中链脂肪酸糖单酯的酶法合成以及理化性质和抑菌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着食品工业的发展,对防腐剂的要求也越来越高,不但要求防腐剂安全、无毒、高效,而且具有营养化、功能化的特点。脂肪酸及其衍生物以其高效、安全且功能多样化而成为筛选天然食品防腐剂和医药、兽药及农药的目标群。目前抑菌化合物的筛选主要通过大量试验进行,难免盲目性和偶然性,迫切需要定量构效关系的指导。本课题组已经研究报道了脂肪酸及其衍生物对革兰氏阳性菌金黄色葡萄球菌(Escherichia coli, E.coli)和蜡样芽孢杆菌(.Bacillus cereus, B. cereus)的定量构效关系(Quantitative structure-activity relationship. QSAR),为了更全面研究和了解脂肪酸及其衍生物抑菌活性的定量构效关系,本研究选用35种脂肪酸及其衍生物,用半数抑制浓度作为评价其抑菌活性的参数,构建针对革兰氏阴性菌肠出血性大肠杆菌O157:H7(Escherichia coli O157:H7, E. coli O157:H7)和真菌中的酵母白色念珠菌(Candida albicans, C. albicans)的QSAR模型。
     分析所得模型发现,立体效应和电性特征是影响脂肪酸及其衍生物抑菌活性的最主要因素,原子排布较密,空间体积在一定范围,某些位置没有大的立体位阻,羧基、酯基端电负性强,特定的电子云排布和对外电场敏感的分子倾向于具有更高的抑菌能力。研究还证实,在脂肪酸及其衍生物范围内,中链脂肪酸衍生物具有最强抑菌活性,其中的代表物为月桂酸单甘油酯(Glycerol monolaurate, GML),但是在实际应用过程中,GML存在水溶性和口感较差的缺陷,制约其后续应用发展,因此本研究采用糖基取代甘油基与中链脂肪酸合成糖单酯,以期获得抑菌性、水溶性、口感及理化性质等综合性能优良的脂肪酸衍生物。
     为全面比较和了解中链脂肪酸糖单酯的抑菌及其他性能,本研究首先在叔戊醇与DMSO混合溶液中,利用脂肪酶Lipozyme TLIM催化合成蔗糖月桂酸单酯,在单因素试验的基础上,利用响应面分析法,优化了蔗糖月桂酸酯的合成条件,得到的最佳合成条件为:蔗糖浓度为0.04mol/L,溶剂叔戊醇:二甲亚砜=4:1(v/v),加酶量为100mg/mL分子筛量为100mg/mL,在50℃下水浴摇动30min后,加入0.4mol/L的月桂酸乙烯酯反应4h。之后,在相似条件下分别合成、分离精制和鉴定了19种中链脂肪酸糖单酯,包括6种单糖脂肪酸酯、10种二糖脂肪酸单酯及3种三糖脂肪酸单酯。
     再对合成的糖单酯的抑菌活性及表面张力、临界胶束浓度(Critical micelle concentration,CMC)、起泡能力和泡沫稳定性、乳化能力和乳化稳定性等进行了测定比较,同时与市售月桂酸糖酯L-1695及GML进行了对比分析。结果发现,大部分糖酯对金黄色葡萄球菌的抑制能力均较强,而对E. coli O157:H7和白色念珠菌的抑菌能力较弱,它们的抑菌活性与链长、亲水基团、酯化程度相关。相对而言,随着脂肪酸链长增加,糖单酯对金黄色葡萄球菌和白色念珠菌的抑菌活性增强,月桂酸糖单酯的抑菌活性最强,而碳链较短的脂肪酸二糖单酯则对E.coli O157:H7的抑制率较高。单糖脂肪酸单酯的抑菌性明显优于二糖脂肪酸单酯,其中甲酯葡萄糖月桂酸单酯最佳,对三种被测菌种的最低抑制浓度(Minimum inhibitory concentration, MIC)值均为188μg/mL,三糖脂肪酸单酯则没有抑菌活性,蔗糖月桂酸二酯或多酯的抑菌活性弱于蔗糖单酯。中链脂肪酸糖单酯的表面活性、乳化性、起泡性等随着碳链长度和糖基变化而变化,综合分析发现二糖月桂酸单酯在上述性能中表现优异,且口感和水溶性明显优于GML,具有较好的开发应用价值。
With the development of lfood industry, higher requirements are presented for food preservatives, which are not only safe, non-toxicand efficient, but also possess, nutritional and functional festures. Fatty acids and their derivatives have become the target group to screen natural food preservatives and pharmaceuticals, veterinary drugs and pesticides for theirefficient, safe and functional diversification. However, previous reports and experiences of researchers are mainly accumulated on abundant experiments, which would inevitably be blindness or random, therefor, it is urgent to understand the relationships between molecular structure of fatty acids and their derivatives and their antibacterial activities. Our group has reported the antibacterial quantitative structure-activity relationship (QSAR) model of fatty acid and their derivatives against Gram-positive Staphylococcus aureus and Bacillus cereus. In order to get a more comprehensive understanding of the antimicrobial quantitative structure-activity relationship of fatty acids and their derivatives,35kinds of fatty acids and their derivatives were chosen to test their IC50against Gram-negative Escherichia coli O157:H7and the typical Eufloria Candida albicans and3statistically reliable QSAR models were establish.
