HCN在Fe、Co和Ni表面吸附的密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸附是多相催化反应必经和基本的步骤,催化剂只有能够化学吸附反应物,才能起到催化作用。腈类化合物催化加氢机理被认为是从腈类化合物在催化剂表面上吸附、解离开始的,该过程已被确定为腈类催化加氢的速率控制步骤。Fe、Co和Ni是重要的过渡金属催化剂,近年来已被广泛应用于催化反应中。探究HCN在Fe、Co和Ni表面的吸附对于过渡金属催化机理的研究和催化剂性能的改进具有重要意义。具体研究内容如下:
     (1)采用密度泛函方法在1/4覆盖度上计算了HCN在Fe(100)、Fe(111)和Fe(110)表面吸附的20种结构及其吸附能。结果表明,在Fe(100)上,最优吸附构型为HCN吸附在表面上的fourfold位,其中C≡N键与四个相邻的Fe原子成键,吸附能为–1.928eV;在Fe(111)表面,最稳定构型为HCN分子中C≡N键平行吸附的f-η~3(N)-h-η~3(C),吸附能为–1.347eV;在Fe(110)上,最优构型是HCN位于两个long-bridge位,其吸附能为–1.777eV。平行吸附的吸附能比垂直吸附的吸附能大。Mulliken电荷及态密度分析揭示了HCN在Fe(100)、Fe(111)和Fe(110)面上的成键机理。吸附的HCN在表面上形成非线性弯曲的吸附结构有利于加氢反应的发生。推测了Fe可能增强双金属催化剂对腈类化合物催化加氢活性的原因。
     (2)采用密度泛函方法在1/4覆盖度上计算了HCN在Co(100)和Co(110)表面吸附的13种结构及其吸附能。结果表明,在Co(100)上,最优吸附构型为HCN吸附在表面上的fourfold位,其中C≡N键与四个相邻的Co原子成键,吸附能为–1.836eV;在Co(110)上,最优构型是HCN位于两个fourfold-long位,其吸附能为–1.580eV。相似于以前研究的HCN/Co(111),平行吸附的吸附能比垂直吸附的吸附能大,而且前者使HCN的C≡N键变得更弱。这样,C≡N键的活性在平行吸附的复合物中更高,氢化反应更容易进行。吸附的HCN在表面上形成非线性弯曲的吸附结构有利于加氢反应的发生。Mulliken电荷布居分析揭示了HCN在Co(100)和Co(110)面上的成键机理。
     (3)针对乙腈加氢反应机理的研究,采用密度泛函方法计算了HCN在Ni(111)、Ni(100)和Ni(110)表面上的吸附,并在1/4覆盖度的基础上讨论了表面吸附结构及吸附能。结果表明,在Ni(111)表面,最稳定的吸附构型为HCN分子中C≡N键几乎平行吸附在表面上,其吸附结构f-η~3(N)-h-η~3(C),吸附能-1.369eV。在Ni(100)上,最优吸附构型为HCN吸附在表面上的fourfold位,其中C≡N键与四个相邻的Ni原子成键,吸附能为-1.932eV。在Ni(110)上,HCN吸附构型与在其它两个表面相类似,HCN位于两个long-bridge位,其吸附能为-1.780eV。同时,也通过电子电荷及态密度分析了HCN在Ni(111)、Ni(100)和Ni(110)表面上的成键机理,表明吸附的HCN在表面上重新杂化,形成非线性弯曲的吸附结构,这更有利于加氢反应的发生。
     (4)利用DFT-B3LYP/6-311++G**和MP2(full)/6-311++G**方法计算了由M~(2+)(M=Fe, Co, Ni)和HCN形成的二聚体以及M~(2+)和HCN(1:2)形成的三聚体体系的结构和性质。考查了氢键(N···H或π···H)和N···M~(2+)或π···M~(2+)相互作用间形成的cooperativity效应。结果表明,在大多数情况下,三聚体中的分子间相互作用的距离R_(N···H)、R_(π···H)、R_(N···M2+和Rπ···M~(2+)的数值比相应的二聚体中的值小。N···M~(2+)和π···M~(2+)相互作用对氢键产生的cooperativity或anti-cooperativity效应比氢键对N···M~(2+)和π···M~(2+)相互作用产生的cooperativity或anti-cooperativity效应显著。应用AIM方法进一步验证了cooperativity效应的存在。该理论研究揭示cooperativity效应对HCN在金属M (M=Fe, Co, Ni)的吸附有较大影响。
Adsorption is an inevitable and basic step in heterogeneous catalytic reactions.And the catalysts can not speed the reaction until they can chemically adsorb the reactants. So,the mechanism of catalytic hydrogenation of nitriles is considered to start from the adsorptionand dissociation of nitriles on the surface of catalysts, and such course has already beendetermined as the reaction rate control step of catalytic hydrogenation of nitriles. Fe, CoandNi are important transition metal catalysts and have already been extensively used incatalytic reactions in recent years. Exploring the adsorption of HCN on the surface of Fe, CoandNi will have great significance for the study on the mechanism of transition metalcatalysis and the improvement of properties of catalyst. Research contents as follows:
     (1) Twenty kinds of adsorptions of HCN on the Fe(100), Fe(111) and Fe(110) surfacesat the1/4monolayer coverage are found using the density functional theory. For Fe(100), theadsorption energy of the most stable configuration where the HCN locates at the fourfold sitewith the C≡N bonded to four Fe atoms is–1.928eV. The most favored adsorption structure forHCN on Fe(111) is f-η~3(N)-h-η~3(C), in which the C≡N bond is almost parallel to the surface,and the adsorption energy is–1.347eV. On Fe(110), the adsorption energy in the most stableconfiguration in which HCN locates at the two long-bridge sites is–1.777eV. The adsorptionenergy of the parallel orientation for HCN is larger than that of the perpendicularconfiguration. The binding mechanism of HCN on the Fe(100), Fe(111) and Fe(110) surfacesis also analyzed by Mulliken charge population and the density of states in HCN. The resultindicates that, the configurations in which the adsorbed HCN become the non-linear arebeneficial to the formation of the addition reaction for hydrogen. The nature that theintroduction of Fe into catalyst could increase the catalytic activity of the bimetallic catalystin the addition reaction of hydrogen for nitriles is revealed.
     (2) Thirteen kinds of adsorption adsorptions of HCN on the Co(100) and Co(110) surfaces at the1/4monolayer coverage are investigated using the density functional theory.For Co(100), the adsorption energy of the most stable configuration where HCN locates at thefourfold site with the C≡N bonded to four Co atoms is–1.836eV. On Co(110), the bondingenergy in the most favored adsorption configuration in which HCN locates at thefourfold-long site is–1.580eV. Similar to previous HCN/Co(111), the parallel adsorptionconfiguration is energetically favored compared with the perpendicular mode and the formerweakens greater the strength of C≡N bond than the latter. Thus, the greater activation of theC≡N bond might be found in parallel configuration and hydrogenation reaction might beeasier in the parallel configuration in which the adsorbed HCN becomes the non-linear. Thebinding mechanism of HCN on the Co(100) and Co(110) surfaces is analyzed by Mullikencharge population in HCN.
