煤活性基团与Ca~(2+)形成配合物的结构与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对煤炭自燃阻化技术的理论基础研究薄弱的问题,首次应用量子化学理论从微观上系统地研究了预防煤炭自燃阻化技术基础理论,应用密度泛函理论,在B3LYP/6-3llG水平上研究了煤含氮、磷、硫的活性基团与阻化剂形成的配位化学键和配位体的过程,并用红外光谱和热重实验加以表征,创立了预防煤炭自燃的阻化机理理论。其核心内容是煤有机大分子和低分子化合物中含氮、磷、硫、氧等活性基团与阻化剂中的金属离子形成配位化学键和配位体,惰化了煤中的活性基团与氧反应的活性,突破了传统理论的附着煤表面的强盐在吸水后煤表面形成水膜隔氧的学术观点。填补了预防煤自燃阻化机理研究领域的空白。主要研究内容和研究成果概括如下:
     通过红外光谱实验研究及量子化学计算,在建立了煤分子结构模型的基础上,采用量子化学密度泛函(DFT)理论计算方法,在B3LYP/6-311G计算水平上,得出煤分子的结构模型及简化后的煤分子的前沿轨道图,确定煤分子中的活性基团-NH2、-PH2及-SH具有较高的化学活性容易失去电子与金属离子形成配位键,同时也易于氧发生化学反应导致煤炭自燃。
     研究了煤分子活性基团与Ca~(2+)离子形成配位化学键及配位化合物的过程,通过对形成配合物的自然键轨道、净电荷布居及自然电子组态计算及分析,发现煤分子中的N、P、S原子的孤对电子与Ca~(2+)离子的孤对电子及价外层空轨道有强的相互作用能,同时Ca~(2+)离子的原子轨道从配体得到部分反馈电子,导致偏离其表观电荷,说明Ca~(2+)离子与配体中的N、P、S原子形成了配位键。
     通过对配合物的稳定化能和前沿轨道能级分析,得到Ca~(2+)与煤中的N活性基团形成的四配位化合物最为稳定,Ca~(2+)与煤中的P、S活性基团形成的二配位化合物最为稳定。
     应用实验的方法合成了煤与Ca~(2+)形成的配合物,并用红外光谱、热重进行了表征。红外光谱表征结果是煤中的-CH2-NH2、-CH2-S-、-CH2-P-显现峰面积值发生了变化和峰位发生了红移或蓝移。热重表征结果是煤中加入阻化剂后着火活化能普遍增大,说明煤中的活性基团与Ca~(2+)离子形成了配合物,从而使煤与氧反应的活性降低。着火活化能增大的越大,说明形成的配合物越稳定。
As basic research on the theory about inhibition technology for spontaneous coal combustion is not adequate, the quantum chemistry theory is used to study the basic theory about inhibition technology for preventing spontaneous coal combustion from microcosmic view for the first time. With B3LYP/6-3llG density functional theory, the process of forming coordination chemical bond and ligand between active groups of coal including N, P, S and inhibitor is studied and characterized by infrared spectrum and thermogravimetry experiment. The theory of inhibition mechanism for preventing spontaneous coal combustion is founded. The core content is that coordination chemical bond and ligand are formed between active groups including N, P, S, O, etc in organic macromolecule and low molecular weight compounds of coal and metal ions in inhibitor, which decrease the reaction activity between oxygen and active groups. It is a breakthrough of traditional theory and academic view that water film, separating oxygen, is formed on coal surface after strong salts absorb water. It also fills the gaps in field of studying inhibition mechanism for preventing coal spontaneous combustion. The main research contents and achievements are as follows:
     Through infrared spectrum experimental study and quantum chemistry calculation, based on the molecular structure model of coal, with B3LYP/6-3llG density functional theory, structure model and frontier orbital figure of coal molecule after simplification are obtained and determine that active groups like -NH2, -PH2, and–SH in coal molecule have high chemical activity and therefore are easy to loss electron and form coordination bond with metal ions, making spontaneous coal combustion happened easily.
