟以及斑马鱼在内的鱼类展示了较近的亲缘关系,在进化树中聚为一支。进一步用部分物种Ikaros的保守区进行同源性比对,发现同源性较高的区域主要集中在N、C末端的锌指结构域。这同哺乳动物中的研究结果是一致的,即N末端和C末端的锌指结构在进化过程中变化较小,保守性较强。我们又利用DNAstar中的CLUSTAL W方法对Ikaros的氨基酸进行了结构上的相似度分析,结果与聚类分析一致,与青鳉、鰤鱼、虹鳟以及斑马鱼相似度较高,分别达80.0%、76.7%、66.7%以及57.3%。因为在其他物种早已证明Ikaros是调控免疫系统发生和发育的转录因子,为了验证它是否与免疫相关,我们首先利用实时定量RT-PCR技术检测了其在不同组织的表达情况。结果显示,Ikaros基因在半滑舌鳎中的胸腺、肝脏和脾中表达量较高,在肾脏、精巢和心脏中也有一定量的表达,而在肠、皮肤以及鳃中几乎检测不到或者表达量很低。这与美西螈、晶吻鰩和七鳃鳗中的检测结果基本一致,这表明了半滑舌鳎中的Ikaros基因在主要的免疫器官中均有表达,在表达模式上也具有一定的保守性。这暗示我们,半滑舌鳎中的Ikaros可能与其他物种的Ikaros一样,在免疫防御上具有一定的功能。我们从半滑舌鳎的头肾中分离出巨噬细胞,进行培养,然后用LPS或LTA对其刺激,收集不同处理样品并运用实时定量技术鉴定Ikaros基因的表达变化。结果表明,相比较于对照组,LPS或LTA处理后Ikaros表达量显著提高,这表明Ikaros基因是一种可以在巨噬细胞中表达的受LPS和LTA调控的免疫防御分子。
Fish has been living in the water from the stage of fertilized eggs, however, at the same time, all kinds of pathogens also lives around them and attack them all the time. The adult fish will carry out innate immune system firstly when they are attacked, and if pathogens have invaded into body, fish will begin to start the adaptive immune system (AIS). Then how do the embryos resist attack from pathogens successfully and protect themselves? When do the AIS functionally mature and what is the protection mechanism of immune system? The issues have been focused for a long time. To be close to the answers, the following research is carried out. Firstly, the expression of some marker genes involved in the AIS and response to LPS in zebrafish embryos/larvae are detected, and then Ikaros gene which is a transcription factor related to blood cell differentiation is cloned and analyzed about its structure and expression pattern.
     The first section of this paper dealt with the early manifestation of the AIS in zebrafish. The ontogenetic and differential expressions of seven key genes (Rag2, AID, TCRAC, IgLC-1, mIg, sIg and Mznf297) that are the suitable markers for indicating the maturation of AIS and their responses to the challenge with LPS during development of D. rerio are demonstrated. Apart from Rag2 and Mznf297, the remaining five genes (AID, TCRAC, IgLC-1, mIg and sIg) display generally similar trends of expression with the expression levels being relatively low at early stages and then rising subsequently. Rag2 and Mznf297 are both expressed at relatively high levels at the gastrula stage, decrease dramatically later, followed by a slight steady rise. In contrast, all these genes are capable of responding to the challenge with LPS in the embryos/larvae by up-regulating their expression levels at least from 23 dpf (day post fertilization) onward in a fashion similar to that of adult D. rerio, which has a mature function in AIS. It is therefore suggested that the AIS in D. rerio larvae has been founded during the course of ontogeny development, slightly earlier than considered previously.
     The cDNA of Ikaros from half-smooth tongue sole codes for a protein of 430 amino acids. To investigate the relationship between Ikaros from half-smooth tongue sole and other species, a phylogenetic tree is constructed using the amino acid sequence of Ikaros and that of other representative Ikaros from 14 species and other family members including Helios, Aiolos, Eos. It is found that Ikaros from half-smooth tongue sole formed a cluster together with that of some fish including Japanese medaka, Japanese amberjack, trout and zebrafish. Further comparison between some species and Ikaros reveals that the regions that show higher homology focus zinc finger domains at N and C-terminal. This is consistent with previous results. Using the method of CLUSTAL W in DNAstar, the identity in structure between half-smooth tongue sole and other species is analyzed, and the result is similar to that of phylogenetic tree. Ikaros from half-smooth tongue sole shows higher identity with Japanese medaka, Japanese amberjack, trout and zebrafish, the percent identity is 80.0%, 76.7%, 66.7% and 57.3%, respectively. In many species, Ikaros has been proved to be a transcription factor related to immune system, and to test this, a series of experiments are carried out. Firstly, the expression of Ikaros gene in different organs is detected. According to the result of QRT-PCR, Ikaros gene shows higher expression levels in thymus, liver and spleen, and moderate expression levels in kidney, testis and heart; however, in intestine, skin or gill, we hardly detected expression of Ikaros gene. This is consistent with that of skate, lamprey and axolotl. Ikaros gene shows different expression levels in organs related to immune and conservative expression pattern, which imply that Ikaros from half-smooth tongue sole probably has the same function with that of other species. Then, macrophage cells from the head kidney of half-smooth tongue sole are isolated and have been cultured for 7 days. At the seventh day, the cells are challenged by LPS or LTA, and then detected by Q-PCR technology. Compared to the control, the expression levels of Ikaros gene are up-regulated significantly in cells post LPS and LTA challenge. This indicates Ikaros gene which has showed expression in macrophage cells from head kidney of half-smooth tongue sole is a factor related to immune.