     (3) The adsorption of HCN on the Ni(111)、Ni(100) and Ni(110) surface at the1/4monolayer coverage has been carried out at the level of density functional theory forunderstanding hydrogenation processes of nitriles. The most favored adsorption structure forHCN on Ni(111) is the C≡N bond almost parallel to the surface with the C≡N bondinteraction with adjacent surface Ni atoms (f-η~3(N)-h-η~3(C)), with the adsorption energy of-1.369eV. For Ni(100), the most stable configuration is the HCN locates at the fourfold sitewith the C≡N bonded to four Ni atoms, and the adsorption energy is–1.932eV. In Ni(110), theHCN adsorption has been computed, and the adsorption pattern is nearly similar to the HCNon Ni(111) and Ni(100), respectively. The HCN locates at the two long-bridge sites and theenergy is–1.780eV. Furthermore, the binding mechanism of HCN on the Ni(111)、Ni(100)and Ni(110) surface is also analyzed. The result is that the adsorbed molecules rehybridize onthe surfaces, becoming non-linear with a bent H–C–N angle.
     (4) The DFT-B3LYP/6-311++G**and MP2(full)/6-311++G**calculations on thestructures and properties were carried out on the binary complex formed by M~(2+)(M=Fe, Co,Ni) and HCN as well as the HCN ternary system with M~(2+)(M~(2+):HCN=1:2). The cooperativityeffects between the hydrogen-bonding (N···H and π···H) and N···M~(2+)as well as π···M~(2+)interactions were investigated. The result shows that most of the equilibrium distances R_(N···H), R_(π···H), R_(N···M2+and Rπ···M~(2+)in the ternary complex decrease and both the interactions arestrengthened when compared to the corresponding binary complex. The cooperativity oranti-cooperativity effect of the N···M~(2+)and π···M~(2+)interactions on the hydrogen-bondinginteractions is more pronounced than that of the hydrogen-bonding interactions on the N···M~(2+)and π···M~(2+)interactions. The nature of the cooperativity effect was revealed by the analysis ofthe atom in molecule (AIM) method. The result suggests that the cooperativity effect, in somecases, might influence the adsorption process of HCN on the M (M=Fe, Co, Ni) surface.
引文
[1]曹声春,胡艾希.催化原理及其工业应用技术[M].长沙:湖南大学出版社,2001:44-83
    [2]吴越.催化化学(第二版)[M].北京:科学出版社,1998:788-1023
    [3]汪贻水,王志雄,沈建中.六十四种有色金属[M].长沙:中南大学出版社,1998:20-50
    [4] Lv, B.; Linghu, R. F.; Huang, C. X.; Song, X. S. The potential energy surfaces of HCN andHNC molecules in the ground state. Journal of Sichuan University (Natural ScienceEdition),2008,45(3):612-618
    [5] Andreea, C. G.; Petru, M.; Undina, S. Effect of supports on the activity of nickel catalystsin acetonitrile hydrogenation. Appl. Catal. A: Gen.2005,294:208-214
    [6]姜兆华,孙德智,邵光杰.应用表面化学与技术[M].哈尔滨:哈尔滨工业大学出版社,2000:44-47
    [7]程传煊.表面物理化学[M].北京:科学技术文献出版社,1995:226-227
    [8]许振嘉.近代半导体材料的表面科学基础[M].北京:北京大学出版社,2002:45-85
    [9] K. Yoshida; G. A. Somorjaia. The chemisorption of CO, CO2, C2H2, C2H4, H2and NH3onthe clean Fe(100) and (111) crystal surfaces[J]. Surface Science,1978,75(1):46-60
    [10] U. Seip; M.-C. Tsai; K. Christmann; J. Küppers; G. Ertl. Interaction of Co with an Fe(111)surface[J]. Surface Science,1984,139(1),29-42
    [11] K. Ueda, M. Inoue. A study of surface defect of Si(511) by Rheed and Leed[J]. Surf. Sci.Lett.,1985,161(2-3): L578–L582
    [12] C. E. Bartosch; L. J. Whitman; W. Ho. The adsorption, interconversion, and dissociationof CO on Fe(111)[J]. J. Chem. Phys.,1986,85(2):1052-1060
    [13] M. Textor; I. D. Gay; R. Mason. Photoelectron Spectroscopy of the$\alpha$-Fe(111)-Carbon Monoxide Surface[J]. Proc. R. Soc. Lond. A,1977356:37-45
    [14] Zhao, W.; Wang, J. D.; Liu, F.-B.; Chen, D. R. First principles study of H2O moleculeadsorption on Fe(100), Fe(110)and Fe(111)surfaces[J]. Acta Phys. Sin.,2009,58:3352-3358
    [15] Mubarak, A. A.; Hamad, B.A.; Khalifeh, J.M. The influence of hydrogen on theelectronic and magnetic structures of TM(001)(TM=Fe, Co, Ni, and Cu) surfaces andinterfaces: Ab-initio calculations[J]. J. Magn. Magn. Mater.,2010,322:780-785
    [16] Zhang, J.; Yu, W. Z.; Yan, Y. G.; Yu, L. J.; Ren Z. J. Molecular Dynamics Simulation ofthe Adsorption Behavior of Imidazoline Corrosion Inhibitors on a Fe(001) Surface[J].Acta Phys. Chim.Sin.,2010,26:1385-1390
    [17] K. Ueda, M. Enatsu. Preferential ion-induced desorption of adsorbed carbon monoxidefrom an iron (111) single crystal surface[J]. Surf. Sci.,1985,159(1): L421-L424
    [18] Zhao, W.; Wang, J.D.; Liu, F.B.; Chen, D.R. Equilibrium geometric structure andelectronic properties of Cl and H2O co-adsorption on Fe(100)surface[J]. Chinese Sci.Bull.,2009,54:1295-1301
    [19] Kittel, C. in: Introduction to Solid State Physics,6th ed.[M]. Wiley, New York,1986,78-95
    [20] Herzberg, G. Electronic Spectra and Electronic Structure of Polyatomic Molecules[M].Van Nostrand, New York,1966,82-101