     The process of forming coordination chemical bond and coordination compound between active groups of coal molecule and ions Ca~(2+) is studied. After calculating and analyzing natural bond orbital, net charge population and natural electron configuration, strong interaction energy between lone pair electrons of atoms N, P, S in coal molecule and ions Ca~(2+) and unoccupied orbital is discovered. Meanwhile, atomic orbital of ions Ca~(2+) gets part of feedback electrons from ligand and deviates its apparent charge, which illustrate that coordination bond is formed between Ca~(2+) and N, P, S in ligand.
     After analyzing stabilization energy and frontier orbital energy level, it is obtained that four-coordination compounds forming from Ca~(2+) and active groups N is the most stable, so does the two-coordination compounds forming from Ca~(2+) and active group P, S.
     Coordination compounds forming from coal and Ca~(2+)are synthesized and characterized by infrared spectrum and thermogravimetry experiment. Infrared spectrum characterization indicates that peak area values of -CH2-NH2, -CH2-S-, -CH2-P- are changed and peak position is undertook einstein shift and hypo chromatic shift. Thermogravimetry experiment indicates that ignition activation energy rises at large after inhibitor is added into the coal, which illustrate that coordination compounds are formed from active group in coal and Ca~(2+) and therefore decrease the activation of reaction between oxygen and coal.
引文
[1]范维唐,卢鉴章,申宝宏.煤矿灾害防治的技术与对策[M].中国矿业大学出版社.2007.12
    [2]王德明,李增华,秦波涛,梁晓瑜,陈建华.一种防治矿井火灾的绿色环保新材料的研制[J].中国矿业大学学报.2004.(2):33:205-208.
    [3]李学诚.中国煤矿安全大全[M].北京:煤炭工业出版社,1998.
    [4]胡社荣,蒋大成,李泽光,贾艳鹏.煤田煤矿区火灾与环境效应及其防治对策[J].地质灾害与环境保护.2001(1):12.21-23.
    [5]王继仁,邓存宝,洪林.氧在散体煤中的分形反应动力学研究[J].煤炭学报.2005.30(5):585-588.
    [6]陆伟,胡千庭等.煤自燃逐步自活化反应理论[J].中国矿业大学学报.2007.36(1):111-115.
    [7]张瑞新,谢和平.煤堆自然发火的试验研究[J].煤炭学报.2001.26(2):168-171.
    [8]李孜军,古德生,吴超.高温高硫矿床矿石自燃危险性的评价[J].金属矿山.2004.335(5):57-59.
    [9]陆伟,胡千庭.煤低温氧化结构变化规律与煤自燃过程之间的关系[J].煤炭学报.200736:(9):939-944.
    [10]王振平,程卫民,辛嵩,宋宪明,苏昭桂.煤巷近距离自燃火源位置的红外探测与反演[J].煤炭学报.2003.28(6):603-607.
    [11]邬剑明,高尚青.煤层自燃火区温度检测技术的研究与应用[J].中国安全科学学报.2004.14(10):109-112.
    [12]余明高,贾海林,于水军,潘荣锟.乌达烟煤微观结构参数解算及其与自燃的关联性分析[J].煤炭学报.2006.31(5):610-614.
    [13]王继仁,邓存宝.煤微观结构与组分量质差异自燃理论[J].煤炭学报.2007.32(12):1291-1296.
    [14]王继仁,金智新,邓存宝.煤自燃量子化学理论[M].北京.科学出版社.2007.
    [15]王继仁,邓存宝,邓汉忠.煤表面对氧分子物理吸附的微观机理[J].煤炭转化.200730(4):18-21.
    [165]邓汉忠,王继仁,邓存宝.O2在-CH2-CH2OH基团上的化学吸附[J].煤炭转化.200730(4):29-33.
    [17]王继仁,邓存宝.煤的自燃倾向性新分类方法研究[J].煤炭学报.2008.33(1):47-50.
    [18]周心权,邬燕云等.煤矿灾害防治科技发展现状及对策分析[J].煤炭科学技术.2002.30(1):1-6.
    [19]徐精彩.煤层自燃危险区域判定理论[M].煤炭工业出版社.2001.11.
    [20]位爱竹,李增华,潘尚昆,杨永良.紫外光引发煤自由基反应的实验研究[J].中国矿业大学学报.2007.36(5):582-585.
    [21]薛翦,邱实,尹浩,刘桂建.真空条件下高分辩质谱对不同煤质热解释放CO2分析[J].火灾科学.2007.13(2):67-70.