     By analyzing the obtained models, it was found that steric and electronic properties are the most related factors with antimicrobial activity, and the molecules of fatty acid derivative which possessed denser atomic distribution, space volume in certain range, no steric effect in some regions, more electronic negativity of carboxyl terminal of fatty acid chains, special electron cloud distribution and particular sensitivity to out electric fieldwere tend to display more potent antimicrobial activity. This study also confirmed that medium chain fatty acid derivatives have the strongest antimicrobial activities, especially glycerol monolaurate (GML). However, GML is deficient in water solubility and taste when applied to actual food system, which may restrict its application and development in food industry. In view of this, we use sugar instead of glycerol to sythensis sugar medium chain fatty acid monoester with medium chain fatty acid, aimed to obtain new antibacterial fatty acid derivatives with good water-solublility, taste, physical and chemicalproperties as well.
     In order to comprehensively analyze and compare the antimicrobial activity and physico-chemical properties of sugar medium chain fatty acid monoesters, firstly, the synthesis of monolauroyl sucrose in2-methyl-2-butanol and dimethylsulfoxide (DMSO) solution by Lipozyme TL IM, and the separation and purification of monoester have been studied. On the basis of single factor experiments, response surface methodology was used to optimize the synthesis system of sucrose laurate, the obtained conditions are: sucrose (0.04mol/L),2-methyl-2-butanol:DMSO=4:1(v/v), plus the amount of Lipozyme TL IM100mg/mL, molecular sieve amount of100mg/mL, after oscillating30min at50℃, lauric acid vinyl ester (0.4mol/L) was added tothe system, and the reaction time was4h. Then,the other18kinds of different monoesters were synthesized under the similiar conditions. Finally,19different sugar monoesters involved6monosaccharide monoesters,10kinds of disaccharide monoesters and3types of trisaccharide monoesters were synthesized and purified.
     Afterwards, the antimicrobial activities and surface-active properties including surface tension, critical micelle concentration (CMC), foamability, foaming stability, oil-water emulsifying ability and emulsion stability of sugar fatty acid monoesters were tested and analyzed. It was found that most monoesters showed the strongest antimicrobial activity against S. aureus. However, inhibition rate against E. coli O157:H7and C. albicans were relatively lower. Among the tested monoesters, MGL showed the best antimicrobial activity against the three tested microbes, and the minimum inhibitory concentrations (MICs) for them were all188μg/mL, and the raffinose monoesters exhibited no antimicrobial activity against the three tested cultures. The antimicrobial activities of diester and triesters were lower than monoesters. The length of fatty acid chain (hydrophobic group) and sugar groups (hydrophilic group) for sugar medium chain fatty acid monoesters both affected the surface properties and antimicrobial activities. According to the results, the MGL possessed the best antimicrobial activity; while disaccharide monoester showed better surface properties, water solubility, taste than GML, and has great potential developing and applying value.
引文
[1]Theinsathid P, Visessanguan W, Kruenate J, et al. Antimicrobial activity of lauric arginate-coated polylactic acid films against Listeria monocytogenes and Salmonella Typhimurium on cooked sliced ham[J]. Journal of Food Science,2012,77(2):142-149.
    [2]Amgalanbaatar A, Shimomura H, Hosoda K, et al. Antibacterial activity of a novel synthetic progesterone species carrying a linoleic acid molecule against Helicobacter pylori and the hormonal effect of its steroid on a murine macrophage-like cell line[J]. The Journal of Steroid Biochemistry and Molecular Biology,2014,140:17-25.
