高效沉淀技术在城市污水深度处理中的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用高效沉淀装置,以生活污水处理厂二沉池出水为原水,通过静态试验设计及动态试验,开展了高效沉淀技术在城市污水深度处理中的试验研究,确定了高效沉淀池的最适运行参数,研究了不同污泥回流量及不同混凝剂投加量对污染物去除效果的影响,进一步明确了高效沉淀池的运行机理。试验研究结果如下:
     (1)静态试验正交表采用L16(44),综合评价指标为SS、TP。静态试验结果为:混凝剂种类及投加量为:FeCl3,12.31mg/L(以Fe3+计);助凝剂种类及投加量为:PAM,0.80mg/L;搅拌速度为:快速搅拌1min、转速120r/min,慢速搅拌15min、转速80r/min,静沉40min。
     (2)高效沉淀技术对生活污水厂二沉池出水中SS、TP、COD有很好的处理效果,去除率可达到80%左右,去除效果稳定,但对TN、氨氮的去除效果不明显。
     (3)污泥回流对高效沉淀装置的运行效果有较大影响,而适宜的污泥回流,增加了装置内污泥颗粒浓度,可相应降低混凝剂投加量。控制装置进水量为120L/h,混凝剂投加量为12.31mg/L(以Fe3+计),系统采用间歇排泥,设定0、40、60、80、100、120、160L/h共7个工况运行比选试验,确定适宜污泥回流量为60L/h。本试验条件下,出水SS、TP、COD分别为10mg/L、0.55mg/L、40.11mg/L,去除率分别73.19%、85.01%和75.10%。控制装置进水量为120L/h,污泥回流量为60L/h,系统采用间歇排泥,设定8.20、9.23、10.26、11.28、12.31mg/L(以Fe3+计)共5个工况运行比选试验,确定适宜的混凝剂投加量为10.26mg/L(以Fe3+计)。本试验条件下,出水SS、TP、COD分别为10mg/L、0.49mg/L、49.08mg/L,去除率分别84.62%、85.42%和81.00%。
     (4)高效沉淀装置对污水厂二沉池出水中粒径≥12μm的颗粒可完全去除,对粒径在3-12μm的颗粒可部分去除,对粒径≤3μm的颗粒则几乎没有去除能力。SS平均去除率为79.07%,出水SS值为9mg/L。
     (5)控制装置的污泥回流量为60L/h、混凝剂投加量为10.26mg/L(以Fe3+计),改变污泥回流的时间,设定30、50、60、70、80min共5个工况运行比选试验,确定污泥体系稳定时间为60min。本试验条件下,出水SS、TP、COD分别为8mg/L、0.49mg/L、44.91mg/L,去除率分别87.88%、80.63%和81.87%。
     (6)小型装置污泥体系运行稳定后,不同工况下污泥浓度及污泥沉降性能的分析可知:污泥回流量为60L/h时,形成的污泥絮体相对其他工况具有更好的污泥沉降性能,对中水站二沉池出水中各污染指标有较好的去除效果;混凝剂投加量为10.26mg/L时,形成的污泥浓度较高且具有较好的污泥沉降性能,絮体颗粒密实,相对其他工况有很明显的处理优势。
     (7)小型装置污泥体系运行稳定后,不同工况下污泥颗粒图片的比较分析可知:污泥回流量为60L/h时,形成的污泥絮体颗粒较大且密实,颗粒物含量较高,颗粒碰撞几率增大,形成的污泥絮体具有很好的沉降性能;混凝剂投加量为10.26mg/L(以Fe3+计)时,形成污泥絮体矾花颗粒较大且密实,颗粒物含量较高,有利于污泥絮体吸附沉淀,而且在试验过程中,可明显观察到絮体沉降速度相对其他工况较快。
In this thesis, efficient precipitation device was used, and the raw water came from secondary settling tank effluent of sewage treatment plant.Through static test design and dynamic test, the study on efficient precipitation technique in advanced treatment of urban wastewater was carried out.Optimum operating parameters for efficient sedimentation tanks had been determined.Meanwhile, the effects of different sludge return flow and coagulant dosage on pollutant removal were studied,and the operation mechanism of efficient sedimentation tanks was further defined.
