金刚石薄膜电极的电催化性能及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石薄膜作为一种新型的电极材料有常规电极不可比拟的优势,具有高析氧电位、低背景电流、吸附惰性和高物理化学稳定的特点,因而成为电化学电极的优良之选,并且获得了在电合成、电化学催化、电分析方面的应用。本论文利用掺硼金刚石(BDD)薄膜电极较高过电势而能高效率产生强氧化性中间物种的优势,探讨了其在电催化降解有机物方面的应用,并成功将其应用于实际工业超高化学需氧量(COD)有机废水的处理。
     利用热丝(HFCVD)、微波等离子体(MPCVD)和直流等离子体喷射(DC plasma jet CVD)化学气相沉积方法制备不同特性的金刚石薄膜。除了在常规掺杂衬底Si上制备外,在相对高电导率的Ta、Ti、Nb等金属材料上亦沉积成功金刚石薄膜。在特定的工艺条件下,XRD、SEM和Raman测试表明沉积薄膜为良好的sp3键结构的多晶金刚石,非金刚石相成分较少。在成功制备金刚石薄膜的基础上探讨了沉积工艺条件如功率、气压和碳源量对成膜质量的影响。
     利用循环伏安、交流阻抗等测试方法对钽基金刚石电极(Ta/BDD)进行了电化学特性表征,并探讨了金刚石电极/溶液界面的电极过程。通过循环伏安法测试发现掺硼金刚石膜电极在Na2SO4体系中具有非常宽的电化学窗口,达到4.1 V(-1.8 V~+2.3 V (vs SCE)),而且具有较小的背景电流;通过与其它电极的对比实验发现金刚石薄膜电极较Pt、IrO2、RuO2电极具有更高的析氧电位。考察了溶液的酸碱性、CVD沉积过程碳源量及硼掺杂等因素对电极电势窗口的影响。用交流阻抗法研究了不同极化电压下的交流阻抗特性,并用等效电路进行了模拟。
     在金刚石电催化应用实验发现金刚石薄膜电极对典型难生物降解有机物苯酚和硝基酚都能进行有效电催化降解,在特定的时间内两种有毒物质去除率能达到100%,COD去除率接近100%,说明BDD电极是难降解有机物去除和COD电催化降解的优良电极。考察了电流密度、有机物初始浓度和不同电解质浓度对电催化过程的影响。与常规电催化电极PbO2进行电催化性能对比实验发现金刚石薄膜电极具有更高的电流效率。电极强化寿命实验发现Ta/BDD薄膜电极具有良好的电化学稳定性,XRD测试表明电极表面在长时间的电解过程中电极表面基本保持不变。
     将Ta/BDD电极用于超高COD降解实验并组装BDD电极电催化降解装置用于味精废水和橡胶废水的工业化处理。工业化降解过程中该装置表现出电流效率高、功耗小的特点,非常适合电催化降解超高COD有机废水。
Diamond thin film is a new electrode material that has received great attention recently because it possesses several technologically important characteristics such as large overvoltage for the anodic oxygen evolution, low background currents, an inert surface with low adsorption properties, remarkable corrosion stability. Thanks to these properties, diamond film seems to be a promising electrode material than the traditional electrode and so, it has been studied with the goal of developing applications in electro-synthesis、electrochemical water treatment、electro-analysis technology. The high overpotential for oxygen transfer enables diamond electrode to produce hydroxyl radicals and short-lived species in the anodic oxidation reaction. In this dissertation, the application of boron-doped diamond electrodes for electro-catalytic degradation of organic matters is described and this kind of electrode material was successfully applied to actual industrial ultra-high chemical oxygen demand (COD) organic waste water treatment.
     Diamond film with different quality was prepared by hot filament chemical vapor deposition(HFCVD) , microwave plasma chemical vapor deposition (MPCVD)and DC plasma jet chemical vapor deposition (DC plasma jet CVD). Besides high doped Si, diamond was successfully deposited on metal substrates with relatively high conductivity such as Ta, Ti, Nb by CVD method. Raman spectroscopy, X-ray diffraction(XRD), and scanning electron microscopy(SEM)examinations demonstrated that the films had well-defined sp3 bond diamond features. Only very little non-diamond was found. The deposition conditions such as power, pressure and the concentration of carbon source effect on the quality of the diamond film were investigated.
     The electrochemical behaviors of Ta/BDD electrode were investigated using cyclic voltammetry and AC Impedance and electrode / solution model was proposed. It was found that characteristic voltammetry features of polycrystalline diamond electrodes deposited on Ta(Ta/BDD) in Na2SO4 solution were a wide potential range for water stability (4.1 V (-1.8 V~+2.3 V vs. Saturated calomel electrode)) and low background current. A much higher oxygen evolution potential of Ta/BDD electrode was obtained than the other electrode such as Pt、IrO2、RuO2. The effect of PH value and amount of carbon source in CVD deposition process to the BDD potential window were studied. Impedance characteristics of Ta/BDD under different polarization voltage were investigated by AC impedance measurement and equivalent circuit was used for the simulation.
     Electrochemical degradation of wastewater containing phenol and nitrophenol on Ta/BDD was studied. It was observed that both the two organic pollutant can be oxidation efficiently within a specified time, with pollutant and COD removal efficiency as high as 100%. The effect of current density、organic initial concentration、support solution and its concentration on the electrocatalytic degradation have been investigated. It was found that Ta/BDD anode provided a higher oxidation rate and higher current efficiency than conventional electro-catalytic electrodes PbO2 in the degradation of phenol. Good electrochemical stability of Ta/BDD electrode was obtained in the accelerated life test. XRD tests showed that electrode surface unchanged for a long time in the electrolysis process. According to the results, Ta/BDD anode were seen to be a unique electrode for the degradation of organic and COD simultaneously.
     BDD electrodes were assembled and used for ultra-high COD wastewater degradation. High-efficiency and low-power consumption were obtained in the catalytic degradation of monosodium glutamate and rubber industrial wastewater, proving BDD is an ideal electrode to electro-catalytic depredate of organic wastewater with ultra-high COD.
引文
[1]. Moore, M., K.H.J. Buschow, W.C. Robert, C.F. Merton, I. Bernard, J.K. Edward, M. Subhash, V. Patrick, Diamond: Natural, in Encyclopedia of Materials: Science and Technology. 2001, Elsevier: Oxford. p. 2133-2143.
    [2].陈光华,张阳,金刚石薄膜的制备与应用.北京:化学工业出版社, 2004.
    [3].张绍和,金刚石与金刚石工具.长沙:中南大学出版社, 2005.
    [4]. Nakatani, T., K. Okamoto, A. Araki, T. Washimi, Application of diamond-like carbon to a rotary engine. New Diamond and Frontier Carbon Technology, 2006. 16(4): 187-200.
    [5]. Dewan, N., K. Sreenivas, V. Gupta, Theoretical studies on a TeO2/ZnO/diamond-layered structure for zero TCD SAW devices. Semiconductor Science and Technology, 2008. 23(8):1-6.
    [6]. Bensmaine, S., L. Le Brizoual, O. Elmazria, J.J. Fundenberger, M. Belmahi, B. Benyoucef. SAW devices based on ZnO inclined c-axis on diamond. Diamond and Related Materials ,2008.17(7-10): 1420-1423.
    [7]. Liu, J.-M., Y.-B. Xia, L.-J. Wang, Q.-F. Su, P. Zhao, R. Xu, H.-Y. Peng, and W.-M. Shi, Preparation of free-standing diamond films for high frequency SAW devices. Transactions of Nonferrous Metals Society of China (English Edition), 2006. 16(SUPPL): 298-301.
    [8]. Hakiki, M.E., O. Elmazria, M.B. Assouar, V. Mortet, L. Le Brizoual, M. Vanecek, P. Alnot, ZnO/AlN/diamond layered structure for SAW devices combining high velocity and high electromechanical coupling coefficient. Diamond and Related Materials, 2005. 14(3-7): 1175-1178.
    [9]. Dogheche, E., D. Remiens, S. Shikata, A. Hachigo, H. Nakahata, High-frequency surface acoustic wave devices based on LiNbO3 diamond multilayered structure. Applied Physics Letters, 2005. 87(21): 213503.