    [21] D.W. Moon; D. J. Dwyer; S.L. Bernasek. Adsorption of CO on the clean and sulfurmodified Fe(100) surface[J]. Surf. Sci. Lett.,1985,163(1): A684-A685
    [22] D. W. Moon, S. L. Bernasek, J. P. Lu, J. L. Gland, D.J. Dwyer. Activation of carbonmonoxide on clean and sulfur modified Fe(100)[J]. Surf. Sci.,1987,184(1-2):90-108
    [23] D.W. Moon, S. Cameron, F. Zaera, W. Eberhardt, R. Carr, S.L. Bernasek, J.L. Gland, D.J.Dwyer. A tilted precursor for CO dissociation on the Fe(100) surface[J]. Surf. Sci.,1987,180(1): L123-L128
    [24] D. W. Moon; S. L. Bernasek; D. J. Dwyer; J. L. Gland. Observation of an unusually lowcarbon monoxide stretching frequency on iron(100)[J]. J. Am. Chem. Soc.,1985,107[14],4363-4364
    [25] R. S. Saiki; A. P. Kaduwela; J. Osterwalder; C. S. Fadley; C. R. Brundle. Observationand characterization of a strained lateral superlattice in the oxidation of Ni(001)[J]. Phys.Rev. Lett.,1989,40(3):1586–1592
    [26] S. D. Cameron; Daniel J. Dwyer. A study of.pi.-bonded carbon monoxide oniron(100)[J]. Langmuir,1988,4(2):282–288
    [27] J. P. Lu; M.R. Albert; S. L. Bernasek. Adsorption and dissociation of CO on Fe(100) atlow coverage[J]. Surf. Sci.,1989,217(1-2):55-64
    [28] S. L. Bernasek. Reaction of Small Molecules at Well-Characterized Iron Surfaces[J].Annu. Rev. Phys. Chem.,1993,44,265-298
    [29] S.P. Mehandru; Alfred B. Anderson. Binding and orientations of CO on Fe(110),(100),and (111): A surface structure effect from molecular orbital theory[J]. Surf.Sci.,1988,201(1-2):345-360
    [30]肖翠微,苗鹏,史士东. F-T合成非均匀型Co/ZnO2/SiO2催化剂的研究[J].洁净煤技术,2008,14(1):32-35
    [31] Timothy E. Meehan; John D. Head. A theoretical comparison of CO bonding on theFe(100) surface[J]. Surf. Sci. Lett.,1991,243(1-3):L55-L62
    [32] G. Blyholder; M. Lawless. A theoretical study of the site of CO dissociation onFe(100)[J]. Surf. Sci.,1993,290(1-2):155-162
    [33] Y Aray; J Rodriguez. Study of CO adsorption on the Fe(100) surface using the Laplacianof the electronic charge density[J]. Surf. Sci.,1998,405(2-3): L532–L541
    [34] S. K. Nayak; M. Nooijen; S. L. Bernasek; P. Blaha. Electronic Structure Study of COAdsorption on the Fe(001) Surface[J]. J. Phys. Chem. B,2001,105,164-172
    [35] Dan C. Sorescu; Donald L. Thompson; Margaret M. Hurley; Cary F. Chabalowski.First-principles calculations of the adsorption, diffusion, and dissociation of a COmolecule on the Fe(100) surface[J]. Phys. Rev. B,2002,66(3):035416
    [36]丰慧,刁兆玉,王泽新,张静.氢原子在Fe低指数面及高指数面(211)上的吸附和振动[J].高等化学学报,2006,27(2):297-302
    [37] Feng H., Zhang, X. N., Wang Z. X., Diao Z. Y., Qian Z. S. Adsorption and vibration of OAtoms on Fe Low-index and Fe(211) High-index Surfaces[J]. Chemical Research inChinese Universities,2007,23(2):226-232
    [38] Eder M., Terakura K., Hafner J. Initial stages of oxidation of (100) and (110) surfaces ofiron caused by water[J]. Phys. Rev. B2001,64(11):115426-115433
    [39] Raeker T. J., DePristo A. E. Corrected effective medium calculations of thechemisorption of H and N on Fe(100),Fe(110) and W(110)[J]. Surf Sci.,1990,235(1):84-106
    [40]Cemaschi P.,Yang H., Whitten J. L. Ab initio chemisorption studies of H on Fe(110)[J],Surf. Sci.,1995,330(3):255-264
    [41] Jiang D. E., Carter E. A. Adsorption and diffusion energetics of hydrogen atoms onFe(110) from first principles[J]. Surf. Sci.,2003,547(1-2):85-98
    [42] Yin, F. M. S. Thesis. Chongqing University, Chongqing,2002(in Chinese).(殷菲.硕士论文.重庆大学,重庆,2002)
    [43]赵巍,汪家道,刘峰斌,陈大融. Cl与H2O在Fe(100)表面共吸附的稳定结构与电子特性[J].科学通报,2009,54(6):740-746
    [44] Ren, F.; Li, Q. Development of a catalyst for selective hydrogenation of acetonitrile toethylamine. Industrial Catalysis,2007,15:28-30
    [45] Wang, X.; Wang, F.; Chen, M.; Ren, J. Studies on nickel-based bimetallic catalysts forhydredeoxyge-nation. Journal of Fuel Chemistry and Technology,2005,33:612-616.
    [46] Wang, N.; Sun, Z.; Wang, Y.; Gao, X.; Zhao, Y. Preparation of bimetallic Ni-Fe/γ-Al2O3catalyst and its activity for CO methanation. Journal of Fuel Chemistry and Technology,2011,39:219-223
    [47] Emst B., Chaumette P, et a1. Preparation and Characterization of Fischer-Tropsch ActiveCo/SiO2Catalysis[J]. Appl. Catal.A.,1999,186(1-2):145-168
    [48] Martinez, A.; Lopez, C.; Marquez, F.; Diaz, I. Fisher-Tropsch synthesis of hydrocarbonsover mesoporous Co/SBA-15catalysts: the influence of metal loading, cobalt precursor,and promoters[J]. J. Catal.,2003,220:486-499
    [49]银董红,李文怀,杨文书等.钴基催化剂在Fischer-Tropsch合成烃中的研究进展[J].化学进展,2001,13(2):118-127
    [50]肖翠微,苗鹏,史士东. F-T合成非均匀型Co/ZnO2/SiO2催化剂的研究[J].洁净煤技术,2008,14(1):32-35
    [51]吕董,周德,胡建文.应用于氧还原电极的新型Co-PAu-C复合催化材料[J].化学学报,2008,66(4):403-407
    [52]陈铜,李文钊,张晋芬,吴瑛,操小栋,万惠霖.钴基催化剂上乙烷氧化脱氧的催化作用[J].化学学报,2004,62(18):1760-1764.
    [53] Blomberg M. R. A., Sieghbahn P. E. M.,Nagashima U., et al. Theoretical study of theactivation of alkane C-H and C-C bonds by different transition metals[J]. J.Am.Chem.Soc.,1991,113:424-433.