    [3]Sun C Q, O'Connor C J, Roberton A M. Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori[J]. FEMS Immunology & Medical Microbiology,2003,36(1-2):9-17.
    [4]Chang S, Redondo-Solano M, Thippareddi H. Inactivation of Escherichia coli O157:H7 and Salmonella spp. on alfalfa seeds by caprylic acid and monocaprylin[J]. International journal of food microbiology,2010,144(1):141-146.
    [5]Morales A H, Perez M A C, Combes R D, et al. Quantitative structure activity relationship for the computational prediction of nitrocompounds carcinogenicity[J]. Toxicology,2006,220(1):51-62.
    [6]Mahmud R, Tingle M D, Maggs J L, et al. Structural basis for the haemotoxicity of dapsone:the importance of the sulphonyl group [J]. Toxicology,1997,117(1):1-11.
    [7]安丽英,相玉红,张卓勇,等.定量构效关系研究进展及其应用[J].首都师范大学学报:自然科学版,2006,27(3):52-57.
    [8]Bitman J, Wood L, Hamosh M, et al. Comparison of the lipid composition of breast milk from mothers of term and preterm infants[J]. The American Journal of Clinical Nutrition, 1983,38(2):300-312.
    [9]冯凤琴,杜鹃,王小刘.食品防腐乳化剂月桂酸单甘油酯及其在食品中的应用[J].中国食品添加剂,2009(1):173-177.
    [10]Kabara J J, Swieczkowski D M, Conley A J, et al. Fatty acids and derivatives as antimicrobial agents[J]. Antimicrobial Agents and Chemotherapy,1972,2(1):23-28.
    [11]Kabara J J, McKillip W J, Sedor E A. Aminimides Ⅰ:Antimicrobial effect of some long chain fatty acid derivatives[J]. Journal of the American Oil Chemists Society,1975,52(8): 316-317.
    [12]Kabara J J, Haitsma G V. Aminimides Ⅱ:Antimicrobial effect of short chain fatty acid derivatives[J]. Journal of the American Oil Chemists Society,1975,52(11):444-447.
    [13]Kabara J J. Aminimides Ⅲ:Antimicrobial effect of various hexadecyl and quaternary derivatives[J]. Journal of the American Oil Chemists Society,1977,54(5):202-206.
    [14]Nair M K M, Vasudevan P, Hoagland T, et al. Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in milk by caprylic acid and monocaprylin[J]. Food Microbiology,2004,21(5):611-616.
    [15]Rihakova Z, Plockova M, Filip V, et al. Antifungal activity of lauric acid derivatives against Aspergillus niger[J]. European Food Research and Technology,2001,213(6): 488-490.
    [16]Bergsson G, Arnfinnsson J, Steingrimsson O, et al. In vitro killing of Candida albicans by fatty acids and monoglycerides[J]. Antimicrobial Agents and Chemotherapy,2001, 45(11):3209-3212.
    [17]Knapp H R, Melly M A. Bactericidal effects of polyunsaturated fatty acids[J]. Journal of Infectious Diseases,1986,154(1):84-94.
    [18]Farrington M, Brenwald N, Haines D, et al. Resistance to desiccation and skin fatty acids in outbreak strains of methicillin-resistant Staphylococcus aureus[J]. Journal of Medical Microbiology,1992,36(1):56-60.
    [19]Hazell S L, Graham D Y. Unsaturated fatty acids and viability of Helicobacter (Campylobacter) pylori[J]. Journal of Clinical Microbiology,1990,28(5):1060-1061.
    [20]Seidel V, Taylor P W. In vitro activity of extracts and constituents of Pelagonium against rapidly growing mycobacteria[J]. International Journal of Antimicrobial Agents,2004, 23(6):613-619.
    [21]Li Q, Estes J D, Schlievert P M, et al. Glycerol monolaurate prevents mucosal SIV transmission[J]. Nature,2009,458(7241):1034-1038.
    [22]Zhang H., Zhang L., Peng L.J., et al. Quantitative structure-activity relationships of antimicrobial fatty and derivatives against Staphylococcus aureus[J]. Journal of Zhejiang University-Science B,2012,13(2):83-93.
    [23]Kelsey J A, Bayles K W, Shafii B, et al. Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus[J]. Lipids,2006,41(10):951-961.
