甘露糖月桂酸酯的酶法选择性合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酸糖酯(SFAE)是一类非离子型、可消化吸收、可生物可降解、无毒的双亲化合物,作为表面活性剂和乳化剂而被广泛应用于食品、化妆品和医药工业中。SFAE的理化性质与它的组成、取代度和化学结构有着密切的关系。与传统的化学法合成SFAE相比,酶法具有直接利用底物及反应条件温和等优点,但同样无法回避选择性不高的问题。
     本论文主要研究了甘露糖月桂酸酯的脂肪酶(Novozym 435)区域选择性合成和物化性质。通过甘露糖月桂酸酯间歇合成反应过程的研究,揭示了单酯及二酯的反应规律及影响区域选择性控制合成甘露糖月桂酸酯的关键因素。根据这些影响因素,建立了不同反应体系对单酯、二酯分别进行选择性合成,确定了合成甘露糖月桂酸单酯和二酯的工艺参数,研究了甘露糖月桂酸酯的理化性质,包括水溶性、表面性质及Millard反应活性。
     首先,对甘露糖月桂酸酯的分析检测和分离纯化方法进行了研究。确定了甘露糖月桂酸酯的高效液相色谱(HPLC)分析条件:采用Waters公司的sunfire C-18反相柱(4.6×150 mm,2.5μm),流动相采用95 %的甲醇/水(v/v),流速为1.0 ml/min,进样量为5μl。蒸发光散射检测漂移管温度45°C,喷雾管温度36°C,载气为N2,载气压力20 psi,增益为1。甘露糖月桂酸酯采用硅胶层析分离:100×600 mm硅胶层析柱(硅胶60-100目),上样量20 ml,采用梯度洗脱的方法,洗脱剂依次为乙酸乙酯/正己烷(1:1,v/v,4000 ml),乙酸乙酯/正己烷(6:4,v/v,4000 ml),乙酸乙酯/正己烷/甲醇(7:2:1,v/v/v,4000 ml),乙酸乙酯/正己烷/甲醇(4:2:4,v/v/v,3000 ml),2000 ml 100 %甲醇,流速为10 ml/min,按1管/30 min,收集洗出液,并用薄层层析TLC跟踪洗脱产物,将比移值一致的产物合并。再经过制备色谱进一步纯化:采用Waters公司sunfire C-18反相柱(19×150 mm,2.5μm)。流动相为90 %的甲醇水(v/v),流速为8.0 ml/min,进样量为200μl,蒸发光散射检测器检测。纯化的产品经过红外、质谱和核磁共振分析测定,进行结构鉴定与表征。所得产物为6-O-甘露糖月桂酸酯、1,6-di-O-甘露糖月桂酸酯、4,6-di-O-甘露糖月桂酸酯及3,6-di-O-甘露糖月桂酸酯。
     确定了脂肪酶催化间歇合成甘露糖月桂酸单酯和二酯合理的工艺条件,单酯的合成条件:75 mmol/L甘露糖、375 mmol/L月桂酸、15 g/L脂肪酶和10 g/L 3 ?分子筛于5 ml丙酮中50℃振荡水浴反应72 h;二酯的合成条件:75 mmol/L甘露糖、酸糖摩尔比5:1、15 g/L脂肪酶和80 g/L 3 ?分子筛于5 ml丙酮中50℃振荡水浴反应120 h。甘露糖月桂酸单酯和二酯的转化率分别为33 %和21 %。
     构建了循环流化床生物反应器(Circulating fluidized bed bioreactor, CFBBR)系统,对甘露糖月桂酸酯进行连续化生产,以达到对甘露糖月桂酸单酯的选择性合成。选择性合成甘露糖月桂酸二酯的较优条件:月桂酸丙酮溶液(80 mmol/L)饱和溶解甘露糖,进料速度(1.0 ml/min),加酶量(6 g),床层膨胀比(1.6), 50℃反应连续反应7.5天,产物中只有甘露糖月桂酸单酯生成,反应进行前五天,甘露糖月桂酸单酯转化率保持在30 %左右,甘露糖月桂酸单酯的平均产量为59.26 g/(d·L);反应进行至7.5天后转化率下降到25 %。
     建立一种由乙腈和正己烷这两种不互溶的有机相组成的两相反应体系——同时反应萃取体系(Simultaneous Reaction-Extraction system,SRE),以达到对甘露糖月桂酸二酯的选择性合成。选择性合成甘露糖月桂酸二酯的较优条件:以正己烷和乙腈组成SRE体系,相比为1:1,甘露糖的浓度为0.05 mol/L,酸醇摩尔比为4:1,脂肪酶添加量为15 mg/ml,分子筛添加量为60 mg/ml,50℃振荡水浴150 rpm反应72 h。此时甘露糖月桂酸二酯的转化率为51 %,总酯转化率为76 %。
     在25℃时,甘露糖月桂酸单酯在水中的溶解度要明显的高于二酯;甘露糖月桂酸单酯因取代度低于二酯,所以亲水-亲油平衡值(HLB)较高,表现出亲水性更强。通过对甘露糖月桂酸单酯和二酯的临界胶束浓度(CMC)、最大吸附量(Γmax)、表面吸附分子的最小截面积(Amin)、临界堆积参数(CPP)、胶束自由能(ΔGm)的测定和比较,表明甘露糖月桂酸二酯比单酯具有更强的胶团化倾向,更易聚集生成胶团。
     研究了25℃时不同浓度的甘露糖月桂酸酯的泡沫性质和乳化性质。单酯的起泡能力、乳化能力和乳化稳定性都要好于二酯,而泡沫稳定性弱于二酯。根据不同的性质差别,将单酯和二酯进行复配,通过单酯与二酯的相互作用,其配合物的乳化性能和起泡性能有了很大的提高。
     构建了甘露糖/甘露糖月桂酸酯-L-半胱氨酸Millard反应体系,对比了不同处理时间下不同体系的Millard反应活性。通过顶空固相微萃取和GC/MS分析,1,6-di-O-甘露糖月桂酸酯由于半缩醛羟基被月桂酰基酯化,而表现出较低的Millard反应活性。
Saccharide fatty acid esters (SFAEs) are nonionic, digestible, absorbable, biodegradable, and nontoxic amphiphilic derivatives, which have been widely used as surfactants and emulsifiers in food, cosmetic, and pharmaceutical industries. The physicochemical properties of SFAE depends on the fatty acid, the sugar moiety, the degree of substitution, and its chemical structure. Enzyme-catalyzed condensation is superior to the chemical synthesis because of the direct use of unmodified substrates, and moderate reaction conditions. But both of them have low regioselectivities in SFAE synthesis.
     In this study, regioselective synthesis of lauryl mannoses catalyzed by Novozym 435 was achieved and the physicochemical properties of lauryl mannoses were sudied. Based on the batch reactor study, the reaction rules and key factors influencing the mono- and diesters regioselective syntheses were investigated. Different reaction systems were designed and built for the selective synthesis of mono- or dilauryl mannoses, and the optimum reaction parameters for these systems were determined. The physicochemical properties of lauryl mannoses, such as water solubilities, interfacial properties and Millard activities were studied.