引文
Abbas AK, Lichtman AH. Cellular and molecular immunology. 5th ed. Pennsylvania: Saunders; 2003.
    Abelli L, Baldassini MR, Mastrolia L, Scapigliati G. Immunodetection of lymphocyte subpopulations involved in allograft rejection in a teleost, Dicentrarchus labrax (L.). Cell Immunol, 1999, 191(2): 152-60.
    Adams B, Dorfler P, Aguzzi A. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev, 1992, 6: 1589-1607.
    Agrawal A, Schatz DG. RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell, 1997, 89(1): 43-53.
    Alexander WS. Cytokines in hematopoiesis. Int Rev Immunol, 1998, 16: 651–682.
    Altschul SF, Gish WG, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol, 1990, 215: 403-410.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 1997, 25: 3389-3402.
    Anbarasu K, Chandran MR. Effect of ascorbic acid on the immune response of the catfish, Mystus gulio (Hamilton), to different bacterins of Aeromonas hydrophila. Fish shellfish immunology, 2001, 11: 347-355.
    Anderson DP. Fish Immunology. Hong Kong: TFH Publications. 1977.
    Antao AB, Chinchar VG, McConnell TJ, Miller NW, Clem LW, Wilson MR. MHC class I genes of the channel catfish: sequence analysis and expression. Immunogenetics, 1999, 49(4): 303-311.
    Barnes WM. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci U S A, 1994, 91(6): 2216-2220.
    Barreto VM, Hammarstrom QP, Zhao YF, Hammarstrom L, Misulovin Z, Nussenzweig MC. AID from bony fish catalyzes class switch recombination. J Exp Med, 2005, 202(6): 733–738.
    Bates JM, Akerlund J, Mittge E, Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe, 2007, 2: 371-382.
    Bevan MJ, In thymic selection, peptide diversity gives and takes away. Immunol, 1997, 7: 175-178.
    Botham JW, Manning MJ. The histogenesis of the lymphoid organs in the carp Cyprinus carpio L and the ontogenetic development of allograft reactivity. J Fish Biol, 1981, 19: 403-414.
    Brattgjerd S, Evensen O. A sequential light microscopic and ultrastructural study on the uptake and handling of Vibrio salmonicida in phagocytes of the head kidney in experimentally infected Atlantic salmon (Salmo salar L.). Vet Pathol, 1996, 33(1): 55-65.
    Burland TG. DNASTAR's Lasergene sequence analysis software. Methods Mol. Biol, 2000, 132: 71-91.
    BURNET FM. Cancer; a biological approach. I. The processes of control. Br Med J, 1957, 1(5022): 779-786.
    BURNET FM. The immunological significance of the thymus: an extension of the clonal selection theory of immunity. Australas Ann Med, 1962, 11: 79-91.
    Cannon JP, Haire RN, Pancer Z, Mueller MG, Skapura D, Cooper MD, Litman GW. Variable domains and a VpreB-like molecule are present in a jawless vertebrate.Immunogenetics, 2005, 56(12): 924-929.
    Casellas R, Zhang Q, Zheng NY, Mathias MD, Smith K, Wilson PC. Igkappa allelic inclusion is a consequence of receptor editing. J Exp Med, 2007, 204(1): 153-160.
    Chen JY, Chen JC, Wu JI. Molecular cloning and functional analysis of high density lipoprotein binding protein. Comp Biochem Physiol B Biochem Mol Biol, 2003, 36: 117-130.
    Chen SL, Zhang YX, Xu MY. Molecular polymorphism and expression analysis of M HC class lI B gene from red sea bream (Chrysophrys major). Developmental and Comparative Immunology, 2006, 30: 407-418.
    Cheng S, Fockler C, Barnes WM, Higuchi R. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc. Natl. Acad. Sci. USA, 1994, 91: 5695–5699.