    [54] Holthausen, M.C.; Koch, W. A. Theoretical View on Co+-Mediated C-C and C-H bondActivations in Ethane[J]. J. Am. Chem. Soc.,1996,118:9932-9940
    [55] Rosi, M.; Bauschlicher, C.W. Jr.; Langhoff, S. R; Partridge, H. Theoretical studies of thefirst-and second-row transition-metal dimethyls and their Positive ions[J]. J. Phys.Chem.1990,94:8656-8663
    [56] Carlin T. J, Sallans L., Cassady C. J., Jacobson D. B., et al. Gas-phase reactions of groupVIII metal hydride ions (FeD+,CoD+,and NiD+) with hydrocarbons[J]. J. Am. Chem. Soc.;1983,105:6320-6321
    [57] Blomberg, M. R A.; Brandemark, U.; Siegbahn, P. E. M. Theoretical imvestigation of theelimination and addition reactions of methane and ethane with nickel[J]. J. Am. Chem.Soc.,1983,105(17):5557-5563
    [58]王令光,张敏华,姜浩锡.镍表面单原子台阶对甲烷解离过程影响的DFT研究[J].分子催化,2005,19(4):293-297
    [59] Juurlink, L. B. F.; Smith, R. R.; Killelea,D. R.; Utz,A. L. Comparative Study of C-HStretch and Bend Vibrations in Methane Activation on Ni(100) and Ni(100)[J]. Phys. Rev.Lett.,2005,94(20):208303
    [60] Maroni, P.; Papageorgopoulos, D. C.; Sacchi, M.; Dang, T. T.; Beck, R.D.; Rizzo,T. R.State-Resolved Gas-Surface Reactivity of Methane in the Symmetric C-H StretchVibration on Ni(100)[J]. Phys. Rev. Lett.,2005,94(24):246104
    [61]张福兰.硕士论文.四川师范大学,四川成都,2010
    [62] Nave, S.; Jackson, B. Methane dissociation on Ni(111): The effects of lattice motionrelaxation on reactivity[J]. J. Chem.Phys.;2007,127(22):224702
    [63] Monica, P,; Gianluigi, C.; Renzo, R.; Dario, A. Coparative study of water dissociationon Rh(111) and Ni(111) studied with first principles calculations[J]. J. Chem. Phys.2007,126(16):164706
    [64] R. Davis; D. P. Woodruff; Ph Hofmann; O. Schaff; V. Fernandez; K.M. Schindler; V.Fritzsche; A. M. Bradshaw. Local structure determination for low-coverage CO onNi(111)[J]. J. Phys.: Condens. Matter,1996,8:1367-1379
    [65] Stolbov, S.; Rahman, T. S. First-principles study of some factors controlling the rate ofammonia decomposition on Ni and Pd surfaces[J]. J. Chem.Phys.2005,123(20):204716
    [66] Michaelides, A.; Hu, P. A. First principles study of CH3dehydrogenation on Ni(111)[J]. J.Chem. Phys.,2000,112(18):8120-8125
    [67] Wang, S. G.; Liao, X. Y.; Hu, J.; Cao, D. B; Li, Y. W.; Wang, J. G.; Jiao, H. J. Kineticaspect of CO2reforming of CH4on Ni(111):A density functional theory calculation[J].Surf. Sci.,2007,601(5):1271-1284
    [68]李俊,申伟,何荣幸,李明. SO2在Ni(111)表面分解吸附的理论研究[J].西南大学学报(自然科学版),2011,33(5):68-73
    [69] Schwennicke C. Pfnur H2O/Ni(111):Lateral interaetions and binding-energy differencebetween fcc and hcp sites[J]. Phys. Rev. B.,1997,56:10558-10566
    [70] Li T.; Bhatia B.; Sholl D. S. First-principles study of C adsorption, O adsorption, and COdissociation on flat and stepped Ni surfaces[J]. J. Chem. Phys,2004,121:10241-10249.
    [71] Kresse G.; Furthmuller J. Efficiency of ab-initio total energy calculations for metals andsemiconductors using a plane-wave basis set[J]. Computational Materials Science,1996,6:15-50
    [72] Kresse G.; Hafner J. Ab initio molecular dynamics for open-shell transition metals[J].Phys. Rev. B,1993,48:13115-13118.
    [73] Kresse G.; Furthmuller J. Efficient iterative schemes for ab initio total-energycalculations using a plane-wave basis set[J]. Phys. Rev. B,1996,54:11169-11186
    [74] Yamagishi S.; Jenkins S. J.; King D. A. First principles studies of chemisorbed O onNi(111)[J]. Surface Science,2003,543:12-18
    [75]徐昀.硕士论文.东北大学,辽宁沈阳,2008
    [76]赵新新,陶向明,陈文彬,陈鑫,尚学府,谭明秋. Ni(111)表面一氧化碳和氢共吸附的密度泛函理论研究[J].物理学报,2006,55(7):3629-3635
    [77]许桂贵,吴青云,张健敏,陈志高,黄志高.第一性原理研究氧在Ni(111)表面上的吸附能及功函数[J].物理学报,2009,58(3):1924-1930
    [78] A. Michaelides; P. Hu. A first principles study of CH3dehydrogenation on Ni(111)[J]. J.Chem. Phys.,2000,112(18):8120-8125
    [79] Sergey Stolbov; Talat S. Rahman. First-principles study of some factors controlling therate of ammonia decomposition on Ni and Pd surfaces[J]. J. Chem. Phys.,2005,123(20):204716
    [80] Sven Nave; Bret Jackson. Methane dissociation on Ni(111): The effects of lattice motionand relaxation on reactivity[J]. J. Chem. Phys.,2007,127(22):224702
    [81] S. G. Wang; X. Y. Liao; J. Hu; D. B. Cao; Y. W. Li; J. G Wang; H. J Jiao. Kinetic aspectof CO2reforming of CH4on Ni(111): A density functional theory calculation[J]. Surf.Sci.,2007,601(5):1271-1284
    [82]张福兰,李来才,田安民.乙烷在Ni(111)表面的吸附和分解[J].物理化学学报,2009,25(9):1883-1889
    [83] Kazutoshi Y. W.; Yoshiko I.; Ishii I.; Tamami I.; Hirohito F. Reaction kinetics andmechanism of oxygen absorption on the Ni(110) surface[J]. Surf. Sci.,2001,482-485(1):128-133
    [84] Kleiule G.; Wintterlin J.; Ertl G.; Behm R. J.; Jona F.; Moritz W. Reconstruction andsubsurface lattice distortions in the(2×1)O-Ni(110) structure: A LEED analysis[J]. Surf.Sci.,1990,225:171-183
    [85] Voigtl nder B.; Lehwald S.; Ibaeh H. Symmetry and structure of the reconstructedNi(110)-(2×l)O surface [J]. Surf. Sci.,1990,225:162-170
    [86] Besenbacher F.; Stensgaard I.; Ruan L.; N rskov J. K.; Jacobsen K. W. Chemisorption ofH,O,and S on Ni(110): general trends[J]. Surf. Sci.,1992,272:334-341
    [87] Eierdal L.; Besenbacher F.; Stensgaard I. Interaction of oxygen with Ni(110) studied byscanning tunneling microscopy[J]. Surf. Sci.,1994,l-2:31-53
    [88] Suzuki K; Yamane; Ozawa R.; Gunji Y.; Higashiyama K.; Fukutani H. Angle-resolvedphotoemission of oxygen chemisorbed Ni(110) surfaces:(2×1)-O(l/2ML) and(3×1)-O(2/3ML)[J]. Surf. Sci.,1996,365:248-254
    [89] Holloway P. H.; Outlaw R. A. The effects of temperature upon NiO formation andoxygen removal on Ni(110)[J]. Surf. Sci.,1981,111:300-316
    [90] Baranov S. P.; Abramova L. A.; Zeigamik A. V.; Shustorovich E. Monte Carlo modelingof O2adsorption kinetics on unreconstructed fcc(100) surfaces of metals using UBI-QEPcoverage-dependent energetics [J]. Surf. Sci.,2004,555:20-42
    [91] Li T.; Bhatia B.; Sholl D. S. First-principles study of C adsorption, O adsorption, and COdissociation on flat and stepped Ni surfaces[J]. J. Chem. Phys,2004,121:10241-10249
    [92] Kresse G.; Furthmuller J. Efficiency of ab-initio total energy calculations for metals andsemiconductors using a plane-wave basis set[J]. Computational Materials Science,1996,6:15-50
    [93] Kresse G.; Hafner J. Ab initio molecular dynamics for open-shell transition metals[J],Phys. Rev. B.,1993,48:13115-13118
    [94] Kresse G.; Furthmuller J. Efficient iterative schemes for ab initio total-energycalculations using a plane-wave basis set[J]. Phys. Rev. B,1996,54:11169-11186
    [95]赵亮,陈燕,高金森,陈玉.噻吩在Ni(100), Cu(100), Co(100)表面吸附的密度泛函研究[J].分子科学学报,2010,26(1):18-22
    [96] Ren, F.; Li, Q. Development of a catalyst for selective hydrogenation of acetonitrile toethylamine[J]. Industrial Catalysis2007,15:28-30.