     The components of reaction solution were analyzed and separated. The reaction solution was analyzed by HPLC using a Sunfire-C18 column (4.6×250 mm, Waters, USA) eluted with methanol/water (95:5, v/v) at 1 ml/min, and detected by a Waters 2420 evaporative light scattering detector (ELSD). ELSD conditions were optimized at drift-tube temperature 45 oC; sprayer temperature 36 oC; carrier gas pressure 20 psi; and gain 1. The reaction solution was applied to a silica gel column (100 to 200 mesh, 100×600 mm) and then eluted with the mixture of n-hexane/ethyl acetate/methanol by a linear programming. The elution gradients were n-hexane/ethyl acetate (50/50, v/v, 4000 ml), n-hexane/ethyl acetate (40/60, v/v, 3000 ml), n-hexane/ethyl acetate/methanol (20/70/10, v/v, 4000 ml), n-hexane/ethyl acetate/methanol (20/40/40, v/v, 3000 ml) and 100 % methanol (2000 ml). The flow rate of the eluent was 10 ml/min, and the eluent, 1 tube/10 min, was collected and monitored by thin-layer chromatography (TLC). Fractions containing the same product were combined together. The concentrated solution was applied to a preparative HPLC with ELSD and a Sunfire-C18 column (5μm, 19×150 mm, Waters, USA) to purify the products. The methanol/water eluant (90:10, v/v), was used at the flow rate of 8.0 ml/min. The loading amount was 200μl. The purified products were identified by FT-IR, MS, 1H NMR and 13C NMR. And they were 6-O-lauryl mannose (ME), 3,6-di-O-lauryl mannose (D 3,6), 4,6-di-O-lauryl mannose (D 4,6), and 1,6-di-O-lauryl mannose (D 1,6).
     The batch reactor was used to synthsize lauryl mannose. The optimum parameters were achieved by single factor experiments. The optimum parameters for monolauryl mannose were as follow: mannose (75 mmol/L), the molar ratio of lauric acid to mannose 5:1, lipase (15 g/L), and 3 ? molecular sieves (10 g/L) in 5 ml acetone at 50°C for 72 h; the optimum parameters for dilauryl mannoses: mannose (75 mmol/L), the molar ratio of lauric acid to mannose 5:1, lipase (15 g/L), and 3 ? molecular sieves (80 g/L) in 5 ml acetone at 50°C for 120 h. Highest equilibrium conversions were 33 % and 21 % for monoester and diesters, respectively.
     A novel Circulating fluidized bed bioreactor (CFBBR) was employed for continuous and selective synthesis of monlauryl mannoses by lipase-catalyzed condensation of D-mannose and lauric acid. The highest equilibrium conversion of monoesters of 30 % (the average yield of monolauryl mannose was 59.26 g/(d·L)) for first 5 days and 25 % for after 2 days with no diester detected all the time were achieved. And the optimum parameters were as follow: lauric acid (80 mmol/L), saturated mannose, feed rate (1.0 ml/min), lipase (6 g), expansion rate of the bed (1.6) at 50 oC for 7.5 days.
     A novel biphasic system, simultaneous reaction-extraction system (SRE), consisting of two immiscible organic solvents, acetonitrile and n-hexane, was employed for the selective synthesis of dilauryl mannoses by lipase-catalyzed condensation of D-mannose and lauric acid. The highest equilibrium conversion of diesters of 51 % and the total conversion of lauryl mannoses of 76 % were achieved at the n-hexane/acetonitrile ratio of 1:1, the molar ratio of lauric acid to mannose of 4:1, 60 g/L molecular sieves and 5 g/L lipase at 50 oC and 150 rpm for 72 hour in 15 ml SRE system.
     At 25 oC, monolauryl mannose was higher in the solubility and lower in hydrophile-lipophile balance (HLB) value than dilauryl mannnoses. The paremeters, critical micelle concentration (CMC),γCMC, maximal surface excess (Γmax), minimum area per molecule (Amin), critical packing parameter (CPP) and the Gibbs free energy of adsorption (ΔGm) showed that dilauryl mannoses would favor the formation of micelles.
     The foamabilities, foam stabilities, emulsifying activities and emulsion stabilities of different concentrations of lauryl mannoses at 25 oC were compared. Monolauryl mannose was better in foamabilities, emulsifying activities, emulsion stabilities. The foaming property and emulsifying property would be better while mixing monoester and diester together.
     Maillard reaction activities of mannose with L-cysteine and lauryl mannoses with L-cysteine were evaluated by headspace solid phase microextraction (HS-SPME) method combined with GC/MS. 1,6-di-O-lauryl mannose exhibited the lowest maillard reaction activity, compared with 6-O-lauryl mannose, 3,6-di-O-lauryl mannose and 4,6-di-O-lauryl mannose.
引文
1. Sijbesma F. White Biotechnology: Gateway to a More. Sustainable Future[J], EuropaBio. 2003: 5-7
    2. Festel G, Oels U, Kreimeyer A, et al. The Chemical and Pharmaceutical Industry in China. Part I[M]. Springer Berlin Heidelberg. 2005: 1-8
    3. Thum O, Oxenb?ll K M. Biocatalysis– A Sustainable Method for theProduction of Emollient Esters[J]. International Journal for Applied Science (English Edition), 2008, 134, 44-47
    4. Maurice L, White Biotechnology: Europe on the Move European Commission[C], FP7 Agriculture, Food and Biotechnology Research, Cairo, Egypt, 10-12 February 2007
    5. Sarney D B, Vulfson E N. Application of enzymes to the synthesis of surfactants[J]. Trends in biotechnology. 1995, 13, 164-172
    6. Scheckermann C, Schlotterbeck A, Schmidt M, et al. Enzymatic monoacylation of fructose by two procedures[J]. Enzyme and Microbial Technology, 1995, 17: 157-162
    7. Ferrer M, Cruces M A, Plou F J, et al. A simple procedure for the regioselective synthesis of fatty acid esters of maltose, leucrose, maltotriose and n-dodecyl maltosides[J]. Tetrahedron, 2000, 56: 4053-4061
    8. Zhang X, Kobayashi T, Watanabe Y, et al. Lipase-catalyzed synthesis of monolauryl maltose through condensation of maltose and lauric acid[J]. Food Science and Technology Research, 2003, 9: 110-113
    9. Hills G. Industrial use of lipases to produce fatty acid esters. European journal of lipid science and technology[J], 2003, 105: 601-607
    10. Ferrer M, Soliveri J, Plou F J, et al. Synthesis of sugar esters in solvent mixtures by lipase from Thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties[J]. Enzyme and Microbial Technology, 2005, 36: 391-398.