    Chilmonczyk S. Rainbow trout lymphoid organs: cellular effects of corticosteroids and anti-thymocyte serum. Dev Comp Immunol, 1982, 6(2): 271-280.
    Chilmonczyk S. The thymus in fish: development and possible function in the immune response.Annual Review of Fish Diseases, 1992, 2:181-200.
    Clewley JP. Macintosh sequence analysis software. DNAStar's Laser Gene. Mol Biotechnol, 1995, 3(3): 221-224.
    Cooper MD, Alder MN. The evolution of adaptive immune systems. Cell, 2006, 124(4): 815-822.
    Cuesta A, M eseguer J, Esteban MA. Cloning and regulation of the major histocompatibility class I alpha gene in the teleost fish gilthead seabream. Fish Shellfish Immunol, 2007, 22(6): 718-726.
    Cupit PM, Hansen JD, McCarty AS, White G, Chioda M, Spada F, Smale ST, Cunningham C. Ikaros family members from the agnathan Myxine glutinosa and the urochordate Oikopleura dioica: emergence of an essential transcription factor for adaptive immunity. J Immunol, 2003, 171(11): 6006-6013.
    Dalmo RA, Ingebrigtsen K, Bogwald J. Non-specific defence mechanisms in fish, with particular reference to the retic-uloendothelial system (RES). J Fish Dis, 1997, 20: 241-273.
    Danilova N, Hohman VS, Kim EH, Steiner LA. Immunoglobulin variable-region diversity in the zebrafish. Immunogenetics, 2000, 52(1-2): 81-91.
    Danilova N, Steiner LA. B cells develop in the zebrafish pancreas. PNAS, 2002, 99: 13711-13716.
    De Guerra A, Charlemagne J. Genomic organization of the TcR beta-chain diversity (beta) and joining (Jbeta) segments in the rainbow trout: presence of many repeated sequences. Mol Immunol, 1997, 34(8-9): 653-662.
    Do Vale A, Marques F, Silva MT. Apoptosis of sea bass (Dicentrarchus labrax L.) neutrophils and macrophages induced by experimental infection with Photobacterium damselae subsp. piscicida. Fish Shellfish Immunol, 2003, 15(2): 129-144.
    Do?ate C, Roher N, Balasch JC, Ribas L, Goetz FW, Planas JV, Tort L, MacKenzie S. CD83 expression in sea bream macrophages is a marker for the LPS-induced inflammatory response. Fish Shellfish Immunol, 2007, 23(4): 877-885.
    Dorin D, Sire MF, Vernier JM. Endocytosis and intracellular degradation of heterologous protein by eosinophilic granulocytes isolated from rainbow trout (Oncorhynchus mykiss) posterior intestine. Biol Cell, 1993, 79(3): 219-224.
    Durand C, Charlemagne J, Fellah JS. Structure and developmental expression of Ikaros in theMexican axolotl. Immunogenetics, 1999, 50(5-6): 336-343.
    Ellis AE. Ontogeny of the immune system in teleost fish. In: Ellis AE, editor. Fish vaccination. London: Academic Press. 1988, 20-31.
    F?nge R, Vet Immunol Immunopathol, 1986, 12(1-4): 153-161.
    Felsenstein J. PHYLIP (Phylogeny Interference Package), version 3.5c. Department of Genetics, University of Washington, Seattle, Washington, USA. 1993.
    Feng B, Bulchand S, Yaksi E, Friedrich RW, Jesuthasan S. The recombination activation gene 1 (Rag1) is expressed in a subset of zebrafish olfactory neurons but is not essential for axon targeting or amino acid detection. BMC Neurosci, 2005, 6: 46.
    Fischer C, Bouneau L, Ozouf-Costaz C, Crnogorac-Jurcevic T, Weissenbach J, Bernot A. Conservation of the T-cell receptor alpha/delta linkage in the teleost fish Tetraodon nigroviridis. Genomics, 2002, 79(2): 241-248.
    Fisher AG, Merkenschlager M. Gene silencing, cell fate and nuclear organization. Curr. Opin. Genet. Dev, 2002, 12(2): 193-197.
    Flajnik MF, Kasahara M. Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity, 2001, 15(3): 351-362.
    Flajnik MF. Comparative analyses of immunoglobulin genes: surprises and portents. Nat Rev Immunol, 2002, 2(9): 688-698.
    Fournier-Betz V, Quentel C, Lamour F, LeVen A. Immunocytochemical detection of Ig-positive cells in blood, lymphoid organs and the gut associated lymphoid tissue of the turbot (Scophthalmus maximus). Fish Shellfish Immunol, 2000, 10(2): 187-202.