    [10]. Benetti, M., D. Cannata, F. Di Pietrantonio, E. Verona. Growth of AlN piezoelectric films on diamond for high frequency SAW devices. Honolulu, HI, USA: IEEE.
    [11]. Meunier, C., F. Munnik, E. Germann, R. Schluechter, M.D. Pujol, S.N. Kondratiev, S. Mikhailov. DLC films on LiTaO3 for SAW devices. 2004. Strasbourg, France: Elsevier.
    [12]. Goss, J.P., R.J. Eyre, P.R. Briddon, Theoretical models for doping diamond forsemiconductor applications. Physica Status Solidi B-Basic Solid State Physics, 2008. 245(9): 1679-1700.
    [13]. Fukumoto, S., A. Honma, J.H. Kaneko, Y. Nishibayashi, A. Ueda, Y. Yamamoto, T. Imai, F. Fujita, S. Kawamura, M. Furusaka. Development of an evaluation system for electron emission characteristics and generation of X-rays using a needle type semiconductor diamond electron emitter. Diamond and Related Materials, 2008. 17(764-767): 1175-1178.
    [14]. Yokota, Y., N. Kawakami, S. Maeda, Y. Ando, T. Tachibana, K. Kobashi, A. Sawabe, Device operation of p(+)-i-p(+) diamond metal-insulator-semiconductor field-effect transistors on heteroepitaxial diamond films grown on Ir(100)/MgO(100). New Diamond and Frontier Carbon Technology, 2007. 17(4): 211-217.
    [15]. Koide, Y. Metal-diamond semiconductor interface and photodiode application. 2008.
    [16]. Taylor, P.D., D.J. Chamund, and A. Garraway, Applications of high voltage power semiconductor devices: Potential for diamond electronics. Industrial Diamond Review, 2006. 66(2): 19-22.
    [17]. Wei, J., Challenges in cooling design of CPU packages for high-performance servers. Heat Transfer Engineering, 2008. 29(2): 178-187.
    [18]. Mao, D.S., W. Li, X. Wang, X.H. Liu, Diamond-like carbon films prepared by filtered are deposition for electron field emission application. Surface & Coatings Technology, 2001. 137(1): 1-5.
    [19]. Yun, Y., T. Maki, H. Tanaka, T. Kobayashi. Electrical stabilization of diamond film surface for electronic device application. 1998: Myu K K.
    [20]. Kawano, Y., S. Chiba, A. Inoue, Application of diamond window for infrared laser diagnostics in a tokamak device. Review of Scientific Instruments, 2004. 75(1): 279-280.
    [21]. Choi, W.S., K. Kim, J. Yi, B. Hong, Diamond-like carbon protective anti-reflection coating for Si solar cell. Materials Letters, 2008. 62(4-5): 577-580.
    [22]. Klyui, N.I., V.G. Litovchenko, A.G. Rozhin, V.N. Dikusha, M. Kittler, W. Seifert, Silicon solar cells with antireflection diamond-like carbon and silicon carbide films. Solar Energy Materials and Solar Cells, 2002. 72(1-4): 597-603.
    [23]. Klibanov, L., N. Croitoru, A. Seidman, M. Gilo, R. Dahan, Diamond-like carbon thin films as antireflective and protective coatings of GaAs elements and devices. Optical Engineering, 2000. 39(4): 989-992.
    [24]. Comstock, L. Recent technology advances in diamond machining for spaceborne optical systems. 2005. Orlando, FL, USA: SPIE-Int. Soc. Opt. Eng.
    [25]. Singh, N.N., Diamond heat sink for aerospace electronics. Journal of Spacecraft Technology,1999. 9(1): 45-8.
    [26]. Wang, D.Y., F.K. Chen, N.H. Wang, H.H. Yu, Characterization of hydrogen-free diamond-like carbon film on COC for flexible organic electro-luminescence application. Thin Solid Films, 2007. 516(2-4): 293-298.
    [27]. Preciado-Flores, S., M. Schreck, R. Melendrez, V. Chernov, R. Bernal, C. Cruz-Vazquez, E. Cruz-Zaragoza, M. Barboza-Flores, Performance of CVD diamond as an optically and thermally stimulated luminescence dosemeter. Radiation Protection Dosimetry, 2006. 119(1-4): 226-229.
    [28]. Wang, L.-j., Y.-b. Xia, Y.-m. Fan, J.-h. Ju, Z.-j. Fang, W.-l. Zhang, W.-m. Shi, Application of diamond film in the porous silicon luminescence. Journal of Functional Materials and Devices|Journal of Functional Materials and Devices, 2001. 7(3): 263-266.
    [29]. Ohgoe, Y., S. Takada, K.K. Hirakuri, K. Tsuchimoto, A. Homma, T. Miyamatsu, T. Saitou, G. Friedbacher, E. Tatsumi, Y. Taenaka, Y. Fukui, Investigating the functionality of diamond-like carbon films on an artificial heart diaphragm. Asaio Journal, 2003. 49(6): 701-707.
    [30].戴达煌,周克崧,金刚石薄膜沉积制备工艺与应用.北京:冶金工业出版社, 2001.
    [31].姚裕成,人造金刚石和超高压高温技术.北京:化学工业出版社, 1996.
    [32]. Arima, M., Y. Kozai, M. Akaishi, Diamond nucleation and growth by reduction of carbonate melts under high-pressure and high-temperature conditions. Geology, 2002. 30(8): 691-694.
    [33]. Sokol, A.G., Y.N. Pal'yanov, G.A. Pal'yanova, A.F. Khokhryakov, Y.M. Borzdov, Diamond and graphite crystallization from C-O-H fluids under high pressure and high temperature conditions. Diamond and Related Materials, 2001. 10(12): 2131-2136.
    [34]. Akaishi, M.,S. Yamaoka, Crystallization of diamond from C-O-H fluids under high-pressure and high-temperature conditions. Journal of Crystal Growth, 2000. 209(4): 999-1003.
    [35]. Akaishi, M., M.D.S. Kumar, H. Kanda, S. Yamaoka, Formation process of diamond from supercritical H2O-CO2 fluid under high pressure and high temperature conditions. Diamond and Related Materials, 2000. 9(12): 1945-1950.
    [36]. Pleskov, Y.V., Y.E. Evstefeeva, M.D. Krotova, A.V. Laptev, Synthetic semiconductor diamond electrodes: a study of electrochemical behavior of boron-doped single crystals grown at a high temperature and high pressure. Electrochimica Acta, 1999. 44(19): 3361-3366.
    [37]. Hong, S.M., M. Akaishi, S. Yamaoka, Nucleation of diamond in the system of carbon and water under very high pressure and temperature. Journal of Crystal Growth, 1999. 200(1-2):326-328.
    [38]. Oleinik, G.S.,A.A. Bochechka, On the mechanism of forming nanosized particles of diamond detonation synthesized from explosive decomposition products. Journal of Superhard Materials, 2008. 30(3): 143-162.
    [39]. Xu, K.,Q.J. Xue, Deaggregation of ultradispersed diamond from explosive detonation by a graphitization-oxidation method and by hydroiodic acid treatment. Diamond and Related Materials, 2007. 16(2): 277-282.
    [40]. Wen, C., Z.H. Jin, X.X. Liu, X. Li, J.Q. Guan, D.Y. Sun, Y.R. Lin, S.Y. Tang, G. Zhou, J.D. Lin, Studies on nano-diamond prepared by explosive detonation by Raman and infrared spectroscopy. Spectroscopy and Spectral Analysis, 2005. 25(5): 681-684.
    [41]. Chao, W., D.Y. Sun, L. Xun, J.Q. Guan, X.X. Liu, Y.R. Lin, S.Y. Tang, Z. Gang, J.D. Lin, Z.H. Jin, Nano-graphite synthesized by explosive detonation and its application in preparing diamond under high-pressure and high-temperature. Acta Physica Sinica, 2004. 53(4): 1260-1264.
    [42]. Chen, Q.,S.R. Yun, Nano-sized diamond obtained from explosive detonation and its application. Materials Research Bulletin, 2000. 35(12): 1915-1919.
    [43]. Masuda, H., T. Yanagishita, K. Yasui, K. Nishio, I. Yagi, T.N. Rao, A. Fujishima, Synthesis of well-aligned diamond nanocylinders. Advanced Materials, 2001. 13(4): 247-249.