    11. Osipow L I, Snell F D, York W C, et al. Fatty acid esters of sucrose. Methods of preparation[J]. Journal of Industrial and Engineering Chemistry, 1956, 48 (9): 1459-1462
    12. Song Z, Li S, Chen X, et al, Synthesis of insecticidal sucrose esters[J]. Forestry Studies in China. 2006, 8(3): 26-29
    13. Kobayashi T, Adachi S. Reaction equilibrium for lipase-catalyzed condensation in organic solvent systems. Biotechnology Letters, 2004,26: 1461-1468
    14. Palocci C, Falconi M, Alcaro S, et al. An approach to address Candida rugosa lipase regioselectivity in the acylation reactions of trytilated glucosides[J]. Journal of Biotechnology. 2007, 128: 908-918
    15. Cauglia F, Canepa P. The enzymatic synthesis of glucosylmyristate as a reaction model for general considerations on‘sugar esters’production[J]. Bioresource Technology, 2008, 99: 4065-4072
    16. Yan Y, Bornscheuer U T, Stadler G,et al. Production of sugar fatty acid esters by enzymatic esterification in a stirred-tank membrane reactor: optimization of parameters by response surface methology[J]. European journal of lipid science and technology ,2001,103:583-587
    17. Zhang X, Adachi S, Watanabe Y, et al. Prediction of the equilibrium conversion for the synthesis of acyl hexose through lipase-catalyzed condensation in water-miscible solvent in the presence of molecular sieve[J]. Biotechnology Progress, 2003, 19: 293-297
    18. Adachi S, Nagae K, Matsuno R. Lipase-catalyzed condensation of erythritol and medium-chain fatty acids in acetonitrile with low water content[J]. Journal of Molecular Catalysis B: Enzymatic, 1999, 6: 21-27
    19. Arcos J A, BernabéM, Otero C. Quantitative enzymatic production of 6-O-acylglucose esters[J]. Biotechnology and Bioengineering, 1998, 57: 505-509
    20. Arcos J A, BernabéM, Otero C. Quantitative enzymatic production of 1,6-diacyl fructofuranoses[J]. Enzyme and Microbial Technology, 1998, 22: 27-35
    21. Liese A, Seelbach K, Wandrey C. Industrial Biotransformations[M], Wiley-VCH Verlag GmbH & Co. KGaA, 2006, 2nd
    22. Watanabe Y, Adachi S, Nakanishi K, et al. Lipase-catalyzed synthesis of unsaturated acyl l-ascorbates and their ability to suppress the autoxidation of polyunsaturated fatty acids[J]. JAOCS, 2001, 78: 823-826
    23. Arcos J A, Hill C G Jr, Otero C. Kinetics of the lipase-catalyzed synthesis of glucose esters in acetone[J]. Biotechnology and Bioengineering, 2001, 73: 104-110
    24. Ferrer M, Cruces MA, BernabéM, et al. Lipase-Catalyzed Regioselective Acylation of Sucrose in Two-Solvent Mixtures[J]. Biotechnology and Bioengineering, 1999, 65: 10-16
    25. Watanabe Y, Miyawaki Y, Adachi S, et al. Synthesis of lauryl saccharides through lipase-catalyzed condensation in microaqueous water-miscible solvents[J]. Journal of Molecular Catalysis B: Enzymatic, 2000, 10: 241-247
    26. Watanabe Y, Miyawaki Y, Adachi S, et al. Equilibrium constant for lipase-catalyzed condensation of mannose and lauric acid in water-miscible organic solvents[J]. Enzyme and Microbial Technology, 2001, 29: 494-498
    27. Chamouleau F, Coulon D, Girardin M, et al. Influence of water activity and water content on sugar esters lipase-catalyzed synthesis in organic media[J]. Journal of Molecular Catalysis B: Enzymatic. 2001, 11: 949-954
    28. Zhou J, Tao G, Liu Q, et al. Equilibrium yields of mono- and dilauryl mannoses through lipase-catalyzed condensation in acetone in the presence of molecular sieve[J]. Biotechnology Letters, 2006, 28: 395-400
    29. Liu Q, Jia C, Jiang P, et al. Lipase-catalyzed selective synthesis of monolauryl maltose using continuous stirred tank reactor[J]. Biotechnology Letters, 2008, 30: 497-502
    30. Husband F A, Sarney D B, Barnard M J, et al. Comparison of foaming and interfacial properties of pure sucrose monolaurates, dilaurate and commercial preparations[J]. Food Hydrocolloids, 1998, 12: 237-244
    31. Garti N, Aserin A, Slavin Y. Competitive adsorption in O/W emulsions stabilized by the new Portulaca oleracea hydrocolloid and nonionic emulsifiers [J]. Food Hydrocolloids, 1999, 13: 139-144
    32.彭立凤,杨国营.脂肪酶催化合成生物表面活性剂[J].日用化学工业, 2000, 2: 35-38
    33.李建成,袁长贵.淀粉糖酯-新型的食品乳化剂[J].中国食品添加剂, 2001, 3: 26-29
    34.陈志刚,宗敏华,娄文勇.非水介质中酶促糖酯合成研究进展[J].分子催化, 2007, 21 (1): 90-95
    35. Tchinda A T, Tane P, Ayafor J F, et al. Stigmastane derivatives and isovaleryl sucrose esters from Vernonia guineensis (Asteraceae) [J]. Phytochemistry, 2003, 63: 841-846
    36. Yun Y S, Satake M, Katsuki S, et al. Phenylpropanoid derivatives from edible canna, Canna edulis [J]. Phytochemistry, 2004, 65: 2167-2171
    37.张百胜,张心田.蔗糖酯的特性及在食品中的应用[J],农产品加工?学刊, 2006, 5, 76-77
    38. Garofalakis G, Murray B S, Samey D. Surface and critical aggregation concentration of pure sugar esters with different sugar head groups [J]. Food Science, 2000, 229: 391-398
    39. Goloub T, Pugh R J. The role of the surfactant head group in the emulsification process: single surfactant systems [J]. Journal of Colloid and Interface Science, 2003, 257: 337-343
    40. Chen J, Kimura Y, Adachi S. Synthesis of linoleoyl disaccharides through lipase-catalyzed condensation and their surface activities [J]. Journal of Bioscience and Bioengineering, 2005, 100: 274-279
    41. Chen J, Kimura Y, Adachi S. Surface activities of monoacyl trehaloses in aqueous solution [J]. LWT, 2007, 40: 412-417
    42. Soultani S, Ognier S, Engasser J M, et al. Comparative study of some surface active properties of fructoseesters and commercial sucrose esters [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 227: 35-44
    43. Tan S N, Fornasier D, Sedev R, et al. The role of surfactant structure on foam behaviour [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 263: 233-238
    44. Vlahovl H, Vlahova P, Linhardt R J. Regioselective synthesis of sucrose monoesters as surfactants [J]. Journal of Carbohydrate Chemistry, 1997, 16 (1): 1-10
    45. Pes M A, Aramaki K, Nakamura N Y, et al. Temperature-insensitive microemulsions in a sucrose monoalkanoate system [J]. Journal of Colloid and Interface Science, 1996, 178: 666-672
    46. Tedajo G M, Seiller M, Prognon P, et al. pH compartmented w/o/w multiple emulsion: a diffusion study [J]. Journal of Controlled Release, 2001, 75: 45-53