     The results of the experimental study are as follows:
     (1) The orthogonal table of static test was L16(44), and comprehensive evaluations were SS, TP. The results of static test were the following three aspects:coagulant kinds and dosage were FeCl3and12.31mg/L (Fe3+),and flocculant kinds and dosage were PAM and0.80mg/L, and the stirring speed were rapid stirring lmin of120r/min, slow stirring15min of80r/min and stationary40min.
     (2) Efficient precipitation technique had good treatment effect on SS, TP and COD,and the removal rate of them were about80%, but had worse treatment effect for TN and NH4-N.
     (3) Sludge recycle had a great impact on the operations of efficient sedimentation tank. Suitable sludge return could increase the particle concentration and particle density of the sedimentation tank, so coagulant dosage could be reduced.The influent of device was120L/h, and coagulant dosage was12.31mg/L(Fe3+),and the system used intermittent mud.In this case, the test had7test conditions, respectively of0,40,60,80,100,120,160L/h.Through tests, suitable sludge recycle for60L/h was sure. In this situation, the SS, TP and COD values of effluent were10mg/L,0.55mg/L,40.11mg/L,and the removal rate of SS, TP and COD reached 73.19%,85.01%,75.10%.Sludge return flow was60L/h, and the system used intermittent mud.In this case, the test had5test conditions, respectively of8.20,9.23,10.26.11.28.12.31mg/L(Fe3+). Through tests, suitable dosing quantity of coagulant was10.26mg/L (Fe3+).In this situation, the SS, TP and COD values of effluent were10mg/L,0.49mg/L,49.08mg/L,and the removal rate of SS, TP and COD reached84.62%,85.42%,81.00%.
     (4) The results show that those particles (size≥12μm) could be removed completely by efficient precipitation tank, and the particles (size from3to12μm) could be partially re-moved, and other particles (size≤3μm) almost no removal capacity. The SS value of effluent was9mg/L, and the average removal rate was79.07%.
     (5) Sludge return flow was60L/h, and coagulant dosage was10.26mg/L(Fe3+). In this case, the test had5test conditions, respectively of30、50、60、70、80min.Through tests, sludge system settling time for60min was sure, by changing the time of sludge return. In this situation, the SS, TP and COD values of effluent were8mg/L,0.49mg/L,44.91mg/L,and the removal rate of SS, TP and COD reached87.88%,80.63%,81.87%.
     (6) When sludge return flow was60L/h after sludge system stable of device, the sludge flocs had better sludge settleability relative to other conditions, and had better removal effect on the pollution indicators.When coagulant dosage was10.26mg/L(Fe3+)after sludge system stable of device, sludge concentration was high and the sludge flocs had better sludge settleability.The device had processing advantages relative to other conditions.
     (7) In different conditions, sludge particle pictures showed that:When sludge return flow was60L/h after sludge system stable of device, sludge flocs particles had good compaction.Particles collision probability increased. The sludge had better sludge settleability.When coagulant dosage was10.26mg/L(Fe3+), floc alum particles were large and compaction.High content of particulate matters were good at sludge adsorption.During the test, it could be observed that the settling velocity of flocs was relatively faster to other conditions.
引文
[1]庞鹏沙,董仁杰.浅议中国水资源现状与对策[J].水利科技与经济,2004,10(5):267-268.
    [2]国家环境保护总局.中国环境质量公报,1998-2003年.
    [3]2010中国环境状况公报.
    [4]GB3838-2002,地表水环境质量标准[S].2002.
    [5]吴作成.高效沉淀池技术浅析[C].2006年中国水处理技术研讨会论文集.陕西西安,2006:618-622.
    [6]蒋玖璐,李东升,陈树勤.高效澄清池的设计[J].给水排水,2002,28(9):27-29.