    [97] Lv, B.; Linghu, R.-F.; Huang, C.-X.; Song, X.-S. The potential energy surfaces of HCNand HNC molecules in the ground state[J]. Journal of Sichuan University (NaturalScience Edition)2008,45,13-16
    [98] Andreea, C. G.; Petru, M.; Undina, S. Effect of supports on the activity of nickel catalystsin acetonitrile hydrogenation[J]. Appl. Catal. A: Gen.,2005,294,208-214
    [99] D. Jentz; P. Mills; H. Celio; M. Trenary. The surface chemistry of CN and H onPt(111)[J]. Surf. Sci.1996,368(1-3):354-360
    [100] Celio, H.; Mills, P.; Jentz, D; Trenary, M. Electronic Effects of Atomic Nitrogen onCarbon on the Ni(111) Surface[J]. Surf. Sci.1997,381,65-76
    [101] Yang, H.; Whitten, J. L. First-Principles Calculations of the Adsorption of Nitromethaneand hydrogen cyanide(HCN) Molecules on the Ni Surface[J]. J. Phys. Chem.1996,100:5090-5097
    [102] Hu, J. M; Li Y.; Li, J.; Zhang, Y.; Zhou, L. Study of HCN and HNC Adsorption onCu(100) by Density Functional Theory[J]. Acta Chim. Sinica,2003,61:476-480
    [1]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].科学出版社:北京,1985,79-230
    [2] P. Hohenberg, W. Kohn. Hihomogeneous Electron Gas[J]. Phys. Rev.,1964,136:13864-13871
    [3] J. C. Slater; James C. Phillips. Quantum Theory of Molecules and Solids Vol.4: TheSelf-Consistent Field for Molecules and Solids[M]. McGraw-Hill: New York,1974
    [4] C. Moller, M. S. Plesset, Note on an Approximation Treatment for Many-ElectronSystems[J]. Phys. Rev.,1934,46:618-622
    [5] G. M. Head; J. A. Pople; M. J. Frisch. A Direct MP2Gradient Method[J]. Chem. Phys.Lett.1988,153:503-513
    [6] J.A. Pople; J. S. Binkley; R. Seeger. Theoretical Models Incorporating ElectronCorrelation. Int. J. Quant. Chem. Symp,1976,10:1-19
    [7] R. Krishnan; J. A. Pople. Appoximate Forth-Order Perturbation Theory of the ElectronCorrelation Energy. Int. J. Quart Chem.1978,14:91-100
    [8] K. Raghavachari, J. A. Pople, E,S, Replogle, et al. Fifth-Order Moller-Plesset PerturbationTheory: Comparison of Existing Correlation Methods and Implementation of NewMethods Correct to Fifth-Order[J]. J. Phys. Chem.1990,94:5579-5583
    [9] Bom M., Huang K. Dynamical Theory of Crystal Lattices[M]. Oxford: Oxford UniversityPress,1954:683-691
    [10] Slater J. C. A Simplification of the Hartree-Fock Method[J]. Phys. Rev.,1951,81:385-390
    [11] Thomas H. The Calculation of Atomic Fields[J]. Proc. Cambridge Philos. Soc.,1927,23:542-548
    [12] Fermi E. Eine Statistische Methode zur Bestimmung Einiger Eigenschalien des Atomsund ihreanwendung auf die Theories des Periodischen Systems der Elemente[J]. Z. Phys.1928,48:73-79
    [13] Slater J C. A Simplification of the Hartree-Fock Method[J]. Phys. Rev.,1951,81:385-390
    [14] Hohenberg P., Kohn W. Inhomogeneous Electron Gas[J]. Phys. Rev. B,1964,136:864-871
    [15] John P. Perdew; Wang Yue. Accurate and simple density functional for the electronicexchange energy: Generalized gradient approximation[J]. Phys. Rev. B,1986,33(12):8800-8802
    [16] John P. Perdew; J. A. Chevary; S. H. Vosko; Koblar A. Jackson; Mark R. Pederson; D. J.Singh; Carlos Fiolhais.3.Atoms, molecules, solids, and surfaces: Applications of thegeneralized gradient approximation for exchange and correlation[J]. Phys. Rev. B,1992,46(11):6671-6687
    [17] John P. Perdew; Kieron Burke; Matthias Ernzerhof. Generalized Gradient ApproximationMade Simple[J]. Phys. Rev. Lett.,1996,77(18):3865-3868
    [18] John P. Perdew. Density-functional approximation for the correlation energy of theinhomogeneous electron gas[J]. Phys. Rev. B,1986,33(12):8822-8824
    [19] Chengteh Lee; Weitao Yang; Robert G. Parr.1.Development of the Colle-Salvetticorrelation-energy formula into a functional of the electron density[J]. Phys. Rev. B,1988,37(2):785-789
    [20] U. von Barth; L. Hedin. A local exchange-correlation potential for the spin polarizedcase. i[J]. J. Phys. C: Solid State Phys.,1972,5(13):1629-1642
    [21] M. M. Pant; A. K. Rajagopal. Theory of inhomogeneous magnetic electron gas[J].1972,10(12):1157-1160
    [22] P.J.C. Aerts; W.C. Nieuwpoort. On the use of gaussian basis sets to solve theHartree-Fock-Dirac equation. II. Application to many-electron atomic and molecularsystems[J]. Intern. J. Quantum Chem.,1985,28(S19):267–277
    [23] Richard E. Stanton;Stephen Havriliak. Kinetic balance: A partial solution to the problemof variational safety in Dirac calculations[J]. J. Chem. Phys.,1984,81(4):1910-1918
    [24] Hamann D. R.; Sehluter M.; Chiang C. Norm-Conserving Pseudopotentials[J]. Phys. Rev.Lett.,1979.43:1494-1497
    [25] Baehelet G. B., Hamann D. R., Schluter M. Pseudopotentials that work: From H to Pu[J],.Phys. Rev. B,1982,26:4199-4228
    [26] Hamann D. R. Generalized norm-conserving pseudopotentials[J]. Phys. Rev. B,1989,40:2980-2987.