    47. Sadtler V M, Guely M, Marchal P, et al. Shear-induced phase transitions in sucrose ester surfactant[J]. Journal of Colloid and Interface Science, 2004, 270: 270-275
    48. Ferrer M, Comelles F, Plou F J, et al. Comparative surface activities of di- and trisaccharide fatty acid esters[J]. Langmuir, 2002, 18: 667-673
    49. Garti N, Clement V, Leser M, et al. Sucrose ester microemulsions[J]. Journal of Molecular Liquids,1999,80:253-296
    50. Kelkar D S, Kumar A R, Zinjarde S S. Hydrocarbon emulsification and enhanced crude oil degradation by lauryl glucose ester [J]. Bioresource Technology, 2007, 98: 1505-1508
    51. Thevenin M A, Grossiord J L, Poelman M C, Sucrose esters/cosurfactant microemulsion systems for transdermal delivery: assessment of bicontinuous structures[J]. International Journal of Pharmaceutics, 1996, 137: 177-186
    52.张晓鸣,周健,刘巧瑜等.有机相脂肪酶催化合成技术在食品及相关领域的应用[J].食品与生物技术学报, 2006, 25 (1): 120-125
    53. Addo K, Slepak M, Akoh C C. Effects of sucrose fatty acid ester and blends on alveograph characteristics of wheat flour doughs [J]. Journal of Cereal Science, 1995, 22: 123-127
    54. Selomulyo V O, Zhou W. Frozen bread dough: Effects of freezing storage and dough improvers. Journal of Cereal Science, 2007, 45 (1): 1-17
    55. Sangnark A, Noomhorm A. Effect of dietary fiber from sugarcane bagasse and sucrose ester on dough and bread properties [J]. LWT, 2004, 37: 697-704
    56. Lemp E, Zanocco A L, Günther G. Structural changes in DODAC unilamellar liposomes by addition ofsucrose esters monitored by using fluorescent techniques[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 229: 63-73
    57. Devulapalle K S, Segura A G, Ferrer M, et al. Effect of carbohydrate fatty acid esters on Streptococcus sobrinus and glucosyltransferase activity [J]. Carbohydrate Research, 2004, 339: 1029-1034
    58. Tsuchido T, Svarachorn A, Soga H, et al. Lysis and aberant morphology of Bacillus subtilis cell caused by surfactants and their relation to autolysin activity[J]. Antimicrobial Agents and Chemotherapy, 1990, 34: 781-785
    59. Tetsuaki T, Naomi Y, Mitsuo T. Isolation and characteristics of a Bacillus subtilis mutant tolerant to the lytic action of sucrose esters of long-chain fatty acids [J] Journal of fermentation and bioengineering, 1993, 75 (3): 191-195
    60. Yokoi Y, Yonemochi E, Terada K. Effects of sugar ester and hydroxypropyl methylcellulose on the physicochemical stability of amorphous cefditoren pivoxil in aqueous suspension [J]. International Journal of Pharmaceutics, 2005, 290: 91-99
    61. Watanabe Y, Katayama S, Matsubara M, et al. Antibacteria carbohydrate monoesters suppressing cell growth of Streptococcus mutants in presence of sucrose [J]. Current Microbiology, 2000, 41: 210-213
    62. Tsuchido T, Yokosula N, Takano M. Isolation and characteristics of a Bacillus subtilis mutant tolerant to the lytic action of sucrose esters of long-chain fatty-acids [J]. Journal of fermentation and bioengineering, 1993, 75:191-195
    63. Hathcox A K, Beuchat L R, Inhibitory effects of sucrose fatty acid esters, alone and in combination with ethylenediamine tetraacetic acid and other organic acids, on viability of Escherichia coli O157:H7, Food Microbiology, 1996, 13: 213-225
    64.白岚.表面活性剂-蔗糖酯[J].农业与技术,2003,1:56-57
    65. Chortyk O T, Pomonis J G, Johnson A W, Synthesis and characterization of insecticidal sucrose esters[J]. Journal of Agricultural and Food Chemistry,1996,44:1551-1557
    66.王素雅,赵利,任顺成.糖酯在食品中的应用及其酶法合成[J].食品工业科技, 2002, 23 (3): 75-76
    67. Ohm J B, Chung O K. Relationships of free lipids with quality factors in hard winter wheat flours [J]. Cereal Chemistry, 2002, 79 (2):274-278
    68.傅小伟,冯凤琴,林美富.复配型糕团品质改良剂的试验研究[J].农业工程学报, 2003, 19 (4): 212-215
    69.黄德民,赵国华,阚建全.乳化剂与小麦淀粉的相互作用探析[J].中国食品添加剂, 2004, (4): 59-63
    70. Muller A S, Gagnaire J, Queneau Y, et al. Winsor behaviour of sucrose fatty acid esters: choice of the cosurfactant and effect of the surfactant composition[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002,203:55-66
    71.陈骏佳,黄玉南,温木盛.甘蔗糖厂的泡沫问题及消泡剂[J].甘蔗糖业, 1996(4): 25-28
    72. Fanun M, Leser M, Aserin A, et al. Sucrose ester microemulsions as microreactors for model Maillard reaction [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 194: 175-187
    73. Akoh C C, Fat Replacers[J], Food Technology, 1998, 52(3):47-53
    74.张艳,章亚东,蒋登高.蔗糖脂肪酸多酯的合成方法及性能研究进展[J].日用化学工业, 2005, 35(5): 302-305
    75. Philippe M. Method for the preparation of D-maltose monoesters with a high 6’-O-ester content and their use in the cosmetic, dental-care, pharmaceuticals and food stuff fields [P]. France, Patent EP0566438, 1993
    76. Paik Y H, Swift G. Polysaccharides as raw materials for the detergent industry[J]. Chemistry and Industry, 1995, 2, 55-59
    77. Nishikawa Y, Fujii K, Kanayama K. Acidic Hair Dyes Containing Sucrose Fatty Acid Esters[P], Japanese, Patent 2,000,128,749, 2000
    78. Iida I. Hair Treatment Aerosol Compositions Containing Sucrose Fatty Acid Esters, Nonionic Surfactants, and Lower Alcohols[P], Japanese, Patent 11,222,417, 1999
    79. Takada H, Takashima Y, Yokotsuka A, et al. Eyelash Cosmetic Composition Containing Sucrose Fatty Acid Esters[P], U.S., Patent 6,024,950, 2000
    80. Tanaka N. Skin Preparations Containing Sucrose Fatty Acid Esters[P], Japanese, Patent 2,001,106,640, 2001
    81. Seto M, Cosmetic Oil Gels Containing Sucrose Fatty Acid Esters and Surfactants, Japanese, Patent 11,349,441. 1999
    82. Sakuyama H. Cosmetic Gels Containing Monoglycerides and Sucrose Fatty Acid Esters for Massage[P], Japanese, Patent 06,072,841, 1994
    83. Gallarate M, Carlotti M E, Trotta M, et al. On the stability of ascorbic acid in emulsified systems for topical and cosmetic use[J]. International Journal of Pharmaceutics, 1999, 188: 233-241
    84. Prevot A B, Pramauro E, Gallarate M, et al. Determination of micelle/water partition coefficients of cosmetic preservatives: Optimisation of the capillary electrophoretic method[J]. Analytica Chimica Acta, 2000, 412: 141-148
    85. Desai N B. Esters of sucrose and glucose as cosmetic materials: as renewable natural resources, carbohydrates are gaining importance as chemical raw materials[J]. Cosmetics and Toiletries. 1990,105, 99-107
    86.刘淑华,陈维钧,高大维.蔗糖酯在护肤化妆品中的应用研究[J]日用化学工业,1996(5):12-14.