    [24]Skrivanova E, Marounek M, Dlouha G, Kanka J. Susceptibility of Clostridium perfringens to C2-C18 fatty acids. Letters in Applied Microbiology,2005,41,77-81.
    [25]张希,杨明,宋飞,等.脂肪酸及其衍生物的抑菌活性[J].浙江大学学报.2013,39(2):155-160.
    [26]蔡云升.新型冰淇淋乳化剂—三聚甘油单硬脂酸酯[J].食品工业,1998,1:8.
    [27]Carnielli V P, Luijendijk I H T, Van Goudoever J B, et al. Structural position and amount of palmitic acid in infant formulas:effects on fat, fatty acid, and mineral balance[J]. Journal of Pediatric Gastroenterology and Nutrition,1996,23(5):553-560.
    [28]Jean C M, Philippe B. Triayclglycerol structure of human colostrum and mature milk [J]. American Oil Chemists Society,1993,28(7):637-643.
    [29]Sangnark A, Noomhorm A. Effect of dietary fiber from sugarcane bagasse and sucrose ester on dough and bread properties [J]. LWT-Food Science and Technology,2004,37(7): 697-704.
    [30]Mansour M, Milliere J B. An inhibitory synergistic effect of a nisin-monolaurin combination on Bacillus sp. vegetative cells in milk[J]. Food Microbiology,2001,18(1): 87-94.
    [31]McLay J C, Kennedy M J, O'Rourke A L, et al. Inhibition of bacterial foodborne pathogens by the lactoperoxidase system in combination with monolaurin[J]. International Journal of Food Microbiology,2002,73(1):1-9.
    [32]宋飞,张希,李想,等.单甘油月桂酸酯及其复合保鲜剂对冷鲜肉保鲜效果的研究[J].食品工业科技,2012,33(15):341-344.
    [33]张希,何逸波,杜鹃,等.真空包装年糕保鲜剂研究[J].浙江大学学报(农业与生命科学版),2013,39(2):209-214.
    [34]Blaszyk M, Holley R A. Interaction of monolaurin, eugenol and sodium citrate on growth of common meat spoilage and pathogenic organisms[J]. International Journal of Food Microbiology,1998,39(3):175-183.
    [35]Bal'a M F A, Marshall D L. Testing matrix, inoculum size, and incubation temperature affect monolaurin activity against Listeria monocytogenes [J]. Food Microbiology,1996, 13(6):467-473.
    [36]李更更.非水相酶催化合成脂肪酸酯及其抗菌性的研究[D].江南大学硕士论文.2008.
    [37]Potier P, Bouchu A, Gagnaire J, et al. Proteinase N-catalysed regioselective esterification of sucrose and other mono-and disaccharides[J]. Tetrahedron:Asymmetry,2001,12: 2409-2419.
    [38]Nobmann P, Smith A, Dunne J, et al. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms[J]. International Journal of Food Microbiology,2009,128(3): 440-445.
    [39]Ferrer M, Cruces M A, Bernabe M, et al. Lipase-catalyzed regioselective acylation of sucrose in two-solvent mixture[J]. Biotechnology and Bioengineering,1999,65:10-16.
    [40]Narasimhan B, Kothawade U R, Pharande D S, et al. Syntheses and QSAR studies of sorbic, cinnamic and ricinoleic acid derivatives as potential antibacterial agents[J]. Indian Journal of Chemistry Section B,2003,42(11):2828-2834.
    [41]Singh S, Soni L K, Gupta M K, et al. QSAR studies on benzoylaminobenzoic acid derivatives as inhibitors of β-ketoacyl-acyl carrier protein synthase Ⅲ[J]. European Journal of Medicinal Chemistry,2008,43(5):1071-1080.
    [42]Hsiao C P, Siebert K J. Modeling the inhibitory effects of organic acids on bacteria [J]. International Journal of Food Microbiology,1999,47(3):189-201.
    [43]Nakai S A, Siebert K J. Validation of bacterial growth inhibition models based on molecular properties of organic acids [J]. International Journal of Food Microbiology, 2003,86(3):249-255.
    [44]Nakai S A, Siebert K J. Organic acid inhibition models for Listeria innocua, Listeria ivanovii, Pseudomonas aeruginosa and Oenococcus oeni [J]. Food Microbiology,2004, 21(1):67-72.
    [45]张希,张璐,冯凤琴等.脂肪酸衍生物抑制蜡样芽孢杆菌定量构效关系[J].中国食品学报,in press.