    [22]陆伟,胡千庭,仲晓星,王德明.煤自燃逐步自活化反应理论[J].中国矿业大学学报.2007.36(1):111-115.
    [23]张东海,杨胜强,王钦方,王雷,罗洪森,刘国忠.煤巷高冒区松散煤体自然发火的数值模拟研究[J].中国矿业大学学报.2006.35(6):757-761.
    [24]梁晓瑜.王德明.水分对煤炭自燃的影响.辽宁工程技术大学学报[J].2003.8.22(4):472.
    [25]舒新前.煤炭自燃的热分析研究[J].中国煤田地质.1994.25(2):25.
    [26]彭本信.应用热分析技术研究煤的氧化自燃过程[J].煤炭工程师.1992. 2:1.
    [27]NORDON P,YOUNG B C,BAINBRIDGE N W.The rate of oxidation of char and coal inrelation to their tendency to self-heat[J].Fuel,1979,58(4):443-449.
    [28]GARCIA P.The use of differential scanning calorimetry to identify coals susceptible to spontaneous combustion[J].Thermochimica Acta, 1999,336(1-2): 41-46.
    [29]WANG H, DLUGOGORSKI B Z, KENNEDY E M. Analysis of the mechanism of the low-temperature oxidation of coal[J].Combust Flame, 2003,134(1-2): 107-117.
    [30]王继仁,邓存宝.煤微观结构与组分量质差异自燃理论[J].煤炭报.2007.32(12):1291-1296.
    [31]曾凡桂.谢克昌.煤结构化学的理论体系与方法论[J].煤炭学报.2004.4(29):443-447.
    [32]Carloson G A Energy & Fuels.1992.6.771.
    [33]陈昌国.鲜学福.煤结构的研究及其发展[J].煤炭转化.1998.21(2):7-12.
    [34]Giver.p.H.The distribution of hydroxyl in coal and its relation to coal structure.Fuel 1960,39:147.
    [35]]Wiser.WH.Anl Chem Soc Div Fuel Chem PrePrint.1975.20.733.
    [36]ShineJH.Fuel.Towards an understanding of the coal structure.984.63.483-497.
    [37]申峻.邹纲明.王志忠.煤物理结构特性的研究进展[J].煤化工.1999.4.15-7.
    [38]陈昌国,辜敏,鲜学福.煤层甲烷吸附与解吸的研究与发展[J].中国煤层气.1998.1:27-29.
    [39]苏现波,刘保民.煤层气的赋存状态及其影响因素[J].焦作工学院学报.1999.3(18):157-160.
    [40]张庆玲,张群等.煤对多组分气体吸附特征研究[J].天然气工业.2005.1(25):57-60.
    [41]吴世跃,郭勇义.关于注气开发煤层气机理的探讨[J].太原理工大学学报.2000.4(31):361-363.
    [42]Chen XD.The spontaneous Heating of Coal-Large scale laboratory assessment Self-healing &supporting theory.PhD.thesis,University of Canterbury,NZ.
    [43]刘剑,王继仁,孙宝铮.煤的活化能理论研究[J] .煤炭学报.24(3),19996.
    [44] Jones JC,Chiz PS,Koh R,Matthew J.Kinetics parameters of oxidationof bituminous coals from heat release rate measurements.Fuel.1996.75:1755–9.
    [45] Jones JC,Chiz PS,Koh R,Matthew J.Kinetics parameters of oxidationof bituminous coals from heat release rate measurements.Fuel.1996.75:1755–9.
    [46]石小松,杜翠凤.吸湿性新型煤堆抑尘阻化剂的实验研究[J].工业安全与环保.2007.33(3):28-29.
    [47]Eddaoudi M,Kim J,Rosi N,et al. Systematic design of pore size and functionality in isoreticular MODs and theirapplication in methane storage[J].Science,2002,295(5554):469-472.
    [48]Chae H K,Siberio-Pérez D Y, Kim J,et al. Aroute to high surface area, porosity and inclusion of large molecules in crystals[J].Nature,2004,427(6974)523-527.
    [49]Prins L J, ReinhoudtD N, Timmerman P.NoncovalentSynthesisUsingHydrogen Bonding[J].Angew Chem IntEd,2001,40:2382-2426.