    87. Maugard T, Legoy M D.Enzymatic synthesis of derivatives of vitamin A in organic media[J]. Journal of Molecular Catalysis, 2000: 275-280
    88. Bousquet M P, Willemot R M, Monsan P, et al. Enzymatic Synthesis of Unsaturated Fatty Acid Glucoside Esters for Dermo-Cosmetic Applications[J]. Biotechnology And Bioengin-Eering, 1999,63:730-736
    89. Bousquet M P, Willemot R M, Monsan P, et al. Lipase-catalyzedα-butylglucoside lactate synthesis in organic solvent for dermo-cosmetic application[J]. Journal of Biotechnology, 1999:61-69
    90. Okabe S, Suganuma M, Tada Y, et al. Disaccharide esters screened for inhibition of tumor necrosis factor-alpha release are new anti-cancer agents. Japanese Journal of Cancer Research, 1999,90:669-676
    91. Kennedy J F, Kumar H, Panesar P S, et al. Enzyme-catalyzed regioselective synthesis of sugar esters andrelated compounds, Journal of Chemical Technology and Biotechnology, 2006, 81: 866-876
    92.赵瑾,刘蕾,宋金勇等. N-茄呢基胺类糖酯化合物的合成及生理活性[J].有机化学, 2004, 24 (12): 1601-1605
    93.贺媛,符爱云,魏西莲等.电导法研究N-脂肪酰基谷氨酸钠及其复配体系的cmc[J].表面活性剂工业, 1999, 2: 18-20
    94. Soultani S, Engasser J M, Ghoul M. Effect of acyl donor chain length and sugar/acyl donor molar ratio on enzymatic synthesis of fatty acid fructose esters [J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 11: 725-731
    95. Niraula B, King T C, Misran M. Evaluation of rheology property of dodecyl maltoside, sucrose dodecanoate, Brij 35p and SDS stabilized O/W emulsion: effect of head group structure on rheology property and emulsion stability[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 251: 59-74
    96.周如金,聂凌鸿,宁正祥.反丁烯二酸蔗糖甲酯的合成[J],日用化学工业, 2004, 34(3): 160-16
    97.李瑞国,张冬婷.蔗糖酯性能与结构的关系[J],邢台学院学报,2008, 23(2):120-123
    98.周家华,崔英德.表面活性剂HLB值的分析测定与计算[J].精细石油化工, 2001, 2: 11-14
    99.乔建江,徐心茹.非离子型表面活性剂亲水-亲油平衡值的水数表征法[J].石油学报, 1998, 14 (3): 62-65
    100. Drummond C J, Wells D. Nonionic lactose and lactitol based surfactants: comparison of some physico-chemical properties [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 141: 131-142
    101. Sabeder S, Habulin M, Knez Z. Comparison of the esterification of fructose and palmitic acid in organic solvent and in supercritical carbon dioxide[J], Industrial & Engineering Chemistry Research, 2005, 44, 9631-9635
    102. Ducret A, Giroux A, Trani M, et al. Enzymatic Preparation of Biosurfactants from Sugars or Sugar Alcohols and Fatty Acids in Organic Media under Reduced Pressure[J], Biotechnology and Bioengineering, 1995, 48(3): 214-221
    103. Cao L, Fischer A, Bornscheure U T, Schmid R D. Lipase-catalyzed solid phase preparation of sugar fatty acid esters[J]. Biocatalysis and biotransformation,1997,14, 269-283
    104. Plou F J, Cruces M A, Ferrer M, et al. Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent[J], Journal of Biotechnology. 2002, 96, 55-66
    105.李祖义,陈倩.酶法合成表面活性剂.工业微生物, 2001, 31 (2): 42-48
    106.刁虎欣,王践,张心平等.假单胞菌23-1菌株烃代谢产生表面活性剂的研究[J].微生物学通报, 2000, 27 (6): 413-416
    107.方云,吕栓锁,夏咏梅.酶法合成生物表面活性剂[J].无锡轻工大学学报, 2004, 23 (1): 99-105
    108. Watanabe Y, Miyawaki Y, Adachi S, et al. Continuous production of acyl mannoses by immobilized lipase using a packed-bed reactor and their surfactant properties [J]. Biochemical engineering journal, 2001, (8): 213-216
    109.寇秀芬,徐家立.酶法合成糖及糖醇酯[J].微生物学报, 2000, 40 (2): 193-197
    110.李军生,谭贤勇.脂肪酶催化合成蔗糖-6-月桂酸单酯的研究[J].广西工学院学报, 2006, 17 (1): 43-46
    111.涂茂兵,魏东芝,郑洪.酶法合成生物表面活性剂油酸糖苷单酯[J].华东理工大学学报, 2002, 28 (2): 176-179
    112. Coulon D, Girardin M, Ghoul M. Enzymic synthesis of fructose monooleate in a reduced pressure pilot scale reactor using various acyl donors[J]. Process Biochemistry, 1999, 34: 913-918
    113. Sakaki K, Aoyama A, Nakane T, et al. Enzymatic synthesis of sugar esters in organic solvent coupled with pervaporation[J]. Desalination, 2006, 193: 260-266
    114.李光吉,廖启金,宗敏华等.非水相中酶催化葡甘聚糖的酯交换反应[J].华东理工大学学报(自然科学版), 2006, 32 (6): 666-671
    115. Fuentes G L, Ballesteros A R, Verma C S. Specificity in lipases: a computational study of transesterification of sucrose[J], Protein Science, 2004,13:3092-3103
    116.韩萍芳,安振明,欧阳平凯.脂肪酶促糖酯合成研究进展[J].现代化工, 2004, 24增刊(1): 4-7
    117. Yang K, Wang Y J, Lipase-catalyzed cellulose acetylation in aqueous and organic media[J]. Biotechnology Progress, 2003, 19:1664-1671
    118. Potier P, Bouchu A, Descotes G, et al. Proteinase N-catalysed transesterifications in DMSO-water and DMF-water: preparation of sucrose monomethacrylate[J]. Tetrahedron Letters. 2000, 41, 3597-3600
    119. Sabeder S, Habulin M, Knez Z. Lipase-catalyzed synthesis. of fatty acid fructose esters[J]. Journal of Food Engineering, 2006, 77, 880-886
    120. Rantwijk F, Lau R M, Sheldon R A. Biocatalytic transformations in ionic liquids, Trends in Biotechnology,2003,21:131-138
    121. Muzart J. Ionic liquids as solvents for catalyzed oxidations of organic compounds. Advanced Synthesis and Catalysis, 2006, 348, 275-295
    122. Kim M J, Kim H M, Ahn Y, et al. Dynamic kinetic resolution of secondary alcohols by enzyme–metal combinations in ionic liquid. Green Chemistry, 2004, 6:471-474
    123. Rasalkar M S, Potdar M K, Salunkhe M M. Pseudomonas cepacia lipase-catalysed resolution of racemic alcohols in ionic liquid using succinic anhydride: role of triethylamine in enhancement of catalytic activity[J], Journal of Molecular Catalysis B: Enzymatic, 2004, 27, 267-270
    124. Palocci C, Falconi M, Chronopoulou L, et al. Lipase-catalyzed regioselective acylation of tritylglycosides in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2008, 45: 88-93
    125. Foresti M L, Pedernera M, Bucala V, et al. Multiple effects of water on solvent-free enzymatic esterifications[J]. Enzyme and Microbial Technology, 2007, 41: 62-70