    [46]Chang S W, Shaw J F. Biocatalysis for the production of carbohydrate esters [J]. New Biotechnology,2009,26:109-116.
    [47]Furukawa S, Akiyoshi Y, O'Toole G A, et al. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria [J]. International Journal of Food Microbiology,2010,138:176-180.
    [48]Queneau Y, Chambert S, Besset C, et al. Recent progress in the synthesis of carbohydrate-based amphiphilic materials:the examples of sucrose and isomaltulose [J]. Carbohydrate Research,2008,343:1999-2009.
    [49]Puterka G J, Farone W, Palmer T, et al. Structure-function relationships affecting the insecticidal and miticidal activity of sugar esters [J]. Journal of Economic Entomology, 2003,96:636-644.
    [50]Bromann R, Konig B, Fischer L. Regioselective synthesis of sugar esters without catalyst using alpha-hydroxycarboxylic acids [J]. Synthetic Communications,1999,29:951-957.
    [51]Ferrer M, Cruces M A, Plou F J, et al. Chemical versus enzymatic catalysis for the regioselective synthesis of sucrose esters of fatty acids[M]. José Luis GF, editors. Studies in Surface Science and Catalysis, Elsevier,2000,130:509-514.
    [52]Liu X, Gong L, Xin M, et al. The synthesis of sucrose ester and selection of its catalyst [J]. Journal of Molecular Catalysis A:Chemical,1999,147:37-40.
    [53]Affleck R, Haynes CA, Clark DS. Solvent dielectric effects on protein dynamics [J]. Proceedings of the National Academy of Sciences of the United States America,1992, 89:167-70.
    [54]Affleck R, Xu Z F, Suzawa V, et al. Enzymatic catalysis and dynamics in low water environments [J]. Proceedings of the National Academy of Sciences of the United States America 1992,89:1100-1112.
    [55]Akoh C C, Mutua L M. Synthesis of alkyl glucoside fatty acid esters:effect of reaction parameters and the incorporation of n-3 polyunsaturated fatty acids [J]. Enzyme and Microbial Technology,1994,16:115-119.
    [56]Degn P, Zimmermann W. Optimization of carbohydrate fatty acid ester synthesis in organic media by a lipase from Candida Antarctica [J]. Biotechnology and Bioengineering,2001,74:483-491.
    [57]Oosterom W M, van Rantwijk F, Sheldon R A. Regioselective acylation of disaccharides in t-butyl alcohol catalysed by Candida antartica lipase [J]. Biotechnology and Bioengineering,1996,49:328-333.
    [58]Potier P, Bouchu A, Gagnaire J, et al. Proteinase N-catalysed regioselective esterification of sucrose and other mono-and disaccharides[J]. Tetrahedron:Asymmetry,2001,12(17): 2409-2419.
    [59]Yan Y, Bornscheuer UT, Cao L, et al. et al. Lipase-catalyzed solid-phase synthesis of sugar fatty acid esters:removal of byproducts by azeotropic distillation [J]. Enzyme and Microbial Technology,1999,25:725-728.
    [60]Adnani A, Basri M, Chaibakhsh N, et al. Lipase-catalyzed synthesis of a sugar alcohol-based nonionic surfactant [J]. Asian Journal of Chemistry,2011,23:388-392.
    [61]Pedersen N R, Wimmer R, Matthiesen R, et al. Synthesis of sucrose laurate using a new alkaline protease[J]. Tetrahedron:Asymmetry,2003,14(6):667-673.
    [62]李军生,谭贤勇.脂肪酶催化合成蔗糖-6-月桂酸单酯的研究[J].广西工学院学报,2006,17(1):43-46.
    [63]谭贤勇.非水相酶法合成蔗糖-6-月桂酸单酯[D].广西大学硕士论文.2006.
    [64]Lee S H, Ha S H, Hiep N M, et al. Lipase-catalyzed synthesis of glucose fatty acid ester using ionic liquids mixtures [J]. Journal of Biotechnology,2008,133:486-489.
    [65]Park S, Kazlauskas R J. Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio-and regioselective acylations [J]. The Journal of Organic Chemistry,2001,66:8395-8401.
    [66]Yoshida Y, Kimura Y, Kadota M, et al. Continuous synthesis of alkyl ferulate by immobilized Candida antarctica lipase at high temperature [J]. Biotechnology Letters, 2006,28:1471-1474.