    [50]Moulton B,ZaworotkoM J.From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids[J].Chem Rev,2001,101:1629-1658.
    [51]LIHai-lian,EddaoudiM,Yaghi O M,et a.l Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-organic Framework[J].Nature,1999,402(6759):276-279.
    [52]LiangM,TaoZJ,ChenJ.SensitizersofDye-sensitizedSolarCell[J].ChemistryOnline,2005,12: 889-896.
    [53]Ito S, MurakamiT, GratzelM, eta.l Fabrication ofThin Film Dye-sensitized SolarCellswith Solar toElectric PowerConversion EfficiencyOver10% [J].Thin Solid Films,2008,516(14): 4613-4619.
    [54]ZengLY,Dai SY,WangKJ,et a.l The Research Progress ofNano-porousTiO2Film in Dye-sensitized SolarCell[J].Acta Energiae SolarisSinica,2005,26(4): 589-596.
    [55]RenYJ,ZhangL.PhotocurrentEnhancementbyTiCl4Post-treatmentforTiO2NanoporousFilm Electrodes[J].Electrochemistry,2002,8(1):5-8.
    [56] Arnold, M.; Brown, D. A.; Deeg, O.; Errington, W.; Hasse,W.; Herlihy, K.; Kemp, T. J.; Nimir, H.; Werner, R. Inorg.Chem. 1998, 37, 2920.
    [57] Yamaguchi, K.; Koshino, S.; Akagi, F.; Suzuki, M.; Uehara,A.; Suzuki, S. J. Am. Chem. Soc. 1997, 119, 5752.
    [58] Arnold, M.; Brown, D. A.; Deeg, O.; Errington, W.; Haase,W.; Herlihy, K.; Kemp, T. J.; Nimir, H.; Werner, R. Inorg.Chem. 1998, 37, 2920.
    [59] Barrios, A. M.; Lippard, S. J. J. Am. Chem. Soc. 1999, 121,11751.
    [60] Brown, D. A.; Ereington, W.; Glass, W. K.; Haase, W.;Kemp, T. J.; Nimir, H.; Ostrovsky, S. M.; Werner, R. Inorg.Chem. 2001, 40, 5962.
    [61] Kryatov, S. V.; Rybak-Akimova, E. V.; Meyer, F.; Pritz-kow, H. Eur. J. Inorg. Chem. 2003, 8, 1581.
    [62] Domasevitch, K. V.; Sieler, J.; Rusanov, E. B.; Chernega,A. N. Z. Anorg. Allg. Chem. 2002, 628, 51.
    [63] Fang, Y. Y.; Liu, H.; Du, M.; Guo, Y. M.; Bu, X. H. J. Mol.Struct. 2002, 608, 229.
    [64] Tse, W. C.; Boger, D. L. Acc. Chem. Res. 2004, 34, 61.30 Yang, P.; Ren, R.; Guo, M. L.; Song, A. X.; Meng, X. L.;Yuan, C. X.; Zhou, Q. H.; Chen, H. L.; Xiong, Z. H.; Gao,X. L. J. Biol. Inorg. Chem. 2004, 9, 495.
    [65] Chaviara, A. T.; Cox, P. J.; Repana, K. H.; Pantazaki, A. A.;Papazisis, K. T.; Kortsaris, A. H.; Kyriakidis, D. A.; Niko-lov, G. S.; Bolos, C. A. J. Inorg. Biochem. 2005, 99, 467.
    [66] Chouai, A.; Wicke, S. E.; Turro, C.; Bacsa, J.; Dunbar, K.D.; Wang, D.; Thummel, R. P. Inorg. Chem. 2005, 44, 5996.
    [67] Sundberg, R. J.; Martin, R. B. Chem. Rev. 1974, 74, 471.34 Pjura, P. E.; Grzeskowiak, K.; Dickerson, R. E. J. Mol. Biol.1987, 197, 257.
    [68] Teng, M. K.; Usman, N.; Frederick, C. A.; Wang, A. H. J.Nucleic Acids Res. 1988, 16, 2671.
    [69] Aymami, J.; Nunn, C. M.; Neidle, S. Nucleic Acids Res.1999, 27, 2691.