    [44]. Bhattacharyya, S., O. Auciello, J. Birrell, J.A. Carlisle, L.A. Curtiss, A.N. Goyette, D.M. Gruen, A.R. Krauss, J. Schlueter, A. Sumant, P. Zapol, Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films. Applied Physics Letters, 2001. 79(10): 1441-1443.
    [45]. Butler, J.E.,H. Windischmann, Developments in CVD-diamond synthesis during the past decade. MRS Bulletin, 1998. 23(9): 22-27.
    [46]. Constant, L.,F. Le Normand. HFCVD diamond nucleation and growth on polycrystalline copper: A kinetic study. 2008.
    [47]. Ansari, S.G., M.A. Dar, Y.S. Kim, H.K. Seo, G.S. Kim, R. Wahab, Z.A. Ansari, J.M. Seo, H.S. Shin, Inffluence of the silicon surface treatment by plasma etching and scratching on the nucleation of diamond grown in HFCVD - a comparative study. Korean Journal of Chemical Engineering, 2008. 25(3): 593-598.
    [48]. Barbosa, D.C., H.F.V. Nova, M.R. Baldan. Numerical simulation of HFCVD process used for diamond growth. 2006.
    [49]. Pecoraro, S., J.C. Arnault, and J. Werckmann, Two routes for HFCVD diamond nucleation on Si(1 1 1) studied by HRTEM. Diamond and Related Materials, 2004. 13(2): 342-346.
    [50]. Wang, A.Y., C. Sun, Y.S. Zou, R.F. Huang, L.S. Wen, Numerical study of temperature field in HFCVD diamond films. Acta Metallurgica Sinica, 2002. 38(11): 1228-1232.
    [51]. Janischowsky, K., W. Ebert, E. Kohn, Bias enhanced nucleation of diamond on silicon (100) in a HFCVD system. Diamond and Related Materials, 2003. 12(3-7): 336-339.
    [52]. Li, H., M. Gowri, J.J. Schenner, W.J.P. van Enckevort, T. Kacsich, J.J. ter Meulen, Bias enhanced diamond nucleation on Mo and CrN coated stainless steel substrates in a HFCVD reactor. Diamond and Related Materials, 2007. 16(11): 1918-1923.
    [53]. Fernandes, A.J.S., M.A. Neto, F.A. Almeida, R.F. Silva, and F.M. Costa, Nano- and micro-crystalline diamond growth by MPCVD in extremely poor hydrogen uniform plasmas. Diamond and Related Materials, 2007. 16(4-7 SPEC ISS): 757-761.
    [54]. Yagi, I., K. Tsunozaki, A. Fujishima, B. Ohtani, K. Uosaki, The effects of nitrogen and plasma power on electrochemical properties of boron-doped diamond electrodes grown by MPCVD. Journal of the Electrochemical Society, 2002. 149(1): E1-E5.
    [55]. Elmazria, O., J. Bougdira, H. Chatei, L. De Pouques, M. Remy, P. Alnot, Influence of nitrogen incorporation on the electrical properties of MPCVD diamond films growth in CH4-CO2-N-2 and CH4-H-2-N-2 gas mixtures. Thin Solid Films, 2000. 374(1): 27-33.
    [56]. Silva, V.A., F.M. Costa, A.J.S. Fernandes, M.H. Nazare, and R.F. Silva, Influence of SiC particle addition on the nucleation density and adhesion strength of MPCVD diamond coatings on Si3N4 substrates. Diamond and Related Materials, 2000. 9(3): 483-488.
    [57]. Li, D., D. Zuo, Y. Sun, R. Chen, W. Lu, B. Xiang, and M. Wang, Characterization of diamond spherical shell thick film by DC plasma CVD. Key Engineering Materials, 2008. 375-376: 216-220.
    [58]. Zhong, G.F., F.Z. Shen, F.X. Lu, W.Z. Tang, Preparation and characterization of high quality diamond films by DC arc plasma jet CVD method. Journal of University of Science and Technology Beijing, 1999. 6(4): 281-284.
    [59]. Lu, F.X., W.Z. Tang, T.B. Huang, J.M. Liu, J.H. Song, W.X. Yu, Y.M. Tong. Large area high quality diamond film deposition by high power DC arc plasma jet operating at gas recycling mode. Diamond and Related Materials, 2001.10(9-10) :1551-1558.
    [60]. Lu, F.X., W.Z. Tang, G.F. Zhong, T.B. Huang, J.M. Liu, G.H. Li, T.L. Lo, Y.G. Zhang, Z.L. Sun, S.M. Du, Q.Y. He, S.I. Wang. Economical deposition of a large area of high quality diamond film by a high power DC arc plasma jet operating in a gas recycling mode. Diamond and Related Materials, 2000. 1 9, ( 9): 655-1659.
    [61]. Li, C.M., H. Li, D.C. Niu, F.X. Lu, W.Z. Tang, G.C. Chen, H. Zhou, F. Chen. Effects of residual stress distribution on the cracking of thick freestanding diamond films produced byDC arc jet plasma chemical vapor deposition operated at gas recycling mode. Surface & Coatings Technology, 2007.201(15), : 6553-6556
    [62]. Lu, F.X., Y.L. Fu, G.F. Zhong, Z. Jiang, W.Z. Tang, Y.M. Tong, Fracture behavior of thick diamond films prepared by DC are plasma jet method. Diamond and Related Materials, 1998. 7(6): 733-736.
    [63].李惠琪,等离子体喷射法气相生长金刚石.北京:煤炭工业出版社, 1995.
    [64]. Csorbai, H., G. Kovach, G. Peto, P. Csikvari, A. Karacs, and E. Kalman. Combination of CVD diamond and DLC film growth with Pulsed Laser Deposition to enhance the corrosive protection of diamond layers. 2005. Zurich-Ueticon, CH-8707, Switzerland: Trans Tech Publications Ltd.
    [65]. Bolshavok, A.P., V.I. Konov, A.M. Prokhorov, S.A. Uglov, and F. Dausinger, Laser plasma CVD diamond reactor. Diamond and Related Materials, 2001. 10(9-10): 1559-1564.
    [66]. Konov, V.I., A.M. Prokhorov, S.A. Uglov, A.P. Bolshakov, I.A. Leontiev, F. Dausinger, H. Hugel, B. Angstenberger, G. Sepold, S. Metev, CO2 laser-induced plasma CVD synthesis of diamond. Applied Physics a-Materials Science & Processing, 1998. 66(5): 575-578.
    [67]. Sciortino, S., S. Lagomarsino, F. Pieralli, E. Borchi, E. Galvanetto. Polycrystalline diamond synthesis by means of high power pulsed plasma glow discharge CVD. Diamond and Related Materials, 2002. V(3-6): 573-578
    [68]. Heiman, A., E. Lakin, E. Zolotoyabko, and A. Hoffman, Microstructure and stress in nano-crystalline diamond films deposited by DC glow discharge CVD. Diamond and Related Materials, 2002. 11(3-6): 601-607.
    [69]. Berghaus, J.O., J.L. Meunier, F.O. Gitzhofer, Direct current bias effects in RF induction thermal plasma diamond CVD. IEEE Transactions on Plasma Science, 2002. 30(1): 442-449.
    [70]. Roul, B.K., B.B. Nayak, P.K. Mishra, B.C. Mohanty, Diamond and diamond-like-carbon growth on Si (100) by hot filament-assisted RF plasma CVD. Journal of Materials Synthesis and Processing, 1999. 7(5): 281-288.
    [71]. Tsubota, T., S. Ida, N. Okada, M. Nagata, Y. Matsumoto, N. Yatsushiro. CVD diamond coating on WC-Co cutting tool using ECR MPCVD apparatus via electrophoretic seeding pretreatment. Surface and Coatings Technology, 2003. 169-170(1): 262-265.
    [72]. Gupta, S., G. Morell, R.S. Katiyar, D.R. Gilbert, R.K. Singh. Study of diamond films grown at low temperatures and pressures by ECR-assisted CVD. Diamond and Related Materials, 1999. v8( 2):185-188.
    [73]. Yoon, S.F., H. Yang, A. Rusli, J. Ahn, Q. Zhang, The effects of self-generated DC bias onthe characteristics of diamond-like carbon films prepared using ECR-CVD. Diamond and Related Materials, 1998. 7(1): 70-76.