    Fourrnier BV, Quentel C, Lamour F. Immunocytochemical detection of Ig - positive cells in blood, lymphoid organs and the gut associated lymphoid tissue of the turbot ( Scophthalmus maximus). Fish Shellfsh Immunol, 2000, 10: 187-202.
    Gap GF, Tormo J, Gerth UC. Crystal structure of the complex between human CD8aa and HI A A2. Nature, 1997, 387: 630-634.
    Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S, Sharpe A. The Ikaros gene is required for the development of all lymphoid lineages. Cell, 1994, 79(1): 143-156.
    Georgopoulos K, Winandy S, Avitahl N. The role of the Ikaros gene in lymphocyte development and homeostais. Annu Rev Immunol, 1997, 15: 155–176.
    Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and Ikaros. Nat. Rev. Immunol, 2002, 2(3): 162-174.
    Gianotti L, Alexander JW, Gennari R, et al. Oral glutamine decreases bacterial translocation and improves survival in experimental gut-origin sepsis. JPEN, 1995, 19(1): 69-74.
    Glamann J. Complete coding sequence of rainbow trout MHCⅡβchain. Scandinavian Journal of Immunology, 1995, 41: 365-372.
    Good RA, Finstad J, Litman GW. The Biology of Lampreys II: Immunology. London: Academic, 1972, 405?432.
    Grace MF, Manning MJ. Histogenesis of the lymphoid organs in rainbow trout, Salmo gairdneri Rich. 1836. Dev Comp Immunol, 1980, 4(2): 255-264.
    Graham S, Secombes CJ. Cellular requirements for lymphokine secretion by rainbow trout Salmo gairdneri leucocytes. Dev Comp Immunol, 1990, 14(1): 59-68.
    Grimholt U, Hordvik I, Fosse VM, Olsaker I, Endresen C, Lie O. Molecular cloning of major histocompatibility complex class I cDNAs from Atlantic salmon (Salmo salar). Immunogenetics, 1993, 37(6): 469-473.
    Grimholt Y, Lie O. The major histocompatibility complex in fish. Rev Sci Tech, 1998, 17(1): 121-127.
    Haire RN, Miracle AL, Rast JP, Litman GW. Members of the Ikaros gene family are present in early representative vertebrates. J Immunol, 2000, 165(1): 306-312.
    Haire RN, Rast JP, Litman RT, Litman GW. Characterization of three isotypes of immunoglobulin light chains and T-cell antigen receptor alpha in zebrafish. Immunogenetics, 2000, 51(11): 915-923.
    Hansen JD, Strassburger P, Du Pasquier L. Conservation of a master hematopoietic switch gene during vertebrate evolution: isolation and characterization of Ikaros from teleost and amphibian species. Eur J Immunol, 1997, 27: 3049–3058.
    Hansen JD, Zapata AG. Lymphocyte development in fish and amphibians. Immunological, 1998, 166: 199-220.
    Hardee JJ, Godwin U, Benedetto R. Major histocompatibility complex class1IA gene polymorphism in the striped bass. Immunogenetics, 1995, 41: 229-238.
    Hiom K, Gellert M. A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage. Cell, 1997, 88(1): 65-72.
    Hordvik I, Grimhoh U, Fosse VM. Cloning and sequence analyses of cDNAs encoding the MHC classⅡβchain in Atlantic salmon(Salmo salar). Immunogenetics, 1993, 37: 437-441.
    Huber TL, Zon LI. Transcriptional regulation of blood formation during Xenopus development. Sem Immunol, 1998, 10: 103–109.
    Iliev DB, Liarte CQ, MacKenzie S, Goetz FW. Activation of rainbow trout (Oncorhynchus mykiss) mononuclear phagocytes by different pathogen associated molecular pattern (PAMP) bearing agents. Mol Immunol, 2005, 42(10): 1215-1223.
    Iwama G, Nakanishi T. The Fish Immune System: Organism, Pathogen and Environment. Fish Immunology Series, 1996, 1-55.
    Jósefsson S, Tatner MF. Histogenesis of the lymphoid organs in sea bream (Sparus aurata L.). Fish Shellfish Immunol, 1993, 3: 35-49.
    Kaattari SL, Irwin MJ. Dev Comp Immunol, 1985, 9(3): 433-444.
    Keegan BR, Feldman JL, Lee DH, Koos DS, Ho RK, Stainier DY, Yelon D. The elongation factors Pandora/Spt6 and Foggy/Spt5 promote transcription in the zebrafish embryo. Development, 2002, 129: 1623-1632
    Khangarot BS, Rathore RS, Tripathi DM. Effects of chromium on humoral and cell-mediated immune responses and host resistance to disease in a freshwater catfish, Saccobranchus fossilis (Bloch). Ecotoxicol Environ Saf, 1999, 43(1): 11-20.