    [70] Parkinson, J. A.; Barber, J.; Douglas, K. T.; Rosamond, J.;Sharples, D. Biochemistry 1990, 29, 10181.
    [71]CassouxP.Molecularsuperconductorsderivedfrombis-dithiolatemetalcomplexes[J].CoordChemRev,1999,186:213-232.
    [72]RobertsonN,CroninL.Metalbis-1,2-dithiolenecomplexesinconductingormagneticcrystallineassemblies[J].CoordChem Rev,2002,227:93-127.
    [73]NiZP,RenXM,MaJ,etal.Theoreticalstudiesonthemagneticswitchingcontrolledbystackingpatternsofbis(maleonitriledi-thiolato)nickelate(Ⅲ)dimers[J].JAmChemSoc,2005,127:14330-14388.
    [74]RenXM,MengQJ,SongY,etal.Unusualmagneticpropertyassociatedwithdimerizationwithinanickeltetramer[J].Inorg Chem,2002,41:5931-5933.
    [75] Robertson N, Cronin L. Coord. Chem. Rev., 2002,227:93-127
    [76] Canadell E. Coord. Chem. Rev., 1999,185-186:629-651
    [77] Yang L F, Peng Z H, Cheng G Z, et al. Polyhedron, 2003,22:3547-3553
    [78] Bulgarevich S B,Bren D V,Movshovic D Y, etal. J. Mol.Struct., 1994,317:147-155
    [79] Paul, B. K.; Basu, U. P. J. Indian Chem. Soc. 1969, 46,1121.2 Patil, V. R.; Kharat, R. B.; Deshmukh, B. K. J. Inorg. Nucl.Chem. 1981, 43, 3397.
    [80] Singh, H.; Yadv, L. D. S.; Mishra, S. B. S. J. Inorg. Nucl.Chem. 1981, 43, 1707.
    [81] Criado, J. J.; Fernandez, E. R.; Garcia, E. Inorg. Chem.1998, 69, 113.
    [82] Freedmann, T. B.; Loehr, J. S.; Loehr, T. M. J. Am. Chem.Soc. 1976, 98, 2809.
    [83] Nakamoto, K.; Fujita, J.; Condrate, R. A. J. Chem. Phys.1963, 39(2), 423.
    [84] Weast, R. C. CRC Handbook of Chemistry and Physics,69th ed., CRC Press, Florida, 1989.
    [85] Ditmars, D. A.; Ishihara, S.; Chang, S. S. J. Res. Natl. Bur.Stand. 1982, 87, 159.
    [86] Rojas-Aguilar, A.; Orozoco-Guareno, E. J. Chem.Thermodyn. 2000, 32, 767.
    [87] Mansour, M. A.; Connick, W. B.; Lachicotte, R. J.; Gysling,H. J.; Eisenberg, R. J. Am. Chem. Soc. 1998, 120, 1329.
    [88] King, C.; Wang, J.-C.; Khan, M. N. I.; Fackler, J. P. Jr.Inorg. Chem. 1989, 28, 2145.
    [89] Fu, W.-F.; Chan, K.-C.; Cheung, K.-K.; Che, C.-M.; Chem.Eur. J. 2001, 7, 4656.
    [90] Che, C.-M.; Kwong, H.-L.; Yam, V. W.-W.; Cho, K.-C. J.Chem. Soc., Chem. Commun. 1989, 885.
    [91] Che, C.-M.; Kwong, H.-L.; Poon, C.-K. J. Chem. Soc.,Dalton Trans. 1990, 3215.
    [92] Jones, W. B.; Yuan, J.; Narayanaswamy, R.; Young, M. A.;Elder, R. C.; Bruce, A. E.; Bruce, M. R. M. Inorg. Chem.1995, 34, 1996.
    [93] Narayanaswamy, R.; Young, M. A.; Parkhurst, E.;Ouellette, M.; Kerr, M. E.; Ho, K. M.; Elder, R. C.; Bruce,A. E.; Bruce, M. R. M. Inorg. Chem. 1993, 32, 2506.
    [94]江洪流,王海华.改性MgCl2负载α-二亚胺镍催化乙烯聚合[J].高分子材料科学与工程.2009.25(3):25-27.