    [74]. Li, Y.D., Y.T. Qian, H.W. Liao, Y. Ding, L. Yang, C.Y. Xu, F.Q. Li, G. Zhou, A reduction-pyrolysis-catalysis synthesis of diamond. Science, 1998. 281(5374): 246-247.
    [75]. Gogotsi, Y., S. Welz, D.A. Ersoy, M.J. McNallan, Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure. Nature, 2001. 411(6835): 283-287.
    [76]. Kalish, R., Doping of diamond. Carbon, 1999. 37(5): 781-785.
    [77]. Chepurov, A.I., A.P. Yelisseyev, E.I. Zhimulev, V.M. Sonin, Fedorov, II, A.A. Chepurov, High-pressure, high-temperature processing of low-nitrogen boron-doped diamond. Inorganic Materials, 2008. 44(4): 377-381.
    [78]. Chen, Y.C., N.H. Tai, I.N. Lin. Substrate temperature effects on the electron field emission properties of nitrogen doped ultra-nanocrystalline diamond. Diamond and Related Materials, 2008. 17(4-5): 457-461.
    [79]. Kalish, R., The search for donors in diamond. Diamond and Related Materials, 2001. 10(9-10): 1749-1755.
    [80]. Kalish, R., Diamond as a unique high-tech electronic material: difficulties and prospects. Journal of Physics D-Applied Physics, 2007. 40(20): 6467-6478.
    [81]. Ferreira, N.G., L.L.G. Silva, E.J. Corat, V.J. Trava-Airoldi, K. Iha, Electrochemical characterization on semiconductors p-type CVD diamond electrodes. Brazilian Journal of Physics, 1999. 29(4): 760-763.
    [82]. Pleskov, Y.V., New corrosion-resistant electrodes: Synthetic diamond and diamond-based materials. The semiconductor and structure aspects - a review. Protection of Metals, 2006. 42(2): 103-118.
    [83]. Shirakawa, T., S. Horiuchi, Y. Ohta, H. Fukuyama, Theoretical study on superconductivity in boron-doped diamond. Journal of the Physical Society of Japan, 2007. 76(1): 014711-1-9.
    [84]. Ekimov, E.A., V.A. Sidorov, E.D. Bauer, N.N. Mel'nik, N.J. Curro, J.D. Thompson, and S.M. Stishov, Superconductivity in diamond. Nature, 2004. 428(6982): 542-545.
    [85]. Nesladek, M., J.J. Mares, P. Hubik, Superconductivity and low-dimensional electrical transport in nanocrystalline diamond. New Diamond and Frontier Carbon Technology, 2006. 16(6): 323-336.
    [86]. Karabutov, A.V., V.I. Konov, V.G. Pereverzev, I.I. Vlasov, E.V. Zavedeev, S.M. Pimenov, and E.N. Loubnin, Competition of nitrogen doping and graphitization effect for fieldelectron emission from nanocrystalline diamond films. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2004. 22(3): 1319-1326.
    [87]. Casanova, N., A. Tajani, E. Gheeraert, E. Bustarret, J.A. Garrido, C.E. Nebel, and M. Stutzmann, Epitaxial growth of phosphorus doped diamond on {111} substrate. Diamond and Related Materials, 2002. 11(3-6): 328-331.
    [88]. Robertson, Raman spectroscopy in carbons:从纳米管到金刚石.北京:化学工业出版社, 2007.
    [89]. Birrell, J., J.E. Gerbi, O. Auciello, J.M. Gibson, J. Johnson, J.A. Carlisle, Interpretation of the Raman spectra of ultrananocrystalline diamond. Diamond and Related Materials, 2005. 14(1): 86-92.
    [90]. Prawer, S.,R.J. Nemanich, Raman spectroscopy of diamond and doped diamond. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 2004. 362(1824): 2537-2565.
    [91]. Ferrari, A.C.,J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2004. 362(1824): 2477-2512.
    [92]. Prawer, S., K.W. Nugent, D.N. Jamieson, J.O. Orwa, L.A. Bursill, J.L. Peng, The Raman spectrum of nanocrystalline diamond. Chemical Physics Letters, 2000. 332(1-2): 93-97.
    [93]. Akahama, Y.,H. Kawamura, Raman study on the stress state of [111] diamond anvils at multimegabar pressure. Journal of Applied Physics, 2005. 98(8).
    [94]. Ferreira, N.G., E. Abramof, N.F. Leite, E.J. Corat, V.J. Trava-Airoldi, Analysis of residual stress in diamond films by x-ray diffraction and micro-Raman spectroscopy. Journal of Applied Physics, 2002. 91(4): 2466-2472.
    [95]. Michler, J., Y. von Kaenel, J. Stiegler, E. Blank, Complementary application of electron microscopy and micro-Raman spectroscopy for microstructure, stress, and bonding defect investigation of heteroepitaxial chemical vapor deposited diamond films. Journal of Applied Physics, 1998. 83(1): 187-197.
    [96].王世中,黄.,刘绪平,臧鑫士,电子显微镜与电子光学.北京:科学出版社, 1991.
    [97]. Boeyens, J.C.A., L.M. Cook, H.G. Krane, F.R.L. Schoening, XRD measurements of the structure factors of diamond. Zeitschrift Fur Kristallographie, 1999. 214(6): 351-352.
    [98]. Chowdhury, S., M.T. Laugier, J. Henry, XRD stress analysis of CVD diamond coatings on SiC substrates. International Journal of Refractory Metals & Hard Materials, 2007. 25(1): 39-45.
    [99]. Kawabata, Y., J. Taniguchi, I. Miyamoto, XPS studies on damage evaluation ofsingle-crystal diamond chips processed with ion beam etching and reactive ion beam assisted chemical etching. Diamond and Related Materials, 2004. 13(1): 93-98.
    [100]. Makau, N.W.,T.E. Derry. Study of oxygen on the three low index diamond surfaces by XPS. 2003.
    [101].刘峰斌,不同表面端基掺硼金刚石薄膜的微观结构及性能.博士学位论文,清华大学, 2006.
    [102]. M.Iwaki, S.S., Electrical conductivity of nitrogen and argon implanted diamond, Nuclear Instruments & Methods in Physics Research, 1983(1129): 209-210.
    [103]. Pleskov. Y. V., S.A.Y., Krotova. M. D., Bouilov. L. L., Spitsyn. B.W. , Glucose oxidation at bismuth-modified platinum electrodes,Journal of Electroanalytical Chemistry, 1987(228): 19-25.
    [104]. Patel, K., K. Hashimoto, A. Fujishima, APPLICATION OF BORON-DOPED CVD-DIAMOND FILM TO PHOTOELECTRODE. Denki Kagaku, 1992. 60(7): 659-659.
    [105]. Reuben, C., E. Galun, H. Cohen, R. Tenne, R. Kalish, Y. Muraki, K. Hashimoto, A. Fujishima, J.M. Butler,, Efficient reduction of nitrite and nitrate to ammonia using thin-film B-doped diamond electrodes. Journal of Electroanalytical Chemistry, 1995. 396(1-2): 233-239.
    [106]. Swain, G.M.,R. Ramesham, Electrochemical activity of boron-doped polycrystalline diamond thin film electrodes. Analytical Chemistry, 1993. 65(4): 345-351.
    [107]. Ramesham, R., R.F. Askew, M.F. Rose, Growth of polycrystalline diamond over glassy carbon and graphite electrode materials. Journal of the Electrochemical Society, 1993. 140(10): 3018-3020.
    [108]. Swain, G.M.,R. Ramesham. Electrochemical and sepctroscopic characterizaiton of boron-doped polycrystalline diamond thin film electrodes. 1992. Toronto, Ont, Can: Publ by Electrochemical Soc Inc, Manchester, NH, USA.
    [109]. Kirkici, H., M.F. Rose, R. Ramesham, R.F. Askew. Surface breakdown characteristics of polycrystalline diamond thin films in vacuum. 1994. Arlington, TX, USA: IEEE, Piscataway, NJ, USA.
    [110]. Alehashem, S., F. Chambers, J.W. Strojek, G.M. Swain, R. Ramesham, Cyclic voltammetric studies of charge transfer reactions at highly boron-doped polycrystalline diamond thin-film electrodes. Analytical Chemistry, 1995. 67(17): 2812.