    Khangarot BS, Tripathi DM. Changes in humoral and cell-mediated immune responses and in skin and respiratory surfaces of catfish, Saccobranchus fossilis, following copper exposure. Ecotoxicol Environ Saf, 1991, 22(3): 291-308.
    Kirstetter P, Thomas M, Dierich A, Kastner P, Chan S. Ikaros is critical for B cell differentiation and function. Eur J Immunol, 2002, 32(3): 720-730.
    Kohonen P, Nera KP, Lassila O. Avian Helios and evolution of the Ikaros family. Scand J Immunol, 2004, 60(1-2): 100-107.
    Koipally J, Georgopoulos K. Ikaros-CtIP interactions do not require C-terminal binding protein and participate in a deacetylase-independent mode of repression. J Biol Chem, 2002, 277(26): 23143-23149.
    Koipally J, Renold A, Kim J, Georgopoulos K. Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. EMBO J, 1999, 18(11): 3090-3100.
    Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Research, 1987, 15: 8125-8148.
    Küchler AM, Gjini E, Peterson-Maduro J, Cancilla B, Wolburg H, Schulte-Merker S. Development of the zebrafish lymphatic system requires VEGFC signaling. Curr Biol, 2006, 16(12): 1244-1248.
    Lam SH, Chua HL, Gong Z, Lam TJ, Sin YM. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Developmental and Comparative Immunology, 2004, 28: 9-28.
    Lederberg J. Instructive selection and immunological theory. Immunol Rev. 2002; 185:50-53.
    Lee J, Desiderio S. Cyclin A/CDK2 regulates V(D)J recombination by coordinating RAG-2 accumulation and DNA repair.Immunity, 1999, 11(6): 771-781.
    Leiro J, Ortega M, Siso MI, Sanmartín ML, Ubeira FM. Effects of chitinolytic and proteolytic enzymes on in vitro phagocytosis of microsporidians by spleen macrophages of turbot, Scophthalmus maximus L. Vet Immunol Immunopathol, 1997, 59(1-2): 171-180.
    Liberg D, Smale ST. Merkenschlager M.Upstream of Ikaros. Trends Immunol, 2003, 24(11): 567-570.
    Liippo J, Lassila O. Avian Ikaros gene is expressed early in embryogenesis. Eur J Immunol, 1997, 27: 1853–1857.
    Litman GW, Anderson MK, Rast JP. Evolution of antigen binding receptors. Annu Rev Immunol, 1999, 17: 109-147.
    Ljunggren HG, Karre K. In search of“missing self'’: MHC molecules and NK cell recognition. Immunology Today, 1990, 7: 237-244.
    Lobb CJ, Clem LW. The metabolic relationships of the immunoglobulins in fish serum, cutaneousmucus, and bile. J Immunol, 1981, 127(4): 1525-1529.
    L?voll M, Kilvik T, Boshra H, B?gwald J, Sunyer JO, Dalmo RA. Maternal transfer of complement components C3-1, C3-3, C3-4, C4, C5, C7, Bf, and Df to offspring in rainbow trout (Oncorhynchus mykiss). Immunogenetics, 2006, 58(2-3):168-179.
    MacKenzie S, Planas JV, Goetz FW. LPS-stimulated expression of a tumor necrosis factor-alpha mRNA in primary trout monocytes and in vitro differentiated macrophages. Dev Comp Immunol, 2003, 27(5): 393-400.
    Manning M J, Turneer R J. Immunology: a comparative approach. Chichester, England: Jones Wiley &Sons, 1994, 69-100.
    Martin C, Pollera CF. Gemcitabine: safety profile unaffected by starting dose. Int J Clin Pharmacol Res, 1996, 16(1): 9-18.
    Matsunaga T, Rahman A. In search of the origin of the thymus: the thymus and GALT may be evolutionarily related. Scand J Immunol, 2001, 53: 1- 6.
    Mayer WE, O'Huigin C, Tichy H, Terzic J, Saraga-Babic M. Identification of two Ikaros-like transcription factors in lamprey. Scand J Immunol, 2002, 55(2): 162-170.
    McBlane JF, van Gent DC, Ramsden DA, Romeo C, Cuomo CA, Gellert M, Oettinger MA. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell, 1995, 83(3): 387-395.
    Mead PE, Zon LI. Molecular insights into early hematopoiesis. Curr Opin Hematol, 1998, 5: 156–160.
    Meseguer J, López-Ruiz A, Angeles Esteban M. Cytochemical characterization of leucocytes from the seawater teleost, gilthead seabream (Sparus aurata L.). Histochemistry, 1994, 102 (1): 37-44.