    [67]黄广君,王涛,姚评佳,等.离子液体中酶法合成蔗糖-6-月桂酸单酯的研究[J].广西大学学报:自然科学版,2010,35(3):455-461.
    [68]Habulin M, Sabeder S, Knez Z(ˇ). Enzymatic synthesis of sugar fatty acid esters in organic solvent and in supercritical carbon dioxide and their antimicrobial activity[J]. The Journal of Supercritical Fluids,2008,45(3):338-345.
    [69]刘巧瑜,张晓鸣.麦芽糖单酯和蔗糖单酯的抑菌性研究[J].食品工业科技,2010(7):313-315.
    [70]刘巧瑜.麦芽糖月桂酸单酯的酶法选择性合成[D].江南大学博士论文.2008.
    [71]Thomas L V, Davies E A, Delves-Broughton J, et al. Synergist effect of sucrose fatty acid esters on nisin inhibition of Gram-positive bacteria[J]. Journal of Applied Microbiology, 1998,85(6):1013-1022.
    [72]Tsuchido T, Yokosuka N, Takano M. Isolation and characteristics of a Bacillus subtilis mutant tolerant to the lytic action of sucrose esters of long-chain fatty acids[J]. Journal of Fermentation and Bioengineering,1993,75(3):191-195.
    [73]Neta N A S, Santos J C S, Sancho S O, et al. Enzymatic synthesis of sugar esters and their potential as surface-active stabilizers of coconut milk emulsions[J]. Food Hydrocolloids,2012,27(2):324-331.
    [74]Suwa N, Kubota H, Takahashi K, et al. Studies on quality preservation of sterilized retort drinks during storage:effects of sucrcose fatty-acid esters on spoilage of canned coffee caused by thermophilic spore forming bacteria[J]. Journal of the Japanese Soceity for Food Science and Technology-Nippon Shokuhin Kagaku Kogaku Kaishi,1986,33(1): 44-51.
    [75]Zhao Z, Emulsification and antimicrobial effect of sucrose fatty-acid ester in milk beverage[J]. China Dairy Industry,2007,35(7):60-61.
    [76]王亦芸.蔗糖酯的抗菌作用和抑制油脂败坏的效果[J].食品工业,1995,3:22-25.
    [77]王明伟,潘从道.面包改良剂复合应用的研究[J].粮食与饲料工业,1999,4:37-39.
    [78]夏萍,梁新宇.复配型面包改良乳化剂的研究[J].食品与机械,2000,3:9-10.
    [79]张璐.脂肪酸及其衍生物抑菌活性定量构效关系研究[D].浙江大学硕士论文,2010.
    [80]Frecer V, Ho B, Ding J L. De novo design of potent antimicrobial peptides[J]. Antimicrobial Agents and Chemotherapy,2004,48(9):3349-3357.
    [81]盛春泉,张万年,张珉,等.新型三唑类抗真菌化合物的三维定量构效关系研究[J].化学学报,2005,63(7):617-624.
    [82]林震岩.多变量分析-SPSS的操作与应用[M].北京大学出版社,2007.
    [83]Todeschini R, Consonni V. Handbook of Molecular Descriptors[M]. Weinheim and New York:Wiley-VCH,2000.
    [84]DRAGON使用手册.http://www.talete.mi.it/help/dragon_help/index.html. Talete srl, Milano, Italy.2010.
    [85]章宇.生物黄酮抑制食品中丙烯酰胺形成的机理及其构效关系研究[D].浙江大学博士论文,2008.
    [86]Andrew P, Desbois V J. Antibacterial free fatty acids:activities, mechanisms of action and biotechnological potential[J]. Application Microbiology Biotechnology,2010, 85:1629-1642.
    [87]Huo X, Li J, Gramatica P. Quantitative structure-activity relationship analysis of a novel series of chemicals antagonizing WT and MT AR[J]. Chemometrics and Intelligent Laboratory Systems,2011,107(2):283-289.
    [88]Schuur J H, Selzer P, Gasteiger J. The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity[J]. Journal of Chemical Information and Computer Sciences,1996,36(2):334-344.
    [89]Gasteiger J, Schuur J, Selzer P, et al. Finding the 3D structure of a molecule in its IR spectrum[J]. Fresenius' Journal of Analytical Chemistry,1997,359(1):50-55.
    [90]Liu H, Gramatica P. QSAR study of selective ligands for the thyroid hormone receptor P[J]. Bioorganic & Medicinal Chemistry,2007,15(15):5251-5261.