    [95]宋春梅,薛海丽等.端氨基聚(醚-氨酯-酰胺)配体及磁共振成像造影剂研究[J].高分子学报.2009.(3)287-282.
    [96]廖强强,李义久等.胺化葡萄糖及其铜配合物的光谱特性[J].光谱学与光谱分析.2008.28(11):2588-2591
    [97]黄丰良,胡峥勇等.含三芳胺基的吡啶甲酸衍生物及其环金属铱配合物的合成与性能[J].化学学报.2008.66(19):2146-2150.
    [98]郭航鸣,赵国良,余玉叶.邻香兰素缩对甲苯胺Schiff碱过渡金属配合物的合成、表征、晶体结构及抗菌活性研究[J].无机化学学报.2008.24(9):193-199.
    [99]周春生,范广等.含能配合物[Mn(BTA)(phen)2·5H2O]n的合成、结构与性质研究[J].化学学报.2008.66(15):1776-1780.
    [100]周科,阂锁田等.二硫代氨基甲酸镐配合物几何异构体理论研究[J].计算机与用化学.2009.2009.26(3):347-351.
    [101]杜世海,仲剑初等. 4,5-二腈基乙硫基-1,3-二硫代环戊烯-2-硫酮及其Ag(Ⅰ)配合物的合成和晶体结构[J].人工晶体学报.2009.38(1):39-43.
    [102]谢木标,范军等.N,N-二苄基二硫代氨基甲酸镍配合物Ni(DBTC)2的溶剂热合成及晶体结构[J].华南师范大学学报.2009(1):77-80.
    [103]王秀玲,袁若等.新型水杨醛缩DL-甲硫氨基酸合铜(Ⅱ)配合物中性载体的碘离子选择性电极的研究[J].分析测试学报.2008.27(9):921-924.
    [104]胡同亮,显和.含硫多吡啶配体及其过渡金属配合物的合成、表征与结构[J].无机化学学报.2008.24(8):1294-1299. []张恭孝,杨荣华.水杨醛缩甲基氨基硫脲Schiff碱配合物的合成与表征[J].山东大学学报.2008.38(3):108-111.
    [105]侯向阳,王潇.基于柔性配体的双核铽配位聚合物[Tb2(tda)3(H2O)2]的合成、晶体结构和荧光性质[J].无机化学学报.2008.24(6):913-918.
    [106]齐丽,朱敦如等.含有4-对溴苯基-3, 5-二(2-吡啶基)-1, 2, 4-三氮唑钴配合物的合成,晶体结构和磁性[J].无机化学学报.2008.24(6):868-872.
    [107]边贺东,李春英.吡啶-3-甲醛缩氨基硫脲合镍!、锌!配合物的合成、晶体结构及生物活性[J] .无机化学学报.2008.24(4):527-533
    [108]邓玉恒,刘娟等. IIB族金属二硫代氨基甲酸配合物的合成、表征及热稳定性研究[J].化学学报.2007.65(2):2868-2874
    [109]王崇太,华英杰等.Cr(III)-取代磷钨杂多配合物对4-甲基吡啶的电催化氧化作用[J].化学学报.2008.66(8):835-840.
    [110]宾晓蓓,董丽娟等.镧钼钒磷杂多配合物的合成及其在柴油氧化脱硫中的应用[J].武汉大学学报.2008.54(6):692-696.
    [111]贾小静,王来来等.葡萄糖及半乳糖衍生的手性双膦-铑(Ⅰ)配合物催化苯乙烯不对称氢甲酰化反应[J].催化学报.2007.28(6):492-494.
    [112]张俊峰,甘欣等.席夫碱型环磷腈类化合物的合成及光谱性质[J].化学学报.2007.65(11):1071-1075.
    [113]潘清江,郭元茹等.双核Au(I)磷硫配合物激发态性质和金属间弱相互作用的从头算研究[J].化学学报.2007.65(7):595-600.
    [114]张学骜,吴文健等.Keggin结构磷钼酸/二氧化硅介孔复合薄膜的制备及其光致变色性质[J].中国科学B辑:化学.2007.37(2):156-163.
    [115]汪东风,耿娟等.苯丙氨酸镁配合物对磷酯键的水解作用[J].科学通报.2007.52(2):154-157.