    Meseguer MA, García-Rull S, Picher J, Ortiz-Saracho J, Maíz L, Baquero F. Eur J Clin Microbiol Infect Dis, 1995, 14(9): 825-826.
    Miller RT, Baker KI, Moga D. Multilobated B-cell lymphoma. Report of a case with immunocytologic diagnosis in pleural fluid. Acta Cytol, 1987, 31(6): 785-790.
    Mizuta R, Mizuta M, Araki S, Kitamura D. RAG2 is down-regulated by cytoplasmic sequestration and ubiquitin-dependent degradation. J Biol Chem, 2002, 277(44): 41423-41427.
    Morgan B, Sun L, Avitahl N. Aiolos ,a lymphoid rest ricted transcription factor that interacts with Ikaros to regulatelymphocyte differentiation. EMBO J, 1997, 16 (8): 2004-2013. Moskovitz B, Katz Y, Singer P. Pharmacol Res, 1994, 30(1): 61-71.
    Nasevicius A, Ekker SC. The zebrafish as a novel system for functional genomics and therapeutic development applications. Curr Opin Mol Ther, 2001, 3(3): 224-228.
    Ono H, Klein D, Vineek V. Major histocompatibility complex genes of the zebrafish. Proceedings of the National Academy of Sci, 1992, 89: 11886-11890.
    Ono H, O’hUigin C, Vineek V. Exon intron organization of fish major histocompatibility complex classⅡB genes. Immunoge, 1993, 38: 223-234.
    Pancer Z, Amemiya CT, Ehrhardt GR, Ceitlin J, Gartland GL, Cooper MD. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature, 2004, 430(6996): 174?180.
    Pancer Z, Mayer WE, Klein J, Cooper MD. Prototypic T-cell receptor and CD4-like coreceptor expressed in lymphocytes of the agnathan sea lamprey. Proc Natl Acad Sci USA, 2004, 101: 13273?13278.
    Papathanasiou P, Perkins AC, Cobb BS, Ferrini R, Sridharan R, Hoyne GF, Nelms KA, Smale ST, Goodnow CC. Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity, 2003, 19(1): 131-144.
    Parham P, Lawlor DA, Lomen CE, Ennis PD. Diversity and diversification of HI A-A, B, C alleles. J Immunol, 1989, 142(11): 3937-3950.
    Perdomo J, Crossley M. The Ikaros family protein Eos associates with C-terminal-binding protein corepressors. Eur. J. Biochem, 2002, 269: 5885–5892.
    Perdomo J, Holmes M, Chong B, Crossley M. Eos and pegasus, two members of the Ikaros family of proteins with distinct DNA binding activities. J. Biol. Chem, 2000, 275: 38347–38354.
    Persson AC, Stet RJ, Pilstr?m L. Characterization of MHC class I and beta(2)-microglobulin sequences in Atlantic cod reveals an unusually high number of expressed class I genes. Immunogenetics, 1999, 50(1-2): 49-59.
    Plouffe DA, Hanington PC, Walsh JG, Wilson EC, Belosevic M. Comparison of select innate immune mechsms of fish and mammals. Xenotransplantation, 2005, 12(4): 266?277.
    Quirion MR, Gregory GD, Umetsu SE, Winandy S, Brown MA. Cutting edge: Ikaros is a regulator of Th2 cell differentiation. J Immunol, 2009, 182(2): 741-745.
    Rebollo A, Schmitt C. Ikaros, Aiolos and Helios: transcription regulators and lymphoid malignancies. Immunol Cell Biol, 2003, 81(3): 171-175.
    Reynaud D, Demarco IA, Reddy KL, Schjerven H, Bertolino E, Chen Z, Smale ST, Winandy S, Singh H. Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros. Nat Immunol, 2008, 9(8): 927-936.
    Robertsen B. The interferon system of teleost fish. Fish Shellfish Immunol, 2006, 20(2): 172-191.
    Romano N, Taverne-Thiele AJ, Fanelli M, Baldassini MR, Abelli L, Mastrolia L, Van Muiswinkel WB, Rombout JH. Ontogeny of the thymus in a teleost fish, Cyprinus carpio L.: developing thymocytes in the epithelial microenvironment. Dev Comp Immunol, 1999, 23(2): 123-137.
    Rombout JH, Taverne N, van de Kamp M, Taverne-Thiele AJ. Differences in mucus and serum immunoglobulin of carp (Cyprinus carpio L.). Dev Comp Immunol. 1993; 17(4): 309-317.
    Ruben LN, Edwards BF. Phylogeny of the emergence of T-B collaboration in humoral immunity. Contemp Top Immunobiol, 1980, 9: 55-89.