    [111]. Martin, H.B., A. Argoitia, U. Landau, A.B. Anderson, J.C. Angus, Hydrogen and oxygen evolution on boron-doped diamond electrodes. Journal of the Electrochemical Society, 1996. 143(6): 133-136.
    [112]. Angus, J.C., H.B. Martin, U. Landau, Y.E. Evstefeeva, B. Miller, N. Vinokur, Conducting diamond electrodes: Applications in electrochemistry. New Diamond and Frontier Carbon Technology, 1999. 9(3): 175-187.
    [113]. Martin, H.B., A. Argoitia, J.C. Angus, U. Landau, Voltammetry studies of single-crystal and polycrystalline diamond electrodes. Journal of the Electrochemical Society, 1999. 146(8): 2959-2964.
    [114]. Martin, H.B., B.A. Smith, J.C. Angus, U. Landau, A.B. Anderson, Boron-doped diamond films for electrochemical applications. Materials Research Society Symposium - Proceedings, 1999. 555: 217-226.
    [115]. Vinokur, N., B. Miller, Y. Avyigal, R. Kalish, Cathodic and anodic deposition of mercury and silver at boron-doped diamond electrodes. Journal of the Electrochemical Society, 1999. 146(1): 125-130.
    [116]. Perret, A., W. Haenni, N. Skinner, X.M. Tang, D. Gandini, C. Comninellis, B. Correa, G. Foti, Electrochemical behavior of synthetic diamond thin film electrodes. Diamond and Related Materials, 1999. 8(2): 820-823.
    [117]. Montilla, F., P.A. Michaud, E. Morallon, J.L. Vazquez, C. Comninellis, Electrochemical oxidation of benzoic acid at boron-doped diamond electrodes. Electrochimica Acta, 2002. 47(21): 3509-3513.
    [118]. Fujishima, A., T.N. Rao, E. Popa, B.V. Sarada, I. Yagi, D.A. Tryk. Electroanalysis of dopamine and NADH at conductive diamond electrodes. Journal of Electroanalytical Chemistry, 1999. 473(1): 179-185
    [119].只金芳,关波,金刚石表面的功能化修饰.科学通报, 2006. 51(5):497-505.
    [120]. Park, S.G., Stable ozone generation by using boron-doped diamond electrodes. Russian Journal of Electrochemistry, 2003. 39(3): 321-322.
    [121]. Canizares, P., F. Larrondo, J. Lobato, M.A. Rodrigo, C. Saez, Electrochemical synthesis of peroxodiphosphate using boron-doped diamond anodes. Journal of the Electrochemical Society, 2005. 152(11): 191-196.
    [122]. Honda, K., T.N. Rao, D.A. Tryk, A. Fujishima, M. Watanabe, K. Yasui, H. Masuda, Impedance characteristics of the nanoporous honeycomb diamond electrodes for electrical double-layer capacitor applications. Journal of the Electrochemical Society, 2001. 148(7): A668-A679.
    [123] A. J. Bard, L. R. Faulkner,电化学方法原理和应用.北京:化学工业出版社, 2005.
    [124]. Kraft, A., Doped diamond: A compact review on a new, versatile electrode material. International Journal of Electrochemical Science, 2007. 2(5): 355-385.
    [125]. Levy-Clement, C., N.A. Ndao, A. Katty, M. Bernard, A. Deneuville, C. Comninellis, A. Fujishima, Boron doped diamond electrodes for nitrate elimination in concentrated wastewater. Diamond and Related Materials, 2003. 12(3-7): 606-612.
    [126]. Rao, T.N., K. Honda, M. Yoshimura, A. Fujishima, Electrogenerated chemiluminescence of the ruthenium tris(2,2 prime )bipyridyl/amines system on a boron-doped diamond electrode. Journal of Physical Chemistry B, 2003. 107(7): 1653-1663.
    [127]. Honda, K., T.N. Rao, D.A. Tryk, A. Fujishima, M. Watanabe, K. Yasui, H. Masuda, Electrochemical characterization of the nanoporous honeycomb diamond electrode as an electrical double-layer capacitor. Journal of the Electrochemical Society, 2000. 147(2): 659-664.
    [128]. Gandini, D., P.-A. Michaud, I. Duo, E. Mahe, W. Haenni, A. Perret, C. Comninellis, Electrochemical Behavior of Synthetic Boron-Doped Diamond Thin Film Anodes. New Diamond and Frontier Carbon Technology, 1999. 9(5): 303-316.
    [129]. Xu, J., Q. Chen, G.M. Swain, Anthraquinonedisulfonate electrochemistry: a comparison of glassy carbon, hydrogenated glassy carbon, highly oriented pyrolytic graphite, and diamond electrodes. Analytical Chemistry, 1998. 70(15): 3146-3154.
    [130]. Park, J., Y. Show, V. Quaiserova, J.J. Galligan, G.D. Fink, G.M. Swain, Diamond microelectrodes for use in biological environments. Journal of Electroanalytical Chemistry, 2005. 583(1): 56-68.
    [131]. Spataru, N., B.V. Sarada, E. Popa, D.A. Tryk, A. Fujishima, Voltammetric determination of L-cysteine at conductive diamond electrodes. Analytical Chemistry, 2001. 73(3): 514-519.
    [132]. Shin, D., D.A. Tryk, A. Fujishima, A. Merkoci, J. Wang, Resistance to surfactant and protein fouling effects at conducting diamond electrodes. Electroanalysis, 2005. 17(4): 305-311.
    [133]. Xu, J.S., Q.Y. Chen, G.M. Swain, Anthraqunionedisulfonate electrochemistry: A comparison of glassy carbon, hydrogenated glassy carbon, highly oriented pyrolytic graphite, and diamond electrodes. Analytical Chemistry, 1998. 70(15): 3146-3154.
    [134]. Xu, J.,G.M. Swain, Oxidation of azide anion at boron-doped diamond thin-film electrodes. Analytical Chemistry, 1998. 70(8): 1502-1510.
    [135].方宁,贾金平,钟登杰,王亚林,掺硼金刚石薄膜电极在水处理中应用的研究进展. 2007.29(9):708-712.
    [136]. Compton, R.G., J.S. Foord, F. Marken, Electroanalysis at diamond-like and doped-diamond electrodes. Electroanalysis, 2003. 15(17): 1349-1363.
    [137]. Canizares, P., M. Arcis, C. Saez, M.A. Rodrigo, Electrochemical synthesis of ferrate usingboron doped diamond anodes. Electrochemistry Communications, 2007. 9(9): 2286-2290.
    [138].于洪斌,基于掺硼金刚石(BDD)膜电极的COD测定方法和TiO_2-BDD异质结光催化剂研究.博士学位论文,大理理工大学,2008.
    [139]. Olivia, H., B.V. Sarada, D. Shin, T.N. Rao, A. Fujishima, Selective amperometric detection of dopamine using OPPy-modified diamond microsensor system. Analyst, 2002. 127(12): 1572-1575.
    [140]. Omanovic, D., Z. Kwokal, A. Goodwin, A. Lawrence, C.E. Banks, R.G. Compton, S. Komorsky-Lovric, Trace metal detection in Sibenik Bay, Croatia: Cadmium, lead and copper with anodic stripping voltammetry and manganese via sonoelectrochemistry. A case study. Journal of the Iranian Chemical Society, 2006. 3(2): 128-139.
    [141]. Spataru, T., N. Spataru, A. Fujishima, Detection of aniline at boron-doped diamond electrodes with cathodic stripping voltammetry. Talanta, 2007. 73(2): 404-406.
    [142]. Zhang, Y.R.,S. Yoshihara, Cathodic stripping voltammetry of nickel on boron-doped diamond. Journal of Electroanalytical Chemistry, 2004. 573(2): 327-331.
    [143]. Oliveira, R.T.S., G.S. Garbellini, G.R. Salazar-Banda, L.A. Avaca, The use of ultrasound for the analytical determination of nitrite on diamond electrodes by square wave voltammetry. Analytical Letters, 2007. 40(14): 2673-2682.
    [144]. Novotny, M., V. Quaiserova-Mocko, E.A. Wehrwein, D.L. Kreulen, G.M. Swain, Determination of endogenous norepinephrine levels in different chambers of the rat heart by capillary electrophoresis coupled with amperometric detection. Journal of Neuroscience Methods, 2007. 163(1): 52-59.