    [7]李春民.高效澄清池在邯钢第二污水处理厂的应用[J].冶金动力,2006,(4):58-60.
    [8]陆晓如,周雅珍,黄竹君.高效澄清池在黄浦江原水中的应用试验[J].净水技术,2002,21(2):14-16.
    [9]谢钦.高效澄清池的工艺简介[J].给水排水,2006,32(增刊):38-39.
    [10]杨晓松,刘峰彪,宋文涛,等.高效泥浆法处理山梨酸废水[J].有色金属,2005,57(4):97-100.
    [11]June Leng,Andy Strehler,Bob Bucher,Jamie Gellner, et al.Compact technologies outdo Conventional Primary treatment Processes[J].W E and T, Jan 2004,161:45-49.
    [12]吴建磊.污水处理新工艺-DEN SADEG+BIOFOR[J]中国给水排水,2003,19(1):103-104.
    [13]梁从诫,杨东平.2005年:中国的环境危局与突围[M].北京:社会科学文献出版社.2006:147-161.
    [14]王敏.太湖水污染事件[J].化学教学,2008,(2):74-75.
    [15]Friedler Eran. Water reuse-an integral part of water resources management:Israel as a case study [J]. water policy,2001,3(1):29~39.
    [16]李碧清,高洁,白宇等.城市污水深度处理与流域健康水循环[J].低温建筑技术,2004,100(4):67-68.
    [17]干文忠,李慧,李涛,等.浅谈污水深度处理[J].资源节约与环保,2008,24(2):57-60.
    [18]张自杰,顾夏生.排水工程(下册)[M].第四版.北京:中国建筑工业出版社.1999:292-293.
    [19]李圭白,张杰.水质工程学[M].北京:中国建筑出版社.2005.
    [20]张树峰.污水深度处理技术的应用[J].中国氯碱.2010,(7):4244.
    [21]牟冠文,李光浩.污水深度处理方法及其应用[J].中国环保产业.2006,(3):40-43.
    [22]唐志红,朱文魁,马蓉,等.活性炭再生技术[J].煤化工,2004,32(1):43-46.
    [23]严煦世,范瑾初.给水工程[M].第四版.北京:中国建筑工业出版社.1999:362-363.
    [24]许萍,汪慧贞,张雅君,等.污水深度处理技术发展趋势[J].建设科技,2008,(19):50-52.
    [25]Muntisov M, Chapman M, Finlayson G, et al. A review of new drinking water treatment technology in Australia[J]. Water,2003,30(1):25-28.
    [26]Franceschi M, Girou A, Carro-Diaz A M, et al. Optimisation of the coagulation-flocculation process of raw water by optimal design method[J]. Water Research,2002,36:3561-3572.
    [27]Plum V, Dahl C P, Bentsen L, et al. The ACTIFLO method[J]. Water Science & Technology, 1998,37(1):269-275.
    [28]Perri J S, Casey J D, Smock M E. Iron and steel mills use sand-ballasted settling technology to improve water treatment results[C]. AISTech 2006-Proceedings of the Iron & Steel Technology Conference (Volume Ⅱ),2006:1155-1162.
    [29]Wong J M. Using high-rate clarification Processes to Optimize Water Treatment[J]. Water World,2005,21(6):14,16,35.
    [30]Jeschke R. Microsand enhanced flocculation and settling technology improves water quality:a pilot plant study[C]. American Water Works Association 1998 Annual Conference,1998:365-386.
    [31]王海燕.生活污水深度处理技术应用[J].能源环境保护,2009,23(3):36-37.
    [32]王雷,李嘉英.浅析污水回用深度处理技术与工艺[J].河南化工,2010,27(2):57-58.
    [33]孙健,陈建平,邰珠杰.污水深度处理工艺技术的应用[J].石油化工安全环保技术,2008,24(2):6-7.