    126.许建和,刘军民,许学书等.混合溶剂系统对脂肪酶酯化活性和选择性的影响[J].生物工程学报, 1999, 15 (2): 267-269
    127. Ganske F, Bornscheue U T. Optimization of lipase-catalyzed glucose fatty acid ester synthesis in a two-phase system containing inoic liqiuds and t-BuOH[J]. Journal of Molecular Catalysis B: Enzymatic, 2005, 36 (1): 40-42
    128.毛多斌,王宇,胡林.酶催化选择性酯化在蔗糖酯合成中的应用研究进展[J].日用化学工业, 2006, 36(6): 369-373
    129. Kobayashi T, Adachi S, Nakanishi K, et al. Synthesis of alkyl glycosides throughβ-glucosidase-catalyzed condensation in an aqueous-organic biphasic system and estimation of the equilibrium constants for their formation[J]. Journal of Molecular Catalysis B: Enzymatic, 2000, 11: 13-21
    130. Kobayashi T, Adachi S, Nakanishi K, et al. A continuous process for the synthesis of hexylβ-D-glucoside in aqueous phase using immobilizedβ-glucosidase and extractive product recovery with 1-hexanol[J]. Biotechnology Letters, 2000, 22: 1845-1848
    131. Sandford V, Breuer M, Hauer B, et al. (R)-Phenylacetylcarbinol production in aqueous/organic two-phase systems using partially purified pyruvate decarboxylase from Candida utilis[J]. Biotechnology and Bioengneering, 2005, 91: 190-198
    132. Cull S G, Holbrey J D, Vargas-Mora V, et al. Room temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations[J]. Biotechnology and Bioengneering, 2000, 69: 227-233
    133. Reetz M T, Wiesenhofer W, Francio G, et al. Biocatalysis in ionic liquids: batchwise and continuous flow processes using supercritical carbon dioxide as the mobile phase[J]. Chemical Communications, 2002, 992-993
    134. Piao J, Adachi S. Enzymatic preparation of fatty acid esters of sugar alcohols by condensation in acetone using a packed-bed reactor with immobilized Candida Antarctica lipase [J]. Biocatalysis and biotransformation. 2005, 97: 386-392
    135. Watanabe Y, Kuwabara K, Adachi S, et al. Production of saturated acyl L-ascorbate by immobilized lipase using a continuous stirred tank reactor [J]. Journal of Agricultural and Food Chemistry, 2003, 51: 4628-4632
    136. Kuwabara K, Watanabe Y, Adachi S, et al. Continuous production of acyl L-ascorbates using a packed-bed reactor with immobilized lipase [J]. JAOCS, 2003, 80: 895-899
    137. Piao J, Kobayashi T, Adachi S, et al. Continuous synthesis of lauryl or oleoyl erythritol by a packed-bed reactor with an immobilized lipase [J]. Process Biochemistry, 2004, 39: 681-686
    138. Chen J, Kimura Y, Adachi S. Continuous synthesis of 6-O-linoleoyl hexose using a packed-bed reactor system with immobilized lipase [J]. Biochemical Engineering Journal, 2005, 22: 145-149
    1. Oguntimein G B, Erdmann H, Schmid R D. Lipase catalysed synthesis of sugar ester in organic solvents[J]. Biotechnology Letters, 1993, 15 (2): 175-180
    2. Adachi S, Nagae K, Matsno R. Lipase-catalyzed Condensation of Erythritol and Medium-chain Fatty Acids in Acetonitrile with Low Water Content [J]. Journal of Molecular Catalysis B: Enzymatic, 1999, 6: 21-27
    3. Coulon D, Girardin M, Rovel B, et al. Comparison of direct esterification and transesterification of fructose by Candida antartica lipase [J]. Biotechnology Letters, 1995, 17, 183-186
    4. Ljunger G, Adlercreutz P, Mattiasson B. Lipase catalyzed acylation of glucose [J], Biotechnology Letters, 1994,16, 1167-1172
    5. Arcos J A, BernabéM, Otero C. Quantitative enzymatic production of 6-O-acylglucose esters [J]. Biotechnology and Bioengineer, 1998, 57: 505-509
    6. Arcos J A, BernabéM, Otero C. Quantitative Enzymatic Production of 1,6-Diacyl Fructofuranoses [J], Enzyme and microbial technology, 1998, 22: 27-35
    7. Duret A, Giroux A, Trani M, et al. Enzymatic preparation of biosurfactants from sugars or sugar alcohols and fatty acids in organic media under reduced pressure [J]. Biotechnology and Bioengineer, 1995,48(3):214-221
    8. Cao L, Fischer A, Bornsceuer U T, et al. Schmid, Lipase-catalyzed solid phase synthesis of sugar fatty acid esters [J]. Biocatalysis and Biotransformation. 1997, 14, 269-283.
    9. Watanabe Y, Miyawaki Y, Adachi S, et al. Equilibrium constant for lipase-catalyzed condensation of mannose and lauric acid in water-miscible organic solvents [J], Enzyme and Microbial Technology, 2001, 29, 494-498
    10. Watanabe Y, Miyawaki Y, Adachi S, et al. Synthesis of lauryl saccharides through lipase-catalyzed condensation in microaqueous water-miscible solvents [J]. Journal of Molecular Catalysis B: Enzymatic, 2000,10, 241-247
    11. Ferrer M, Cruces M A, BernabéM, et al. Lipase-catalyzed regioselective acylation of sucrose in two-solvent mixtures [J].Biotechnology and Bioengineering,1999,65:10-16
    12. Degn P, Pedersen L H, Duus J ?, et al. Lipase-catalyzed synthesis of glucose fatty acid esters in tert-butanol [J]. Biotechnology Letters,1999, 21, 275-280
    13. Schlotterbeck A, Lang S, Wray V, et al. Lipase-catalyzed monoacylation of fructose [J]. Biotechnology Letters, 1993, 15, 61-64
    14. Schekermann C, Schlotterbeck A, Schmidt M, et al. Enzymatic monoacylation of fructose by two produre [J]. Enzyme and Microbial Technology, 1995, 17, 157-162
    15. Zhang X, Adachi S, Watanabe Y, et al. Prediction of the equilibrium conversion for the synthesis of acyl hexose through lipase-catalyzed condensation in water-miscible solvent in the presence of molecular sieve [J]. Biotechnology Progress, 2003, 19, 293-297
    16. Zhou J, Tao G, Liu Q, et al. Equilibrium yields of mono- and di-lauryl mannoses through lipase-catalyzed condensation in acetone in the presence of molecular sieves [J], Biotechnology Letters, 2006, 28, 395-400
    17. Simonovska B, Srbinoska M, Vovk I. Analysis of sucrose esters-insecticides from the surface of tobacco plant leaves [J], Journal of Chromatography A. 2006, 1127, 273-277.