    [145]. Rao, T.N., B.V. Sarada, D.A. Tryk, A. Fujishima, Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection. Journal of Electroanalytical Chemistry, 2000. 491(1-2): 175-181.
    [146]. Siangproh, W., N. Wangfuengkanagul, O. Chailapakul, Electrochemical oxidation of tiopronin at diamond film electrodes and its determination by amperometric flow injection analysis. Analytica Chimica Acta, 2003. 499(1-2): 183-189.
    [147]. Yamada, D., T.A. Ivandini, M. Komatsu, A. Fujishima, Y. Einaga, Anodic stripping voltammetry of inorganic species of As3+ and As5+ at gold-modified boron doped diamond electrodes. Journal of Electroanalytical Chemistry, 2008. 615(2): 145-153.
    [148]. Fortin, E., J. Chane-Tune, D. Delabouglise, P. Bouvier, T. Livache, P. Mailley, B. Marcus, M. Mermoux, J.P. Petit, S. Szunerits, E. Vieil, Interfacing boron doped diamond and biology: An insight on its use for bioanalytical applications. Electroanalysis, 2005. 17(5-6): 517-526.
    [149]. Dragoe, D., N. Spataru, R. Kawasaki, A. Manivannan, T. Spataru, D.A. Tryk, A. Fujishima, Detection of trace levels of Pb2+ in tap water at boron-doped diamond electrodes with anodic stripping voltammetry. Electrochimica Acta, 2006. 51(12): 2437-2441.
    [150]. Kraft, A., M. Stadelmann, M. Wunsche, M. Blaschke, Electrochemical ozone production using diamond anodes and a solid polymer electrolyte. Electrochemistry Communications, 2006. 8(5): 883-886.
    [151]. Park, S.G., G.S. Kim, J.E. Park, Y. Einaga, A. Fujishima, Use of boron-doped diamond electrode in ozone generation. Journal of New Materials for Electrochemical Systems, 2005. 8(1): 65-68.
    [152]. Michaud, P.A., C. Comninellis, W. Haenn, A. Perret, J. Iniesta, M. Fryda, L. Schaefer, Electrochemical synthesis of inorganic and organic compounds with Boron-Doped Diamond electrodes. Energy and Electrochemical Processes for a Cleaner Environment, Proceedings, 2001. 2001(23): 87-96.
    [153]. Weiss, E., C. Saez, K. Groenen-Serrano, P. Canizares, A. Savall, M.A. Rodrigo, Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes. Journal of Applied Electrochemistry, 2008. 38(1): 93-100.
    [154]. Saez, C., M.A. Rodrigo, P. Canizares, Electrosynthesis of ferrates with diamond anodes. AIChE Journal, 2008. 54(6): 1600-1607.
    [155]. Saha, M.S., T. Furuta, Y. Nishiki, Electrochemical synthesis of sodium peroxycarbonate at boron-doped diamond electrodes. Electrochemical and Solid-State Letters, 2003. 6(7): 5-7.
    [156].只金芳,田如海,金刚石薄膜电化学.化学进展, 2005(1): 55-63.
    [157]. Panizza, M.,G. Cerisola, Application of diamond electrodes to electrochemical processes. Electrochimica Acta, 2005. 51(2): 191-199.
    [158]. Zhang, J., X.M. Chen, P.D. Yao, G.H. Chen, Anodic oxidation of salicylic acid at Ta/BDD electrode. Journal of Zhejiang University-Science A, 2007. 8(9): 1457-1461.
    [159]. Roy, P.R., M.S. Saha, T. Okajima, T. Ohsaka, Electrocatalytic oxidation of ascorbic acid by [Fe(CN)(6)](3-/4-) redox couple electrostatically trapped in cationic N,N-dimethylaniline polymer film electropolymerized on diamond electrode. Electrochimica Acta, 2005. 51(21): 4447-4454.
    [160]. Manivannan, A., M.S. Seehra, D.A. Tryk, A. Fujishima, Electrochemical detection of ionic mercury at boron-doped diamond electrodes. Analytical Letters, 2002. 35(2): 355-368.
    [161]. Bergmann, M.E.H.,J. Rollin, Product and by-product formation in laboratory studies on disinfection electrolysis of water using boron-doped diamond anodes. Catalysis Today, 2007. 124(3-4): 198-203.
    [162].胡陈果,高硼掺杂金刚石膜电极的电化学应用研究.物理, 2002(2): 93-97.
    [163]. Honda, K., T.N. Rao, D.A. Tryk, A. Fujishima, M. Watanabe, K. Yasui, H. Masuda, Electrochemical Characterization of the Nanoporous Honeycomb Diamond Electrode as an Electrical Double-Layer Capacitor. Journal of the Electrochemical Society, 2000. 147(2): 659-664.
    [164]. Pignatello, J.J., E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 2006. 36(1): 1-84.
    [165]. Chen, G.H., Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 2004. 38(1): 11-41.
    [166]. Szpyrkowicz, L., C. Juzzolino, S.N. Kaul, A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent. Water Research, 2001. 35(9): 2129-2136.
    [167]. Panizza, M., C. Bocca, G. Cerisola, Electrochemical treatment of wastewater containing polyaromatic organic pollutants. Water Research, 2000. 34(9): 2601-2605.
    [168]. Hao, O.J., H. Kim, P.C. Chiang, Decolorization of wastewater. Critical Reviews in Environmental Science and Technology, 2000. 30(4): 449-505.
    [169].陶举洲,环境电化学.北京:化学工业出版社.
    [170].王静,电催化电极与电化学水处理技术.哈尔滨:哈尔滨地图出版社, 2004.
    [171].冯玉杰,李.,尤宏,丁凡,电化学技术在环境工程中的应用.北京:化学工业出版社, 2002.
    [172].李圣华,石墨电极生产.北京:冶金工业出版社, 1997.
    [173]. Vlyssides, A.G., P.K. Karlis, N. Rori, A.A. Zorpas, Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes. Journal of Hazardous Materials, 2002. 95(1-2): 215-226.
    [174]. Vaskelis, A., A. Jagminiene, I. Stankeviciene. Anodic oxidation of Co(II) complexes with amines on a rotating Au electrode: Ligand effects in relation to the application for autocatalytic metal deposition. 2006. Szczyrk, Poland: Elsevier Ltd, Oxford, OX5 1GB, United Kingdom.
    [175]. Zhang, Y.,G.S. Wilson, Electrochemical oxidation of H2O2 on Pt and Pt + Ir electrodes in physiological buffer and its applicability to H2O2-based biosensors. Journal of Electroanalytical Chemistry, 1993. 345(1-2): 253-271.
    [176]. Lin, W.F., P.A. Christensen, A. Hamnett, M.S. Zei, G. Ertl, Electro-oxidation of CO at the Ru(0001) single-crystal electrode surface. Journal of Physical Chemistry B, 2000. 104(28):6642-6652.
    [177]. Pigani, L., M. Musiani, C. Pirvu, F. Terzi, C. Zanardi, R. Seeber, Electro-oxidation of chlorophenols on poly(3,4-ethylenedioxythiophene)-poly(styrene sulphonate) composite electrode. Electrochimica Acta, 2007. 52(5): 1910-1918.
    [178]. Carlesi Jara, C., D. Fino, V. Specchia, G. Saracco, P. Spinelli, Electrochemical removal of antibiotics from wastewaters. Applied Catalysis B: Environmental, 2007. 70(1-4): 479-487.
    [179]. Rodgers, J.D., W. Jedral, N.J. Bunce, Electrochemical oxidation of chlorinated phenols. Environmental Science and Technology, 1999. 33(9): 1453-1457.
    [180]. Iotov, P.I.,S.V. Kalcheva, Mechanistic approach to the oxidation of phenol at a platinum/gold electrode in an acid medium. Journal of Electroanalytical Chemistry, 1998. 442(1-2): 19-26.
    [181].张招贤,钛电极工学.北京:冶金工业出版社, 2003.
    [182]. Pinhedo, L., R. Pelegrini, R. Bertazzoli, A.J. Motheo, Photoelectrochemical degradation of humic acid on a (TiO2)(0.7)(RuO2)(0.3) dimensionally stable anode. Applied Catalysis B-Environmental, 2005. 57(2): 75-81.