    Sanders MM, Kon C. Glutamine is a powerful effector of heat shock protein expression in Drosophila Kc cells. J Cell Physiol, 1991, 146(1): 180-190.
    Saper MA, Bjorkman PJ, Wiley DC. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J Mol Biol, 1991, 219(2): 277-319.
    Scapigliati G, Romano N, Abelli L. Monoclonal antibodies in fish immunology; identification, ontogeny and activity of T2 and B2 lymphocytes. Aquac, 1999, 172: 3-28.
    Schorpp M, Wiest W, Egger C, Hammerschmidt M, Schlake T, Boehm T. Genetic dissection of thymus development. In: Melchers F, editor. Lymphoid organogenesis. Berlin: Springer. 2000, 119-124.
    Scott EW, Simon MC, Anastasi J, Singh H. Requirement of the transcription factor PU.1 in the development of multiple haematopoietic lineages. Science, 1994, 265(5178): 1573-1577.
    Secombes CJ, Manning MJ. Comparative studies on the immune system of fishes and amphibians: antigen location inthe carp Cyprinus carpio L. J Fish Dis, 1980, 3: 399-412.
    Shapira L, Takashiba S, Champagne C, Amar S, Van Dyke TE. Involvement of protein kinase C and protein tyrosine kinase in lipopolysaccharide-induced TNF-alpha and IL-1 beta production by human monocytes. J Immunol, 1994, 153: 1818-1824.
    Singh H. Gene targeting reveals a hierarchy of transcription factors regulating specification of lymphoid cell fates. Curr Opin Immunol, 1996, 8:160–166.
    Slack JM, Isaacs HV, Song J, Durbin L, Pownall ME. The role of fibroblast growth factors in early Xenopus development. Biochem Soc Symp, 1996, 62: 1–12.
    Smith JC. Mesoderm-inducing factors and mesodermal patterning. Curr Opin Cell Biol, 1995, 7: 856–861.
    Stafford JL, Belosevic M. Transferrin and the innate immune response of fish: identification of a novel mechanism of macrophage activation. Dev Comp Immunol, 2003, 27(6-7): 539-554.
    Stavnezer J, Amemiya CT. Evolution of isotype switching. Semin. Immunol, 2004, 16: 257-275.
    Swanson PC, Desiderio S. V(D)J recombination signal recognition: distinct, overlapping DNA-protein contacts in complexes containing RAG1 with and without RAG2. Immunity, 1998, 9(1): 115-125.
    Takeuchi H, Figueroa F, O'hUigin C, Klein J. Cloning and characterization of class I Mhc genes of the zebrafish, Brachydanio rerio. Immunogenetics, 1995, 42(2):77-84.
    Tang R, Dodd AW, Lai D, McNabb WC, Love DR. Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochim Biophys Sin (Shanghai). 2007, 39: 384-390
    Tatner MF. Natural changes in the immune system of fish. San Diego, US: Academic Press. 1996, 255-287.
    Ting CN, Olson MC, Barton KP, Leiden JM. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature, 1996, 384(6608): 474-478.
    Tonnelle C, Dijon M, Moreau T, Garulli C, Bardin F, Chabannon C. Stage specific over-expression of the dominant negative Ikaros 6 reveals distinct role of Ikaros throughout human B-cell differentiation. Mol Immunol, 2009. [Epub ahead of print].
    Trede NS, Langenau DM, Traver D, Look AT, Zon LI. The use of zebrafish to understand immunity. Immunity, 2004, 20: 367-79.
    Trede NS, Zapata A, Zon LI. Fishing for lymphoid genes. Trends Immunol, 2001, 22(6): 302-307. Trede NS, Zon LI. Development of T-cells during fish embryogenesis. Dev Comp Immunol, 1998, 22: 253-263.
    Tsujii T, Seno S. Melano-macrophage centers in the aglomerular kidney of the sea horse (teleosts): morphologic studies on its formation and possible function. Anat Rec, 1990, 226(4): 460-470.
    Turka LA, Schatz DG, Oettinger MA, Chun JJ, Gorka C, Lee K, McCormack WT, Thompson CB. Thymocyte expression of RAG-1 and RAG-2: termination by T cell receptor cross-linking. Science, 1991, 253(5021):778-781.
    Turpen JB. Induction and early development of the hematopoietic and immune systems in Xenopus. Dev Comp Immunol, 1998, 22: 265–278.
    Uinuk-Ool T, Mayer WE, Sato A, Dongak R, Cooper MD, Klein J. Lamprey lymphocyte-like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes. Proc Natl Acad Sci U S A. 2002, 99(22): 14356-14361.