    [91]Deshpande S, Solomon V R, Katti S B, et al. Topological descriptors in modelling antimalarial activity:N 1-(7-chloro-4-quinolyl)-1,4-bis (3-aminopropyl) piperazine as prototype[J]. Journal of Enzyme inhibition and Medicinal Chemistry,2009,24(1): 94-104.
    [92]Riahi S, Ganjali M R, Pourbasheer E, et al. QSRR study of GC retention indices of essential-oil compounds by multiple linear regression with a genetic algorithm[J]. Chromatographia,2008,67(11-12):917-922.
    [93]Korichi M, Gerbaud V, Talou T, et al. Computer-aided aroma design Ⅱ:Quantitative structure-odour relationship[J]. Chemical Engineering and Processing:Process Intensification,2008,47(11):1912-1925.
    [94]Llewellyn L E. Predictive toxinology:An initial foray using calculated molecular descriptors to describe toxicity using saxitoxins as a model[J]. Toxicon,2007,50(7): 901-913.
    [95]Ferrer M, Soliveri J, Plou F J, et al. Synthesis of sugar esters in solvent mixtures by lipases from Thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties[J]. Enzyme and Microbial Technology,2005,36(4):391-398.
    [96]Haines A H. Relative reactivities of hydroxyl groups in carbohydrates[J]. Advances in Carbohydrate Chemistry and Biochemistry,1976,33:101-109.
    [97]Ferrer M, Cruces M A, Plou F J, et al. A simple procedure for the regioselective synthesis of fatty acid esters of maltose, leucrose, maltotriose and n-dodecyl maltosides[J]. Tetrahedron,2000,56:4053-4061.
    [98]李霞,冯晶,张晓鸣.葡萄糖月桂酸脂的酶法合成与分离测定[J].食品工业科技,2008(2):239-242.
    [99]李霞.有机相脂肪酶催化合成葡萄糖酯的研究[D].江南大学硕士论文,2008.
    [100]张璐.脂肪酸及其衍生物抑菌活性定量构效关系研究[D].浙江大学硕士论文,2010.
    [101]Watanabe T. Sucrose fatty acid esters-past, present and future[J]. Foods and Food Ingredients Journal of Japan,1999,180:18-25.
    [102]Liu Q Y, Zhang X M. Study on antibacteria capacities of maltose and sucrose monoesters [J]. Science and Technology of Food Industry,2010,31(7):313-315.
    [103]Devulapalle KS, Gomez de Segura A, Ferrer M, et al. Effect of carbonhydrate fatty acid esters on Streptococcus sobrinus and glucosyltransferase activity [J]. Carbohydrate Research,2004,339:1029-1034.
    [104]Smith A, Nobmann P, Hennhan G, et al. Synthesis and antimicrobial evaluation of carbohydrate and ploygydrocylated non-carbohydrate fatty acid ester and ether derivatives[J]. Carbohydrate Research,2008,343:2557-2566.
    [105]Kabara J. Inhibition of Staphylococcus aureus in a model agarmeat system by monolaurin: a research note[J]. Journal of Food Safety,1984,6(3):197-201.
    [106]Kanazawa A, Ikeda T, Endo T. A novel approach to mode of action of cationic biocides morphological effect on antibacterial activity[J]. Journal of Applied Microbiology,1995,78(1):55-60.
    [107]Desbois A P, Smith V J. Antibacterial free fatty acids:activities, mechanisms of action and biotechnological potential[J]. Applied Microbiology and Biotechnology,2010,85(6): 1629-1642.
    [108]Tokarskyy O, Marshall D L. Mechanism of synergistic inhibition of Listeria monocytogenes growth by lactic acid, monolaurin, and nisin[J]. Applied and Environmental Microbiology,2008,74(23):7126-7129.
    [109]Hathcox A K, Beuchat L R. Inhibitory effects of sucrose fatty acid esters, alone and in combination with ethylenediaminetetraacetic acid and other organic acids, on viability of Escherichia coli O157:H7[J]. Food Microbiology,1996,13(3):213-225.
    [110]Kato A, Arima K. Inhibitory effect of sucrose ester of lauric acid on the growth of Escherichia coli[J]. Biochemical and Biophysical Research Communications,1971,42(4): 596-601.
    [111]Kato N, Shibasaki I. Comparison of antimicrobial activities of fatty acids and their esters[J]. Journal of Ferment Technology,1975,53:793-801.