    18. Kobayashi T, Adachi S, Matsuno R. Kinetic analysis of the immobilized-lipase- catalyzed synthesis of octanoyl octyl glucoside in acetonitrile [J], Biochemical Engineering Journal, 2003, 16, 323-328.
    19. Chen J, Kimura Y, Adachi S. Synthesis of linoleoyl disaccharides through lipase-catalyzed condensation and their surface activities [J], Journal of Bioscience and Bioengineering, 2005, 100, 274-279
    20. Chen J, Kimura Y, Adachi S. Continuous synthesis of 6-O-linoleoyl hexose using a packed-bed reactor system with immobilized lipase [J], Biochemical Engineering Journal, 2005, 22, 145-149
    21. Iwamoto N, Shima M, Adachi S. Synthesis of xylitoyl fatty acid monoesters by immobilized lipase in subcritical acetone. Biochemical Engineering Journal, 2008, 38(1), 16-21
    22. Husband F A, Sarney D B, Barnard M J, et al. Comparison of foaming and interfacial properties of pure sucrose monolaurates, dilaurate and commercial preparations [J]. Food Hydrocolloids, 1995, (12), 237-244
    23. Kumari S D, Aranzazu G S, Ferrer M. Effect of carbohydrate fatty acid esters on Streptococcus sobrinus and glucosyltransferase activity [J]. Carbohydrate Research, 2004, 339, 1029-1034
    24.杨勤萍,徐国梁,施邑屏,等.高效液相及薄层色谱分析蔗糖脂肪酸酯[J].分析测试学报,1999,18 (1), 28-30
    25.周健,张晓鸣.甘露糖酯的分离纯化及分析方法研究[J].食品科学,2006,27 (6), 69-72
    26. Pérez-Victoria I, Morales J C. Regioselectivity in acylation of oligosaccharides catalyzed by the metalloprotease thermolysin [J]. Tetrahedron, 2006, 62, 2361-2369
    27. Hammond E W. Chromatography for the analysis of lipids. Chapter 3. Thin layer chromatography [M]. Boca Raton: CRC Press. 1993, 21-24
    1. Ferrer M, Cruces M A, BernabéM, et al. Lipase-Catalyzed Regioselective Acylation of Sucrose in Two-Solvent Mixtures[J]. Biotechnology and Bioengineering, 1999, 65: 10-16
    2. Watanabe Y, Miyawaki Y, Adachi S, et al. Equilibrium constant for lipase-catalyzed condensation of mannose and lauric acid in water-miscible organic solvents[J]. Enzyme and Microbial Technology, 2001, 29: 494-498
    3. Ferrer M, Cruces M A, Plou F J, et al. A simple procedure for the regioselective synthesis of fatty acid esters of maltose, leucrose, maltotriose and n-dodecyl maltosides[J]. Tetrahedron, 2000, 56: 4053-4061
    4. Adachi S, Kobayashi T. Synthesis of esters by immobilized-lipase-catyalyzed condensation reaction of sugar and fatty acids in water-miscibe organic solvent [J]. Journal of Bioscience and Bioengineering, 2005, 99 (2): 87-94
    5. Ghanem A. Trends in lipase-catalyzed asymmetric access to enantiomerically pure/enriched compounds [J]. Tetrahedron, 2007, 63 (8): 1721-1754
    6. Katsoura M H, Polydera A C, Katapodis P, et al. Effect of different reaction parameters on the lipase-catalyzed selective acylation of polyhydroxylated natural compounds in ionic liquids[J]. Process Biochemistry, 2007, 42 (9): 1326-1334
    7. Zhang D H, Bai S, Sun Y. Lipase-catalyzed regioselective synthesis of monoester of pyridoxine (vitamin B6) in acetonitrile [J]. Food Chemistry, 2007, 102 (4): 1012-1019
    8. Somashekar B R, Divakar S. Lipase catalyzed synthesis of l-alanyl esters of carbohydrates [J]. Enzyme and Microbial Technology, 2007, 4 (2): 299-309
    9. Pedersen N R, Halling P J, Pedersen L H. Efficient transestericcation of sucrose catalysed by the metalloprotease thermolysin in dimethylsulfoxide[J]. Febs letterts, 2002, 519: 181-184
    10.孙红,陈天圆.高分辨率微库仑法测定烯烃中微量水[J].高师理学, 2004, (2): 46-48
    11. Zhou J, Tao G, Liu Q, et al. Equilibrium yields of mono-and di-lauryl mannoses through lipase-catalyzed condensation in acetone in the presence of molecular sieves [J]. Biotechnology Letters, 2006, 28: 395-400
    12. Ducret A, Trani M, Lortie R. Lipase-catalysed enantioselective esterification of ibufuren in organic solvents under controlled water activity[J]. Enzyme and Microbial Technology.1998, 22: 212-216
    13. Carrea G, Ottolina G, Riva S. Role of solvent in the control of enzyme selectivity in organic media[J]. Trends in Biotechnology, 1995, 13: 63-70
    14. Nakaya H, Miyawaki O, Nakamura K. Determination of log P for pressurized carbon dioxide and its characterization as a medium for enzyme reaction[J]. Enzyme and Microbial Technology. 2001, 28: 176-182
    15. Soumanou M M, Bornscheuer U T. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil[J]. Enzyme and Microbial Technology, 2003, 33: 97-103
    16. Cao L, Fischer A, Bornscheure U T, Schmid R D. Lipase-catalyzed solid phase preparation of sugar fatty acid esters[J]. Biocatalysis and biotransformation,1997,14, 269-283
    17. Arcos J A, BernabéM, Otero C. Different strategies for selective monoacylation of hexoaldoses in acetone[J]. Journal of Surfactants and Detergents, 1998, 3: 345-352
    18.张晓鸣,周健,刘巧瑜,等。有机相脂肪酶催化合成技术在食品及相关领域的应用[J].食品与生物技术学报, 2006, 25 (1): 120-125
    19. Garti N, What can nature offer from an emulsifier point of view: trends and progress [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 1999, 152: 125-146
    20. Arcos J A, BernabéM, Otero C. Quantitative enzymatic production of 6-O-acylglucose esters[J]. Biotechnology and Bioengineering, 1998, 57: 505–509
    21. Chamouleau F, Coulon D, Girardin M, et al. Influence of water activity and water content on sugar esters lipase-catalyzed synthesis in organic media[J]. Journal of Molecular Catalysis B: Enzymatic. 2001, 11: 949-954
    22. Kuwabara K, Watanabe Y, Adachi S, et al. Continuous production of acyl L-ascorbates using a packed-bed reactor with immobilized lipase [J]. JAOCS, 2003, 80: 895-899
    23. Giacometti J, Giacometti F, Milin C, et al. Kinetic characterisation of enzymatic esterification in a solvent system: adsorptive control of water with molecular sieves [J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 11: 921-928