    [183]. Chen, X.M., G.H. Chen, P.L. Yue, Novel electrode system for electroflotation of wastewater. Environmental Science & Technology, 2002. 36(4): 778-783.
    [184]. Motheo, A.J., E.R. Gonzalez, G. Tremiliosi, P. Olivi, A.R. de Andrade, B. Kokoh, J.M. Leger, E.M. Belgsir, C. Lamy. The oxidation of formaldehyde on high overvoltage DSA type electrodes. 2000.
    [185]. Yao, P.D., X.M. Chen, H. Wu, D.H. Wang, Active Ti/SnO2 anodes for pollutants oxidation prepared using chemical vapor deposition. Surface & Coatings Technology, 2008. 202(16): 3850-3855.
    [186]. Wang, Y.Q., B. Gu, W.L. Xu, L.D. Lu, Electrochemical oxidation of phenol on Ti-based PbO2 electrodes. Rare Metal Materials and Engineering, 2007. 36(5): 874-878.
    [187]. Kim, S., T.H. Kim, C. Park, E.B. Shin, Electrochemical oxidation of polyvinyl alcohol using a RuO2/Ti anode. Desalination, 2003. 155(1): 49-57.
    [188]. Chen, J.L., H.C. Shi, J.H. Lu, Electrochemical treatment of ammonia in wastewater by RuO2-IrO2-TiO2/Ti electrodes. Journal of Applied Electrochemistry, 2007. 37(10): 1137-1144.
    [189]. Zhao, G.Y.,H.L. Li, Electrochemical oxidation of methanol on Pt nanoparticles composited MnO2 nanowire arrayed electrode. Applied Surface Science, 2008. 254(10): 3232-3235.
    [190]. Zanta, C., P.A. Michaud, C. Comninellis, A.R. De Andrade, J.F.C. Boodts, Electrochemical oxidation of p-chlorophenol on SnO2-Sb2O5 based anodes for wastewater treatment.Journal of Applied Electrochemistry, 2003. 33(12): 1211-1215.
    [191].盛怡,李光明,胡惠康,张芳,王华,有机废水电化学氧化阳极材料的研究进展.工业水处理, 2006. 26(3):4-7.
    [192]. Shen, P.K.,X.L. Wei, Morphologic study of electrochemically formed lead dioxide. Electrochimica Acta, 2003. 48(12): 1743-1747.
    [193]. Zhou, M.H., Q.Z. Dai, L.C. Lei, C. Ma, D.H. Wang, Long life modified lead dioxide anode for organic wastewater treatment: Electrochemical characteristics and degradation mechanism. Environmental Science & Technology, 2005. 39(1): 363-370.
    [194]. Amadelli, R., L. Armelao, A.B. Velichenko, N.V. Nikolenko, D.V. Girenko, S.V. Kovalyov, F.I. Danilov. Oxygen and ozone evolution at fluoride modified lead dioxide electrodes. Electrochimica Acta ,1999. 45(4-5):713-720.
    [195]. Koudelka, L., P. Mosner, M. Zeyer, C. Jager. Lead borophosphate glasses doped with titanium dioxide. Journal of Non-Crystalline Solids, 2003. 326-327:72-76.
    [196]. Velichenko, A.B., R. Amadelli, E.A. Baranova, D.V. Girenko, F.I. Danilov, Electrodeposition of Co-doped lead dioxide and its physicochemical properties. Journal of Electroanalytical Chemistry, 2002. 527(1-2): 56-64.
    [197]. Velichenko, A.B., D.V. Girenko, S.V. Kovalyov, A.N. Gnatenko, R. Amadelli, F.I. Danilov, Lead dioxide electrodeposition and its application: influence of fluoride and iron ions. Journal of Electroanalytical Chemistry, 1998. 454(1-2): 203-208.
    [198]. Rothenberg, S., D.J. Payne, A. Bourlange, R.G. Egdell, A study of the metal to nonmetal transition in Bi-doped ss-PbO2 by high resolution x-ray photoemission. Journal of Applied Physics, 2007. 102(11).
    [199]. Popovic, N.D., J.A. Cox, D.C. Johnson, Electrocatalytic function of Bi(V) sites in heavily-doped PbO2-film electrodes applied for anodic detection of selected sulfur compounds. Journal of Electroanalytical Chemistry, 1998. 455(1-2): 153-160.
    [200]. Andrade, L.S., L.A.M. Ruotolo, R.C. Rocha, N. Bocchi, S.R. Biaggio, J. Iniesta, V. Garcia-Garcia, V. Montiel, On the performance of Fe and Fe,F doped Ti-Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater. Chemosphere, 2007. 66(11): 2035-2043.
    [201]. Samet, Y., S.C. Elaoud, S. Ammar, R. Abdelhedi, Electrochemical degradation of 4-chloroguaiacol for wastewater treatment using PbO2 anodes. Journal of Hazardous Materials, 2006. 138(3): 614-619.
    [202]. Awad, H.S.,N.A. Galwa, Electrochemical degradation of Acid Blue and Basic Brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect ofvarious operating factors. Chemosphere, 2005. 61(9): 1327-1335.
    [203]. Gaiduk, P.I., A.N. Kozjevko, S.L. Prokopjev, C. Tsamis, A.N. Larsen, Structural and sensing properties of nanocrystalline SnO2 films deposited by spray pyrolysis from a SnCl2 precursor. Applied Physics a-Materials Science & Processing, 2008. 91(4): 667-670.
    [204]. Liang, Z., F. Zhang, C. Fan, H. Miao, Study on preparation and properties of Ti/SnO2 electrode. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2007. 36(2): 278-281.
    [205]. Polcaro, A.M., S. Palmas, F. Renoldi, M. Mascia, On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment. Journal of Applied Electrochemistry, 1999. 29(2): 147-151.
    [206]. Cossu, R., A.M. Polcaro, M.C. Lavagnolo, M. Mascia, S. Palmas, F. Renoldi, Electrochemical treatment of landfill leachate: oxidation at Ti/PbO2 and Ti/SnO2 anodes. Environmental Science and Technology, 1998. 32(22): 3570-3573.
    [207]. Wang, Y., H. Tong, W. Xu, Structure change and failure behavior of Ti/SnO2+Sb2O3+PbO2 anodes during electrolysis process in H2SO4 solution. Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2004. 55(9): 1560-1563.
    [208]. Marinkovic, S.N., Diamond synthesized at low pressure. Chemistry and Physics of Carbon, 2004. 29: 71-207.
    [209].王光祖,人造金刚石探秘.杭州:浙江大学出版社, 2001.
    [210]. Kobashi, K., Diamond Nucleation, in Diamond Films. 2005, Elsevier Science Ltd: Oxford. p. 121-153.
    [211].王季陶,非平衡定态相图:人造金刚石的低压气相生长热力学.北京:科学出版社, 2000.
    [212]. Netto, A.,M. Frenklach, Kinetic Monte Carlo simulations of CVD diamond growth--Interlay among growth, etching, and migration. Diamond and Related Materials, 2005. 14(10): 1630-1646.
    [213].刘志杰,王.,张卫,金刚石低压气相生长的热力学耦合模型.北京:科学出版社, 1998.
    [214].周克崧,金刚石薄膜沉积制备工艺与应用.北京:冶金工业出版社,2001.
    [215]. Olson, D.S., M.A. Kelly, S. Kapoor, S.B. Hagstrom, Mechanism of CVD diamond film growth deduced from the sequential deposition from sputtered carbon and atomic hydrogen. Journal of Materials Research, 1994. 9(6): 1546-1551.
    [216]. May, P.W., Diamond thin films: a 21st-century material. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 2000. 358(1766): 473-495.
    [217]. Das, D.,R.N. Singh, A review of nucleation, growth and low temperature synthesis of diamond thin films. International Materials Reviews, 2007. 52(1): 29-64.
    [218]. Park, B.S.,Y.J. Baik, Nucleation enhancement behavior of diamond on Si substrate according to surface treatment materials. Diamond and Related Materials, 1997. 6(11): 1716-1721.
    [219]. Ristic, G.S., L.T. Petkovska, Z.D. Bogdanov, S. Zec, S.S. Miljanic, Conditioning of the filament for diamond deposition by hot-filament chemical vapour deposition method. Journal of the Serbian Chemical Society, 1998. 63(3): 231-235.