    [35]雷乐成,杨岳平,汗大翚笛.污水回用新技术及工程设计[M].北京:化学工业出版社,2002
    [36]张宝军.本钢综合污水处理及回用[J].冶金动力.2005,(5):50-52
    [37]张志军,白云飞.高效沉淀池/V型滤池工艺再生水厂的设计运行[J].水工业市场,2010,(6):56-61
    [38]许保玖.关于混凝技术术语规范化的建议[J].给水排水,1992,2:36-39.
    [39]李伟英.“混凝”新释义及混凝技术[J].工业用水与废水.2001,32(2):37-39.
    [40]李峰.絮凝剂、助凝剂联合强化混凝改善水质研究[D].天津,天津大学,2007.
    [41]杨开明,张建强,杨小林.混凝沉淀过程中最佳混凝剂投量的研究[J].工业水处理,2005,25(9):49-51.
    [42]Volk C, Ibrahim E, Verges D, et al. Impact of enhanced and optimized coagulation on removal of organic matter and its biodegrable fraction in drinking water[J].Water Research, 2000,34(12):3247-3257.
    [43]王丽娜.高密度沉淀技术在污水强化处理中的试验研究[D].山东济南,山东建筑大学,2011.
    [44]国家环保总局,水和废水检测分析方法编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [45]王建伟,孙力平,姜春杰,等.泥渣回流强化混凝工艺处理城市污水二级生化出水[J].工业用水与废水,2008,39(6):59-62.
    [46]刘杨,赵建伟,杨兴涛,等.水厂排泥水处理系统优化运行研究[J].供水技术,2007,1(5):56-57.
    [47]余松,夏四清,赵建夫.化学生物絮凝与化学絮凝工艺处理城市污水[J].环境污染与防治,2006,28(1):65-68.
    [48]张志斌,夏四清,赵建夫,等.化学生物絮凝工艺处理城市污水的试验研究[J].工业水处理,2005,25(7):53-56.
    [49]段金明,刘启明,张金丽,郑丽琳.再生水处理工艺中混凝深度除磷研究[J].集美大学学报(自然科学版),2010,15(1):31-35.
    [50]徐丰果,罗建中,凌定勋.废水化学除磷的研究与进展[J].工业水处理,2003,23(5):18-20.
    [51]徐国想,阮复吕.铁系和铝系无机絮凝剂的性能分析[J].重庆环境科学,2001,23(3):52-55.
    [52]赵建伟,何文杰,黄廷林,等.高效沉淀池污泥上浮原因及对策[J].中国给水排水,2010,26(8):104-107.
    [53]GUANXH.Re-use ofwater treatmentworks sludge to enhance particulate pollutant removal from sewage[J]. Wat. Res.,2005,39 (4):3433-3440.
    [54]CHUW. Leadmetal removalby recycled alum sludge[J]. Wat.Res.,1999,33 (2):3019-3025.
    [55]谭爱平,钟陵,黄滨.测定总氮的影响因素探讨[J].中国环境监测,2006,22(1):61-63.
    [56]严煦世,范瑾初.给水工程[M].第四版.北京:中国建筑工业出版社.1999:254-314.
    [57]方晞,张莉平,聂建校,等.高浊度水混凝沉淀浑液面沉速的计算[J].长安大学学报(建筑与环境科学版),2004,21(2):35-38.
    [58]王毅力,黄承贵.好氧污泥絮体与厌氧颗粒污泥的剪切稳定性分析[J].中国环境科学,2009,29(4):380-385.
    [59]张洪波.好氧颗粒污泥形成的影响因素分析[J].企业技术开发,2010,29(9):74-78.
    [60]宋振亚,宋启敏,巴怡然等.絮凝体沉降速度在线测量方法研究[J].自动化与仪表,2010(5):4-7.
    [61]武道吉,谭凤训,张华.高混浊度水混凝控制指标的研究[J].工业水处理,2002,22(2):32-34.
    [62]何纯提.净水厂排泥处理[M].北京:中国建筑工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700