    [27] Vanderbilt D. Optimally smooth norm-conserving pseudopotenials[J]. Phys. Rev. B,1985,32:8412-8415
    [28] Shirley E. L.; Allan D. C.; Martin R. M.; Joannopoulos J. D. Extended norm-conserving.Pseudopotenials[J]. Phys. Rev. B,1989.40:3652-3660
    [29] Rappe A. M.; Rabe K. M.; Kaxiras E.; Joannopoulos J. D. Optimized pseudopotentials[J].Phys. Rev. B,1990,41:1227-1230
    [30] Lin J. S.; Qteish A.; Payne M. C.; Heine V. Optimized and transferable nonlocalseparable ab initio pseudopotentials[J]. Phys. Rev. B,1993,47:4174-4180
    [31] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalueformalism[J]. Phys. Rev. B.1990,41:7892-7895
    [32] Laasonen K.; Car R., Lee C.; Vandethilt D. Implementation of ultrasoft pseudopotenialsin ab initio molecular dynamics[J]. Phys. Rev.B,1991,43:6796-6799
    [33] Laasonen K.; Pasquarello A.; Car R.; Lee C.;Vandethilt D. Car-Parrinello moleculardynamics with Vanderbilt ultrasoft pseudopotentials[J]. Phys. Rev.:B,1993,47:10142-10153
    [34] Freeman J. Electronic-structure theory in the new-age of computational materialsscience[J]. Annu Rev. Materl Sci.,1995,25:7-18
    [35] Payne M. C.; Teter M. P.; Allan D. C.; Arias T. A.; Joannopoulos J. D. Iterativeminimization techniques for ab initio total-energy calculations: molecular dynamics andconjugate gradients[J]. Rev: Mod. Phys.,1992,64:1045-1097
    [36] Imai Y.; Mukaida M.; TsunodaImai T. Calculation of electronic energy and density ofstate of iron-disilicides using a total-energy pseudopotential method, CASTEP[J]. ThinSolid Films,2001,381:176-182
    [37] Harrison N. M. First principles simulation of surfaces and interface[J]. Computer PhysicsCommunications,2001,137:59-73
    [38] Segall M. D.; Lindan D.; Probert M. J.;Piekard C. J.; Hasnip P. J.; Clark S. J.; Payne M.C. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J. Phys.Condense. Matter,2002,14:2717-2744
    [1] Lv, B.; Linghu, R.F.; Huang, C.X.; Song, X.S. The potential energy surfaces of HCN andHNC molecules in the ground state[J]. Journal of Sichuan University (Natural ScienceEdition),2008,45:13-16
    [2] Andreea, C.G.; Petru, M.; Undina, S. Effect of supports on the activity of nickel catalystsin acetonitrile hydrogenation[J]. Appl. Catal. A: Gen.2005,294:208-214
    [3] Trenary, M.; Jentz, D.; Mills, P.; Celio, H. The surface chemistry of CN and H onPt(111)[J]. Journal of Electron analytical Chemistry. Surf. Sci.,1996,368:354-360
    [4] Celio, H.; Mills, P.; Jentz, D.; Trenary, M. Electronic Effects of Atomic Nitrogen onCarbon on the Ni(111) Surface[J]. Surf. Sci.,1997,381:65-76
    [5] Yang, H.; Whitten, J. L. First-Principles Calculations of the Adsorption of Nitromethaneand hydrogen cyanide(HCN) Molecules on the Ni Surface[J]. J. Phys. Chem.,1996,100:5090-5097
    [6] Hu, J.; Li Y.; Li, J.; Zhang, Y.; Zhou, L. Study of HCN and HNC Adsorption on Cu(100)by Density Functional Theory[J]. Acta Chim. Sinica,2003,61:476-480
    [7] Feng, H.; Diao, Z.Y.; Wang, Z.X.; Jia, H.Y. Adsorption Site and State for N Atom on FeLow-index Surfaces[J]. Acta Chim. Sinica,2005,63:1889-1894
    [8] Zhao, W.; Wang, J. D.; Liu, F.-B.; Chen, D. R. First principles study of H2O moleculeadsorption on Fe(100), Fe(110)and Fe(111)surfaces[J]. Acta Phys. Sin.,2009,58:3352-3358
    [9] Mubarak, A. A.; Hamad, B.A.; Khalifeh, J.M. The influence of hydrogen on the electronicand magnetic structures of TM(001)(TM=Fe, Co, Ni, and Cu) surfaces and interfaces:Ab-initio calculations[J]. J. Magn. Magn. Mater.,2010,322:780-785
    [10] Zhang, J.; Yu, W. Z.; Yan, Y. G.; Yu, L. J.; Ren Z. J. Molecular Dynamics Simulation ofthe Adsorption Behavior of Imidazoline Corrosion Inhibitors on a Fe(001) Surface[J].Acta Phys. Chim.Sin.,2010,26:1385-1390
    [11] Zhao, W.; Wang, J.D.; Liu, F.B.; Chen, D.R. Equilibrium geometric structure andelectronic properties of Cl and H2O co-adsorption on Fe(100)surface[J]. Chinese Sci.Bull.,2009,54:1295-1301
    [12] Ren, F.; Li, Q. Development of a catalyst for selective hydrogenation of acetonitrile toethylamine[J]. Industrial Catalysis,2007,15:28-30
    [13] Wang, X.; Wang, F.; Chen, M.; Ren, J. Studies on nickel-based bimetallic catalysts forhydredeoxygenation[J]. Journal of Fuel Chemistry and Technology,2005,33:612-616
    [14] Wang, N.; Sun, Z.; Wang, Y.; Gao, X.; Zhao, Y. Preparation of bimetallic Ni-Fe/γ-Al2O3catalyst and its activity for CO methanation[J]. Journal of Fuel Chemistry andTechnology,2011,39:219-223
    [15] Liu, R.; Teng, B.T.; Quan, J.L.; Lang, J.J.; Luo, M.F. A density functional theory study ofHF adsorption on the α-AlF3(0001) surface[J]. Acta Phys. Chim. Sin.,2013,29:271-278
    [16] Oliva, C.; van den Berg, C.; Niemanstverdriet, J.W.; Curulla-Ferré, D. A densityfunctional theory study of HCN hydrogenation to methylamine on Co(111)[J]. J. Catal.,2007,248:38-45
    [17] Oliva, C.; van den Berg, C.; Niemanstverdriet, J. W.; Curulla-Ferré, D. A densityfunctional theory study of HCN hydrogenation to methylamine on Ni(111)[J]. J. Catal.2007,245:436-445
    [18] E. J. Baerends; O. V. Gritsenko. A Quantum Chemical View of Density FunctionalTheory[J]. J. Phys. Chem. A,1997,101(30):5383-5606
    [19] Rodney J. Bartlett; Victor F. Lotrich; Igor V. Schweigert. Ab initio density functionaltheory: The best of both worlds?[J]. J. Chem. Phys.,2005,123:062205
    [20] Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation MadeSimple[J]. Phys. Rev. Lett.,1996,77:3865-3868
    [21] Kittel, C. in: Introduction to Solid State Physics,6th ed.[M]. Wiley, New York,1986,78-95