    [116]韦堃,阿娟等.新型环钯化二茂铁亚胺-膦配合物的质谱特征[J].化学研究.2006.17(3):76-76.
    [117]崔元臣,赵晓伟等.氮配位的无磷聚合物负载钯配合物对Suzuki反应的催化性能[J].化学学报.2006.64(11):1071-1075.
    [118]韩巧凤,王瑛等.正丁基黄原酸铜与三苯基膦配合物的结构和表征[J].化学通报.2006.(2):148-150.
    [119]何忠义,熊丽萍等.新型O-N型三嗪衍生物与磷酸三甲酚酯在菜籽油中的摩擦磨损复合效应研究[J].摩擦学学报.2005.25(5):398-402.
    [1]林梦海.量子化学计算方法与应用[M].北京.科学技术出版社.2004.5.
    [2] Reed, A. E., Larry A.Curtiss and Frank Weinhold, Chem.Rev.,1988,88,899.
    [3] F. Jensen, Introduction to Computational Chemistry,JOHN WILEY & SONS, 1999,161.
    [4] Alml?f, J.and Taylor, P.R. Adv.Quantum Chem.,1991,22,301.
    [5] Jensen, F. Introduction to Computational Chemistry,JOHN WILEY & SONS, 1999,229.
    [6] Reed, A. E. & Weinhold, F. J.Chem.Phys.,1983,78(6),4061.
    [7] Reed, A. E., Weinstock, R. B., Weinhold, F. J.Chem.Phys. 1985, 83(2), 735.
    [8] Carpenter, J.E., Weinhold, F. J.Mol.Struct.(Theochem), 1988, 169, 41.
    [9] Bader, R. F. W.. Atoms in Molecules A Quantum Theory. Oxford University Press,Oxford, 1990.
    [10] Bader, R.F.W.. Chem. Rev. 1991. 91. 893-928
    [11] Pople, J. A.; Head-Gordon, M.; Raghavachari,K.; J. Chem. Phys. 1987, 87, 5968.
    [12] Cutiss,L.A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A.J. Chem. Phys. 1998, 109, 7764.
    [13]王宝俊,张玉贵,秦育红,谢克昌.量子化学计算方法在煤反应性研究中的应用[J].煤炭转化.2003.1(26):1-7.
    [14]徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法,北京,科学出版社, 1985.
    [15]刘靖疆,基础量子化学与应用,北京,高等教育出版社[M], 2004.
    [16]P. O. Lowdin, Adv. Chem. Phys.,1959, 2, 207.
    [17] J. A. Pople, R. Seeger and R. Krishnan, Int. J. Quant. Chem. Symp., 1977,11, 149.
    [18] J. B. Foresman, M. Head-Gordon, J. A. Pople and M. J. Frisch, J. Phys.Chem., 1992, 96, 135.
    [19] R. Krishnan, H. B. Schlegel and J. A. Pople, J. Chem. Phys., 1980, 72,4654.8. B.R. Brooks, W.D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, H.F.Schaefer, J. Chem. Phys., 1980, 72, 4652.
    [20] E. A. Salter, G. W. Trucks and R. J. Bartlett, J. Chem. Phys., 1989, 90,1752.
    [21] K. Raghavachari and J. A. Pople, Int. J. Quant. Chem., 1981, 20, 167.
    [22] J. A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys., 1987, 87,5968.
    [23]. P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964,136, B864.
    [24] W. Kohn, L. J. Sham, Phys. Rev., 1965, 140, A1133.
    [25] J.C. Slater, Quantum Theory of Molecular and Solids. Vol. 4: TheSelf-Consistent Field for Molecular and Solids McGraw-Hill: New York,1974.
    [26] D. R. Salahub and M. C. Zerner, eds., The Challenge of d and f ElectronsACS: Washington, D.C. 1989.
    [27] R. G. Parr and W. Yang, Density-functional theory of atoms and moleculesOxford Univ. Press: Oxford, 1989.
    [28] J. A. Pople, P. M. W. Gill and B. G. Johnson, Chem. Phys. Lett., 1992, 199,557.
    [29] B. G. Johnson and M. J. Frisch, J. Chem. Phys., 1994, 100, 7429.