    [112]Ezrahi S, Tuval E, Aserin A, et al. The effect of structural variation of alcohols on water solubilization in nonionic microemulsions:2. Branched alcohols as solubilization modifiers:results and interpretation[J]. Journal of Colloid and Interface Science,2005, 291(1):273-281.
    [113]Garti N, Aserin A, Fanun M. Non-ionic sucrose esters microemulsions for food applications. Part 1. Water solubilization[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,164(1):27-38.
    [114]Muller A S, Gagnaire J, Queneau Y, et al. Winsor behaviour of sucrose fatty acid esters: choice of the cosurfactant and effect of the surfactant composition[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,203(1):55-66.
    [115]Tual A, Bourles E, Barey P, et al. Effect of surfactant sucrose ester on physical properties of dairy whipped emulsions in relation to those of O/W interfacial layers[J]. Journal of Colloid and Interface Science,2006,295(2):495-503.
    [116]GB/T11276-2007表面活性剂临界胶束浓度的测定(代替GB/T11276-1989、GB/T11278-1989中华人民共和国国家标准).
    [117]Soultani S, Ognier S, Engasser J M, et al. Comparative study of some surface active properties of fructose esters and commercial sucrose esters[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2003,227(1):35-44.
    [118]Beneventi D, Carre B, Gandini A. Role of surfactant structure on surface and foaming properties[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001, 189(1):65-73.
    [119]Husband F A, Sarney D B, Barnard M J, et al. Comparison of foaming and interfacial properties of pure sucrose monolaurates, dilaurate and commercial preparations[J]. Food Hydrocolloids,1998,12(2):237-244.
    [120]Kelkar D S, Kumar A R, Zinjarde S S. Hydrocarbon emulsification and enhanced crude oil degradation by lauroyl glucose ester[J]. Bioresource Technology,2007,98(7): 1505-1508.
    [121]张晓鸣.感官评定[M].中国轻工业出版社,北京,2006.
    [122]H.斯通,J.L.西特.感官评定实践[M].化学工业出版社,北京,2008.
    [123]赵国玺,朱瑶.表面活性剂作用原理[M].中国轻工业出版社,北京,2003.
    [124]郑忠,胡纪华.表面活性剂的物理化学原理[M].华南理工大学出版社,1995.
    [125]Becerra N, Toro C, Zanocco A L, et al. Characterization of micelles formed by sucrose 6-O-monoesters[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2008,327(1):134-139.
    [126]Seino H, Uchibori T, Nishitani T, et al. Enzymatic synthesis of carbohydrate esters of fatty acid (I) esterification of sucrose, glucose, fructose and sorbitol[J]. Journal of the American Oil Chemists Society,1984,61(11):1761-1765.
    [127]Bazin H G, Polat T, Linhardt R J. Synthesis of sucrose-based surfactants through regioselective sulfonation of acylsucrose and the nucleophilic opening of a sucrose cyclic sulfate[J]. Carbohydrate Research,1998,309(2):189-205.
    [128]Herrington T M, Sahi S S. Phase behavior of some sucrose surfactants with water and n-decane[J]. Journal of the American Oil Chemists Society,1988,65(10):1677-1681.
    [129]陈雪.蔗糖脂肪酸酯的合成与性能[D].江南大学硕士论文,2009.
    [130]王庆辉.蔗糖酯的区域选择性合成,结构分析与物化性能[D].大连理工大学博士论文,2008.
    [131]赵国玺,朱步瑶.表面活性剂作用原理[J].日用化学工业信息,2003(17):16-16.
    [132]Matsumura S, Imai K, Yoshikawa S, et al. Surface activities, biodegradability and antimicrobial properties of n-alkyl glucosides, mannosides and galactosides[J]. Journal of the American Oil Chemists Society,1990,67(12):996-1001.
    [133]Plou F J, Cruces M, Ferrer M, et al. Enzymatic acylation of di-and trisaccharides with fatty acids:choosing the appropriate enzyme, support and solvent[J]. Journal of Biotechnology,2002,96(1):55-66.
    [134]王培义,徐宝财,王军.表面活性剂:合成、性能、应用(第二版)[M].化学工业出版社,2012.
    [135]Herrington T M, Midmore B R, Sahi S S, et al. Microemulsions and Emulsions in Foods [M]. American Chemical Society, Washington, DC,1991, pp.82-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700