    [22] Herzberg, G. Electronic Spectra and Electronic Structure of Polyatomic Molecules[M].Van Nostrand, New York,1966,82-101
    [23] Hu, J. M.; Li, Y.; Li, J. Q.; Zhang, Y. F.; Chen, W.K. A density functional study on thegeometries of compounds Fe(HCN)n+(n=1~6)[J]. Chinese J. Struct. Chem.,2004,23:1346-1355
    [24] Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations.Potentials for the transition metal atoms Sc to Hg[J]. J. Chem. Phys.1985,82:270-283
    [1] Andreea C.G., Petru M., Undina S. Effect of supports on the activity of nickel catalysts inacetonitrile hydrogenation[J]. Appl. Catal A: Gen.,2005,294(2):208-214
    [2] D. Jentz; P. Mills; H. Celio; M. Trenary. The surface chemistry of CN and H on Pt(111)[J].Surf. Sci.,1996,368(1-3):354-360
    [3] H. Celio; P. Mills; D. Jentz; M. Trenary. The influence of hydrogen on the aggregation ofaminomethylidyne on Pt(111)[J]. Surf. Sci.,1997,381(1):65-76
    [4] H. Yang; J. L. Whitten. Theoretical Adsorption Studies of HCN and HNC on Ni(111)[J]. J.Phys. Chem.,1996,100(12):5090-5097
    [5] Hu J., Li Y., Li J., Zhang Y., Zhou L. Study of HCN and HNC Adsorption on Cu(100) byDensity Functional Theory. Acta Chim Sinica,2003,61(4):476-480
    [6] Denise C. Ford; Ye Xu, Manos Mavrikakis. Atomic and molecular adsorption onPt(111)[J]. Surf. Sci.,2005,587(3):159-174
    [7] Jian-Hong Liu; Cun-Qin Lv; Yong Guo; Gui-Chang Wang. Theoretical study of theadsorption and dissociation mechanism for methylamine on Pd(111)[J]. Appl. Surf. Sci.,2013,271:291-298
    [8] Li H. X.; Wu Y. D.; Wan Y., Zhang J.; Dai W. L.; Qiao M. H. Comparative studies oncatalytic behaviors of various Co-and Ni-based catalysts during liquid phase acetonitrilehydrogenation[J]. Catal Today,2004,93-95:493-503
    [9] A.A. Mubarak, B.A. Hamad, J.M. Khalifeh. The influence of hydrogen on the electronicand magnetic structures of TM(001)(TM=Fe, Co, Ni, and Cu) surfaces and interfaces:Ab-initio calculations[J]. J. Magn. Magn. Mater.,2010,322(7):780-785
    [10] Theresa E. Feltes; Leticia Espinosa-Alonso; Emiel de Smit; Lawrence D’ Souza;RandallJ. Meyer; Bert M. Weckhuysen; John R. Regalbuto. Selective adsorption of manganeseonto cobalt for optimized Mn/Co/TiO2Fischer–Tropsch catalysts[J]. J. Catal.,2010,270(1):95-102
    [11] Lajos Babernics; Pál Tétényi. Investigation of benzene adsorption on cobalt catalyst[J]. J.Catal.,1970,17(1):35-40
    [12] Zhang Q.; Bowers M. T. Activation of methane by MH+(M=Fe,Co, and Ni):a combinedmass spectrometric and DFT study[J]. J. Phys. Chem. A,2004,108:9775-9761
    [13]胡启山,刘俊伶,李来才,田安民.钴原子催化活化乙烷的反应机理[J].物理化学学报,2007,23(6):916-920
    [14]赵亮,陈燕,高金森,陈玉.噻吩在Ni(100),Cu(100),Co(100)表面吸附的密度泛函研究[J].分子科学学报,2010,26(1):18-22
    [15] Carolina Oliva; Co van den Berg; J.W.(Hans) Niemantsverdriet; Daniel Curulla-Ferré. Adensity functional theory study of HCN hydrogenation to methylamine on Co(111)[J]. J.Catal.,2007,248(1):38-45
    [16] T lkes C.; Struck R.; David R.; Zeppenfeld P.; Comsa G. Preparation of atomically flatCo(110) films on Cu(110)[J]. Appl. Phys. Lett.,1998,73(8):1059-1061
    [17] Zhao L., Chen Y., Gao J., Chen Y. A DFT study on adsorption of thiophene on (100)surfaces of Ni,Cu,and Co[J]. Journal of Molecular Science,2010,26(1):18-22
    [18] John P. Perdew; Kieron Burke; Matthias Ernzerhof. Generalized Gradient ApproximationMade Simple[J]. Phys. Rev. Lett.,1996,77(18):3865-3868
    [19] Parr R. G; Yang W. Density-Functional Theory of Atoms and Molecules[M]. Oxford:Oxford University Press,1989,78-95
    [20] Dreizler D. M., Gross E. K. U. Density Functional Theory: An Approach to the QuantumMany-Body Problem[M]. Berlin: Springer-Verlag,1990,92-120
    [21] D. Ceperley. Ground state of the fermion one-component plasma: A Monte Carlo study intwo and three dimensions[J]. Phys. Rev. B,1978,18(7):3126-3138
    [22] Vosko S. J.; Wilk L.; Nusair M. Accurate spin-dependent electron liquid correlationenergies for local spin density calculations: a critical analysis[J].Can J. Phys.,1980,58(8):1200-1211
    [23] John P. Perdew; Yue Wang.4.Accurate and simple analytic representation of theelectron-gas correlation energy[J]. Phys. Rev. B,1992,45(23):13244-13249
    [24] Frisch M. J. et al., Gaussian03, Revision B.03. Gaussian, Inc., Pittsburgh PA,2003
    [25] P. Jeffrey Hay; Willard R. Wadt. Ab initio effective core potentials for molecularcalculations. Potentials for the transition metal atoms Sc to Hg[J]. J. Chem. Phys.,1985,82(1):270-283
    [26] Oliva C., van den Berg C., Niemanstverdriet J. W., Curulla-Ferré D. A density functionaltheory study of HCN hydrogenation to methylamine on Ni(111)[J]. J. Catal.,2007,245(2):436-445
    [1]吕兵,令狐荣锋,黄翠香等.基态的HCN和HNC分子的势能面.四川大学学报(自然科学版),2008,45(3):13-16
    [2] C.G. Andreea, M. Petru, S. Undina. Effect of supports on the activity of nickel catalysts inacetonitrile hydrogenation[J]. Applied Catalysis A: General.2005,294:208-214
    [3] D. Jentz, P. Mills, H. Celio et al. The surface chemistry of CN and H on Pt(111)[J]. Journalof Electron analytical Chemistry,1996,368(1-3):354-360
    [4] Celio H., Mills P., Jentz D.. Electronic Effects of Atomic Nitrogen on Carbon on theNi(111) Surface[J]. Acta Physico-Chimica Sinica,2009,3:84-86
    [5] Yang H., Whitten J. First-Principles Calculations of the Adsorption of Nitromethane andhydrogen cyanide(HCN) Molecules on the Ni Surface[J]. J. Phys. Chem.,1996,100:50-90
    [6]胡建明,李奕,李俊篯等. Cu(100)表面吸附HCN和HNC的密度泛函研究[J].化学学报,2003,61(4):476-480.