    [220]. Sanchez, G., W.L. Wang, M.C. Polo, J. Esteve, Nucleation of diamond on silicon by biased HFCVD: a comparative study. Diamond and Related Materials, 1998. 7(2-5): 200-204.
    [221]. Yagi, I., H. Notsu, T. Kondo, D.A. Tryk, A. Fujishima, Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes. Journal of Electroanalytical Chemistry, 1999. 473(1): 173-178.
    [222]. Deneuville, A.,E. Gheeraert, Quality doping, electronic and electrochemical applications of diamond. Vide: Science, Technique et Applications, 2001. 2 4(300): 427-461.
    [223]. Liu, F.B., J.D. Wang, B. Liu, X.M. Li, D.R. Chen, Effect of electronic structures on electrochemical behaviors of surface-terminated boron-doped diamond film electrodes. Diamond and Related Materials, 2007. 16(3): 454-460.
    [224]. Petrini, D.,K. Larsson, A theoretical approach to the energetic stability and geometry of hydrogen and oxygen terminated diamond (100) surfaces. Surface Engineering for Manufacturing Applications, 2006. 890: 265-271
    [225]. Popov, M., Pressure measurements from Raman spectra of stressed diamond anvils. Journal of Applied Physics, 2004. 95(10): 5509-5514.
    [226].藤昭井,相泽益男著,陈震,姚建年译,电化学测定方法.北京:北京大学出版社, 1995.
    [227]. Pleskov, Y.V., Synthetic diamond, a new electrode material for electroanalysis. Journal of Analytical Chemistry, 2000. 55(11): 1045-1050.
    [228]. Bennett, J.A., J.A. Wang, Y. Show, G.M. Swain, Effect of sp(2)-bonded nondiamond carbon impurity on the response of boron-doped polycrystalline diamond thin-film electrodes. Journal of the Electrochemical Society, 2004. 151(9): E306-E313.
    [229].史美伦,交流阻抗谱原理及应用.北京:国防工业出版社, 2001..
    [230]. Rao, T.N., M. Yoshimura, K. Honda, R. Uchikado, T. Kondo, D.A. Tryk, A. Fujishima, Y. Sakamoto, K. Yasui, H. Masuda, Electrochemical characterization of nanoporous honeycomb diamond electrodes in non-aqueous electrolytes. Diamond and RelatedMaterials, 2001. 10(3-7): 620-626.
    [231]. Almeida, E.C., M.R. Baldan, J.M. Rosolen, N.G. Ferreira, Impedance characteristics of the diamond/carbon fiber electrodes for electrical double-layer capacitor. Diamond and Related Materials, 2008. 17(7-10): 1529-1533.
    [232].莫里森,半导体与金属氧化膜的电化学.北京:科学出版社,1988.
    [233].刘恩科,半导体物理学.北京:国防工业出版社出版,2006.
    [234]. Fujishima, A., Einaga, Ya., Rao, T.N., and Tryk, D.A, Diamond Electrochemistry. Elsevier, 2005. Tokyo: BKC; Amsterdam: 38.
    [235].莫里森著,吴辉煌译,半导体与金属氧化膜的电化学.北京:科学出版社, 1988.
    [236].查全性,电极过程动力学导论.北京:科学出版社, 2002.
    [237].胡晓君,曹华珍,郑国渠,曹帅,掺硼浓度对金刚石薄膜电极电化学性能影响的研究.高校化学工程学报, 2006(6): 932-937.
    [238]. Latto, M.N., G. Pastor-Moreno, D.J. Riley, The influence of doping levels and surface termination on the electrochemistry of polycrystalline diamond. Electroanalysis, 2004. 16(6): 434-441.
    [239]. Ikehata, K., N. Jodeiri Naghashkar, M. Gamal El-Din, Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review. Ozone: Science and Engineering, 2006. 28(6): 353-414.
    [240]. Ikehata, K.,M.G. El-Din, Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: A review. Journal of Environmental Engineering and Science, 2006. 5(2): 81-135.
    [241].吴迪,羟基自由基在电催化氧化体系中的形成规律及其在废水处理中的应用研究.博士学位论文,吉林大学, 2007.
    [242]. Alfaro, M.A.Q., S. Ferro, C.A. Martinez-Huitle, Y.M. Vong, Boron doped diamond electrode for the wastewater treatment. Journal of the Brazilian Chemical Society, 2006. 17(2): 227-236.
    [243]. Comninellis, C.,A. Nerini, Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. Journal of Applied Electrochemistry, 1995. 25(1): 23-28.
    [244]. Mikkola, H., J.Y. Schmale, W. Wesner, S. Petkovska, Laboratory pre-assays for soil remediation by electro synthesis of oxidants and their electrokinetic distribution. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2008. 43(8): 907-912.
    [245]. Michaud, P.A., M. Panizza, L. Ouattara, T. Diaco, G. Foti, C. Comninellis, Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. Journal of AppliedElectrochemistry, 2003. 33(2): 151-154.
    [246]. Nielson, K.,D.W. Smith, Ozone-enhanced electroflocculation in municipal wastewater treatment. Journal of Environmental Engineering and Science, 2005. 4(1): 65-76.
    [247]. Jeong, J., J.Y. Kim, J. Yoon, The role of reactive oxygen species in the electrochemical inactivation of microorganisms. Environmental Science and Technology, 2006. 40(19): 6117-6122.
    [248]. Guinea, E., C. Arias, P.L. Cabot, J.A. Garrido, R.M. Rodriguez, F. Centellas, E. Brillas, Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Water Research, 2008. 42(1-2): 499-511.
    [249]. Makgae, M.E., C.C. Theron, W.J. Przybylowicz, A.M. Crouch, Preparation and surface characterization of Ti/SnO2-RuO2-IrO2 thin films as electrode material for the oxidation of phenol. Materials Chemistry and Physics, 2005. 92(2-3): 559-564.
    [250].赵国华,李明利,祁源,胡惠康,苯酚在金刚石膜电极上的电化学氧化降解过程.中国环境科学, 2005(3): 370-374.
    [251]. Iniesta, J., P.A. Michaud, M. Panizza, G. Cerisola, A. Aldaz, C. Comninellis, Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochimica Acta, 2001. 46(23): 3573-3578.
    [252]. Katsuki, N., S. Wakita, Y. Nishiki, T. Shimamune, Y. Akiba, M. Iida, Electrolysis by using diamond thin film electrodes. Japanese Journal of Applied Physics, Part 2: Letters, 1997. 36(3A): 260-263.
    [253]. Montiel, V., V. Garcia-Garcia, J. Gonzalez-Garcia, J.R. Perez-Mallol, G. Sanchez-Cano, A. Aldaz, Viability of the electrochemical treatment of industrial effluents. Journal of New Materials for Electrochemical Systems, 2000. 3(3): 269-274.
    [254]. Zhou, M.H., Q.Z. Dai, L.C. Lei, p-nitrophenol degradation by electrochemical oxidation in the presence of NaCl. Proceedings of the 9th International Conference on Environmental Science and Technology, Vol A - Oral Presentations, Pts A and B, 2005: A1704-A1709.
    [255]. Panizza, M.,G. Cerisola, Electrochemical oxidation as a final treatment of synthetic tannery wastewater. Environmental Science & Technology, 2004. 38(20): 5470-5475.
    [256].韩魁声,污水生物处理工艺技术.大连:大连理工出版社, 2004.
    [257]. Vlyssides, A.G.,C.J. Israilides, Electrochemical oxidation of a Textile Dye and Finishing Wastewater using a Pt/Ti electrode. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 1998. 33(5): 847-862.
    [258]. Andrade, L.S., R.C. Rocha-Filho, N. Bocchi, S.R. Biaggio, J. Iniesta, V. Garcia-Garcia, V.Montiel, Degradation of phenol using Co- and Co,F-doped PbO2 anodes in electrochemical filter-press cells. Journal of Hazardous Materials, 2008. 153(1-2): 252-260.
    [259]. Xu, L., W. Wang, M.Y. Wang, Y.Y. Cai, Electrochemical degradation of tridecane dicarboxylic acid wastewater with tantalum-based diamond film electrode. Desalination, 2008. 222(1-3): 388-393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700