    Uinuk-ool TS, Mayer WE, Sato A, Takezaki N, Benyon L, Cooper MD, Klein J. Identification and characterization of a TAP-family gene in the lamprey. Immunogenetics, 2003, 55(1): 38-48.
    Urban JA, Brugmann W, Winandy S. Cutting Edge: Ikaros null thymocytes mature into the CD4 lineage with reduced TCR signal: A study using CD3{zeta} immunoreceptor tyrosine-based activation motif transgenic mice. J Immunol, 2009, 182(7): 3955-3959.
    Urbánek P, Wang ZQ, Fetka I, Wagner EF, Busslinger M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell, 1994, 79(5): 901-912.
    Varner J, Neame P, Litman GW. A serum heterodimer from hagfish (Eptatretus stoutii) exhibits structural similarity and partial sequence identity with immunoglobulin. Proc Natl Acad Sci USA, 1991, 88: 1746?1750.
    Walker RA, McConnell TJ. Variability in an MHC class IIβchain encoding gene in striped bass (Morone saxatilis). Developmenta1and Comparative Immunology, 1994, 18: 325-342.
    Wallace C, Keast D. Glutamine and macrophage function. Metabolism, 1992, 41: 1016-1020.
    Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M, Georgopoulos K. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros nullmutation. Immunity, 1996, 5(6): 537-549.
    Wang Z, Zhang S, Wang G. Response of complement expression to challenge with lipopolysaccharide in embryos/larvae of zebrafish Danio rerio: acquisition of immunocompetent complement. Fish Shellfish Immunol, 2008, 25: 264-270.
    Watts M, Munday BL, Burke CM. Immune responses of teleost fish. Aust Vet J, 2001, 79(8): 570-574.
    Watzke J, Schirmer K, Scholz S. Bacterial lipopolysaccharides induce genes involved in the innate immune response in embryos of the zebrafish (Danio rerio). Fish Shellfish Immunol, 2007, 23: 901-905.
    Willett CE, Kawasaki H, Amemiya CT, Lin S, Steiner LA. Ikaros expression as a marker for lymphoid progenitors during zebrafish development. Dev Dyn, 2001; 222(4): 694-698.
    Willett CE, Zapata AG, Hopkins N, Steiner LA. Expression of zebrafish rag genes during early development identifies the thymus. Dev Biol, 1997, 182(2): 331-341.
    Wilson M, Bengtén E, Miller NW, Clem LW, Du Pasquier L, Warr GW. A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. Proc Natl Acad Sci U S A. 1997, 94(9): 4593-4597.
    Winandy S, Wu P, Georgopoulos K. A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell, 1995, 83(2): 289-299.
    Wu HJ, Bondada S. Positive and negative roles of CD72 in B cell function. Immunol Res, 2002, 25(2): 155-166.
    Yousif AN, Albright LJ, Evelyn TPT. Occurrence of lysozyme in the eggs of coho salmon Oncorhynchus kisutch. Dis Aquat Organ, 1991, 10: 45-49.
    Zapata A, Diez B, Cejalvo T, Frías CG, Cortés A. Onetogeny of the immune system of fish. Fish shellfish immunol, 2006, 20: 126-136.
    Zapata Aag, Torroba M, Varas A, Jimménez E. Immunity in fish larvae. Dev Biol Stand, 1997, 90: 23-32.
    Zapata AG, ChibǘA, Varas A. Cells and tissues of the immune system of fish. Vancouver: Academic Press, 1996, 1-62.
    Zapata AG, Cooper EL. The immune system: comparative histophysiology. Chichester: Jone Wiley and Sons. 1990.
    Zelikoff JT. Biomarkers of immunotoxicity in fish and other non-mammalian sentinel species: predictive value for mammals? Toxicology, 1998, 129(1): 63-71.
    Ziengenfuss MC, Wolke RE. The use of fluorescent microspheres in the study of piscine macrophage aggregate kinetics. Dev Comp Immunol, 1991, 15(3): 165-171.
    刘岑杰,黄惠芳,马飞,刘欣,李庆伟。无颌类脊椎动物适应性免疫系统的进化。遗传学报,2008, 30(1): 13-19。
    刘建欣,郑昌学。现代免疫学:免疫的细胞和分子基础。清华大学出版社,2002, 55-95.
    孙德文,詹勇,许梓荣。鱼类免疫系统的研究进展。水利渔业,2002, 22(6): 17-19.
    徐豪,张志宇。四种淡水养殖鱼类血细胞的细微结构。水生生物学集刊。1983, (1): 85-91.
    杨先乐。鱼类免疫学研究进展。水产学报。1989, 13 (3): 272-284.
    张艳秋,詹勇,许梓荣。鱼类免疫机制及其影响因子。水产养殖。2005, 26 (3).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700