    [7] John P. Perdew; Kieron Burke; Matthias Ernzerhof. Generalized Gradient Approxima-tion Made Simple[J]. Phys. Rev. Lett.,1996,77(18),3865-3868
    [8] Dong-Bo Cao, Yong-Wang Li, Jianguo Wang, et al. CO2dissociation on Ni(211)[J]. Sur-face Science,2009,603:2991-2998
    [9] Hideo Orita, Naotsugu Itoh. Adsorption of thiophene on Ni(100), Cu(100), and Pd(100)surfaces: ab initio periodic density functional study[J]. Surface Science,2004,550:177-184
    [10] Jeff Greeley; Manos Mavrikakis. A first-principles study of surface and subsurface H onand in Ni(111): diffusional properties and coverage-dependent behavior[J]. Surf. Sci.,2003,540(2-3):215-229
    [11] A. A. Mubarak; B. A. Hamad; J. M. Khalifeh. The influence of hydrogen on the electro-nic and magnetic structures of TM (001)(TM=Fe,Co,Ni, and Cu) surfacesand interfaces:Ab-initio calculations[J], Journal of Magnetism and Magnetic Materials,2010,322:780-785
    [12] L. Liebermann; J. Clinton; D. M. Edwards; J. Mathon."Dead" Layers in FerromagneticTransition Metals[J]. Phys. Rev. Lett.,1970,25(4):232-235
    [13] C. Kittel, in: Introduction to Solid State Physics, seventh ed., Wiley, New York,1996,75-96
    [14] Carolina Oliva; Co van den Berg; J.W.(Hans) Niemantsverdriet, et al. A density functi-onal theory study of HCN hydrogenation to methylamine on Ni(111)[J]. Journal ofCatalysis,2007,245:436-445
    [15] G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules, VanNostrand, New York,1966,66-135
    [16] Hernán Milberg; Alfredo Juan; Norma Amadeo, et al. The influence of Mg on the Cadsorption on Ni(100): A DFT study[J]. Journal of Molecular Catalysis A: Chemical,2010,315:171-177
    [17] Xian-Yong Pang, Chen Wang, Yu-Hua Zhou, et al. DFT study of the structure sensitivityfor the adsorption of methyl, methoxy, and formate on Ni(111), Ni(100), and Ni(110)surfaces[J]. Journal of Molecular Structure: THEOCHEM,2010,948:1-10
    [1] M. Stre ková; T. Sop ák;. Medvecky; R. Burěs; M. Fáberová; I. Batko; J. Briaňcin.Preparation chemical and mechanical properties of microcomposite materials based on Fepowder and phenol-formaldehyde resin[J]. Chem. Eng. J.,2012,180:343-353
    [2] N. Nishat; T. Ahamad; S.M. Alshehri; S. Parveen. Synthesis, characterization, and biocideproperties of semicarbazide-formaldehyde resin and its polymer metal complexes[J], Eur.J. Med. Chem.,2010,45:1287-1294
    [3] M. Kumar; J. Bijwe. NAO friction materials with various metal powders: Tribologicalevaluation on full-scale inertia dynamometer[J]. Wear,2010,269:826-837
    [4]赵巍;汪家道;刘峰斌;陈大融.Cl与H2O在Fe(100)表面共吸附的稳定结构与电子特性,科学通报,2009,54(6):740-746
    [5] D. Vijay; G. N. Sastry. The cooperativity of cation-π and π-π interactions[J]. Chem. Phys.Lett.,2010,485:235-242
    [6] E.A. Meyer; R.K. Castellano; F. Diederich. Interactions with Aromatic Rings in Chemicaland Biological Recognition[J]. Angew. Chem. Int. Ed.,2003,42(11):1210-1250
    [7] P. Mignon; S. Loverix; J. Steyaert; P. Geerlings. Influence of the π-π interaction on thehydrogen bonding capacity of stacked DNA/RNA bases[J]. Nucl. Acids. Res.,2005,33:1779-1789
    [8] A. Hesselmann; G. Jansen; M. Schutz. Interaction energy contributions of H-bonded andstacked structures of the AT and GC DNA base pairs from the combined densityfunctional theory and intermolecular perturbation theory approach[J]. J. Am. Chem. Soc.,2006,128:11730-11731
    [9] R. Leist; J. A. Frey; P. Ottiger; H. M. Frey; S. Leutwyler; R.A. Bachorz; W. Klopper.Nucleobase-fluorobenzene interactions: Hydrogen bonding wins over π-stacking[J],Angew. Chem. Int. Ed.,2007,46:7449-7452
    [10] D. Vijay; H. Zipse; G. N. Sastry. On the cooperativity of cation-π and hydrogen bondinginteractions[J]. J. Phys. Chem. B,2008,112:8863-8867
    [11] A. Garcia-Raso; F. M. Albertí; J. J. Fiol; A. Tasada; M. Barceló-Oliver; E. Molins; D.Escudero; A. Frontera; D. Qui onero; P. M. Deyà. Anion-π interactions in bisadeninederivatives: A combined crystallographic and theoretical study[J]. Inorg. Chem.,2007,46:10724-10735
    [12] C. Estarellas; A. Frontera; D. Qui nero; P. M. Deyà. Interplay between cation-π andhydrogen bonding interactions: Are non-additivity effects additive?[J]. Chem. Phys. Lett.,2009,479:316-320
    [13] D. Escudero; A. Frontera; D. Qui nero; P.M. Deyà. Interplay between cation-π andhydrogen bonding interactions[J]. Chem. Phys. Lett.,2008,456:257-261
    [14] D. Qui onero; A. Frontera; D. Escudero; P. Ballester; A. Costa; P.M. Deyà. MP2studyof synergistic effects between X-H/π(X=C,N,O) and π-π interactions[J]. Theor. Chem.Account,2008,120:385-393
    [15] A. Frontera; D. Qui nero; A. Costa; P. Ballester; P. M. Deyà. MP2study of cooperativeeffects between cation-π, anion-π and π-π interactions[J]. New J. Chem.,2007,31:556-560
    [16] D. Qui nero; A. Frontera; C. Garau; P. Ballester; A. Costa; P. M. Deyà. Interplaybetween cation-π, anion-π and π-π interactions[J]. Chem. Phys. Chem.,2006,7:2487-2491
    [17] A. Frontera; D. Qui onero; C. Garau; A. Costa; P. Ballester; P.M. Deyà. MP2study ofcation-(π)n-π interactions (n=1-4)[J]. J. Phys. Chem. A,2006,110:9307-9309
    [18] R.M. Richard; D.W. Ball. Optimized geometries, vibrational frequencies, and thermoch-emical properties of mixed boron and nitrogen containing three membered rings[J]. J.Mol. Struct.(THEOCHEM),2007,806:113-120
    [19] A. T. Macias; J. E. Norton; J. D. Evanseck. Impact of multiple cation-π interactions uponcalix[4]arene substrate binding and specificity[J]. J. Am. Chem. Soc.,2003,125:2351-2360
    [20] A. Suwattanamala; A.L. Magalhaes; J.A.N.F. Gomes, Computational study ofcalix[4]arene derivatives and complexation with Zn2+[J]. Chem. Phys.,2005,310:109-122
    [21] C. Ruan; Z. Yang; N. Hallowita; M.T. Rodgers. Cation-π interactions with a model forthe side chain of tryptophan: structures and absolute binding energies of alkali metalcation-indole complexes[J]. J. Phys. Chem. A,2005,109:11539-11550
    [22] M.J. Frisch, et al. Gaussian03, Revision B.03, Gaussian, Inc., Pittsburgh PA,2003
    [23] R.F.W. Bader, Atoms in molecules, a quantum theory, Oxford University Press, Oxford,UK,1990,42-86
    [24] F.W. B.-K nig; R.F.W. Bader; T.H. Tang. Calculation of the average properties of atomsin molecules[J]. J. Comput. Chem.,1982,3:317-328
    [25] F. B. Duijineveldt; J.C.M.V. Duijineveldt-van de Rijdt, J.H.V. Lenthe. State of the art incounterpoise theory[J]. Chem. Rev.,1994,94:1873-1885
    [26] S. F. Boys; F. Bernardi. The calculation of small molecular interactions by the differenceof separate total energies. Some procedures with reduced errors[J]. Mol. Phys.,2002,100:6365-6373

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700