    [30] J. K. Labanowski, J. W. Andzelm, eds., Density Functional Methods inChemistry, Springer-Verlag: New York, 1991
    [31]王正行.量子力学原理[M].北京.北京大学出版社.2003.
    [32]孙为银.配位化学[M].北京:化学工业出版社,2004.10:17-29.
    [1]王继仁,金智新,邓存宝.煤自燃量子化学理论[M].北京.科学出版社.2007.
    [2]王继仁,邓存宝.煤微观结构与组分量质差异自燃理论[J].煤炭学报.2007.32(12):1291-1296.
    [3]邓存宝,王继仁,叶兵,邓汉忠.煤表面对单氧分子的物理吸附机理[J].中国矿业大学学报.2008.38(2):171-175.
    [4]邓存宝,邓汉忠,王继仁,洪林.煤表面含P侧链基团对氧分子物理吸附机理研究[J].煤炭转化.2008.31(1):1-5.
    [5]邓存宝,王雪峰,王继仁,邓汉忠,叶兵.煤表面含S侧链基团对氧分子的物理吸附机理[J].煤炭学报.2008.33(5):556-560.
    [6]邓存宝,王继仁,张俭,邓汉忠.煤自燃生成乙烯反应机理[J].煤炭学报.2008.33(3):299-303.
    [7]Deng Cunbao,Sun Yanqiu, Deng Hanzhong,Wang Xuefeng.Chemical Adsorption of O2 on–CH2-NH2 Group of Coal Surfacce[A].International Symposium on Earth Science and Technology[C].2008.135-142.
    [8]邓汉忠,王继仁,邓存宝. O_2在—CH_2—CH_2OH基团上的化学吸附[J].煤炭转化.2007.30(4):29-33.
    [9]ВанЦзижэнь,ДэньЦуньбао,ДэньХаньчжун,ЛуВэйдун.Исследованиемикромеханизмафизическойадсорбциимолекулкислородаповерхностьюугля[J].ГорныйИнформацинно-АналитическийБюллетень,2009,(2):379-385.
    [10]王继仁,邓存宝.煤的自燃倾向性新分类方法研究[J].煤炭学报.2008.33(1):47-50.
    [11]王继仁,孙艳秋,邓存宝,邓汉忠,昌孝存.煤自燃生成水的反应机理研究[J].煤炭转化.2008.31(1):51-56.
    [12]王继仁,邓存宝,邓汉忠.煤表面对氧分子物理吸附的微观机理[J].煤炭转化.2007.30(4):18-21.
    [13]王继仁,邓汉忠,邓存宝,叶兵.煤自燃生成一氧化碳和水的反应机理研究[J].计算机与应用化学.2008.25(5):935-940.
    [14]王继仁,刘仲田,邓汉忠,邓存宝,张俭.煤表面对多个氧分子的多层吸附机理研究[J].计算机与应用化学.2008.25(3):281-284.
    [15]王继仁,赵庆福,邓存宝,邓汉忠,孙艳秋.煤表面对多种气体分子混合吸附的微观机理[J].计算机与应用化学. 2008.25(4):390-394.
    [16]王继仁,邓存宝,邓汉忠.煤与瓦斯突出微观机理研究[J].煤炭学报.2008.33(2):131-135.
    [17]洪林,王继仁,邓存宝等.煤炭自燃生成标志气体的红外光谱分析[J].辽宁工程技术大学学报.2006.25(5):645-648.
    [18]陆卫东,王继仁,邓存宝,单亚飞,洪林,邓汉忠.神东矿区煤炭自燃标志气体的红外光谱分析[J].煤矿安全.2007.9:1-4.
    [1]王继仁,金智新,邓存宝.煤自燃量子化学理论[M].北京:科学出版社,2006.
    [2]苏克曼,潘铁英,张玉兰.波谱解析法[M].2002.8
    [3]邓芹英,刘岚,邓惠敏.波谱分析教程[M]2007.8
    [4]陈允魁.红外吸收光谱法及其应用[M].上海:上海交通大学出版社,1993,
    [5]陶著.煤化学[M].北京:冶金工业出版社,1984..
    [6]宁永成。有机化合物结构鉴定与有机波谱学[M]2000.
    [7]王继仁.邓存宝.煤的自燃倾向性新分类方法研究[J].煤炭学报. 2008.33(1):47~50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700