    24. Sonwalkar R D, Chen C C, Ju L K. Roles of silica gel in polycondensation of latic acid in organic solvent [J]. Bioresource Technology, 2003, 87: 69-73
    25. Watanabe Y, Miyawaki Y, Adachi S, et al. Synthesis of lauryl saccharides through lipase-catalyzed condensation in microaqueous water-miscible solvents[J]. Journal of Molecular Catalysis B: Enzymatic, 2000,10:241-247
    26.吴可克,安庆大.酶促反应合成蔗糖棕榈酸酯的研究[J].中国油脂, 2004, 29 (3): 37-39
    27. Fu B, Liu J, Li H, et al. The application of macroporous resins in the separation of licorice flavonoids and glycyrrhizic acid[J]. Joumal of Chromatography A, 2005, 1089: 18-24
    28. Ferreira E C, Nogueira A R A, Souza G B, et al. Effect of drying method and length of storage on tannin and total phenol concentrations in Pigeon pea seeds [J] .Food Chemistry, 2004, 86,17-23
    29.邹光中,任海清.腐植酸与硒的吸附模型研究[J].稀有金属, 2003, 03: 413-415
    30.孙明礼,成荣明,徐学诚,陈奕卫,李伟.碳纳米管对酚类物质的吸附研究[J].东北师大学报自然科学版, 2004, 36(4): 71-74
    1. Adachi S, Kobayashi T. Synthesis of esters by immobilized-lipase-catyalyzed condensation reaction of sugar and fatty acids in water-miscibe organic solvent [J]. Journal of Bioscience and Bioengineering, 2005, 99 (2): 87-94
    2. Zhang X, Kobayashi T, Watanabe Y, et al. Lipase-catalyzed synthesis of monolauryl maltose through condensation of maltose and lauric acid [J]. Food Science and Technology Research, 2003, (9): 110-113
    3. Liu Q, Jia C, Kim J M, et al. Lipase-catalyzed selective synthesis of monolauryl maltose using continuousstirred tank reactor. Biotechnology letters, 2008, 30, 497-502
    4. Watanabe Y, Kuwabara K, Adachi S, et al. Production of saturated acyl L-ascorbate by immobilized lipase using a continuous stirred tank reactor [J]. Journal of Agricultural and Food Chemistry, 2003, 51: 4628-4632
    5. Yan Y, Bornscheuer U T, Stadler G, et al. Production of sugar fatty acid esters by enzymatic esterification in a stirred-tank membrane reactor: optimization of parameters by response surface methodology [J]. JAOCS, 2001, 78: 147-152
    6. Kobayashi T, Adachi S, Nakanishi K, et al. Semi-continuous production of lauryl kojic acid through lipase-catalyzed condensation in acetonitrile [J]. Biochemical Engineering Journal, 2001, 9: 85-89
    7. Kuwabara K, Watanabe Y, Adachi S, et al. Continuous production of acyl L-ascorbates using a packed-bed reactor with immobilized lipase [J]. JAOCS, 2003, 80: 895-899
    8. Adachi S, Nagae K, Matsuno R. Lipase-catalyzed condensation of erythritol and medium-chain fatty acids in acetonitrile with low water content [J]. Journal of Molecular Catalysis B: Enzymatic, 1999, (6): 21-27
    9. Piao J, Kobayashi T, Adachi S, et al. Continuous synthesis of lauryl or oleoyl erythritol by a packed-bed reactor with an immobilized lipase [J]. Process Biochemistry, 2004, 39: 681-686
    10. Bousquet M P, Willemot R M, Monsan P, et al. Enzymatic synthesis ofα-butylglucoside linoleate in a packed bed reactor for future pilot scale-up [J]. Biotechnology Progress, 2000, 16: 589-594
    11. Watanabe Y, Miyawaki Y, Adachi S, et al. Continuous production of acyl mannoses by immobilized lipase using a packed-bed reactor and their surfactant properties [J]. Biochemical Engineering Journal, 2001, (8): 213-216
    12. Chen J, Kimura Y, Adachi S. Continuous synthesis of 6-O-linoleoyl hexose using a packed-bed reactor system with immobilized lipase [J]. Biochemical Engineering Journal, 2005, 22: 145-149
    13. Piao J, Adachi S. Enzymatic preparation of fatty acid esters of sugar alcohols by condensation in acetone using a packed-bed reactor with immobilized Candida antarctica lipase [J]. Biocatalysis and Biotransformation, 2003, 22: 269-274
    14. Pedersen N R, Wimmer R, Matthiesen R, et al. Synthesis of sucrose laurate using a new alkaline protease [J]. Tetrahedron, 2003, 14: 667-673
    15. Kobayashi T, Adachi S, Nakanishi K, et al. A continuous process for the synthesis of hexylβ-D-glucoside in aqueous phase using immobilizedβ-glucosidase and extractive product recovery with 1-hexanol [J]. Biotechnology Letters, 2000, 22: 1845-1848
    16. Ryu S A, Kim C S, Kim H J, et al. Continuous D-tagatose production by immobilized thermostable larabinose isomerase in a packed-bed bioreactor [J]. Biotechnology Progress, 2003, 19:1643-1647
    17. Iwamoto N, Shima M, Adachi S. Synthesis of xylitoyl fatty acid monoesters by immobilized lipase in subcritical acetone [J]. Biochemical Engineering Journal, 2008, 38 (1): 16-21
    18.张濂,许志美。化学反应器分析[M].上海:华东理工大学出版社.2005, 5:179-181
    1. Husband F A, Sarney D B, Barnard M J, et al. Comparison of foaming and interfacial properties of pure sucrose monolaurates,dilaurate and commercial preparations[J]. Food Hydrocolloids, 1998, 12: 237-244
    2. Chamouleau F, Coulon D, Girardin M, et al. Influence of water activity and water content on sugar esters lipase-catalyzed synthesis in organic media[J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 11: 949-954
    3. Zhou J, Tao G, Liu Q, et al. Equilibrium yields of mono- and di-lauryl mannoses through lipase-catalyzed condensation in acetone in the presence of molecular sieve[J]. Biotechnology Letters, 2006, 28: 395-400
    4. Liu Q, Jia C, Jiang P, et al. Lipase-catalyzed selective synthesis of monolauryl maltose using continuous stirred tank reactor[J]. Biotechnology Letters, 2008, 30: 497-502
    5. Arcos J A, Hill C G Jr, Otero C. Kinetics of the lipase-catalyzed synthesis of glucose esters in acetone[J]. Biotechnology and Bioengneering, 2001, 73:104-110
    6. Ferrer M, Cruces M A, BernabéM, et al. Lipase-Catalyzed Regioselective Acylation of Sucrose in Two-Solvent Mixtures[J]. Biotechnology and Bioengneering, 1999, 65: 10-16
    7. Husson E, Humeau C, Blanchard F, et al. Chemo-selectivity of the N, O-enzymatic acylation in organic media and in ionic liquids[J]. Journal of Molecular Catalysis B: Enzymatic, 2008, 55: 110-117
    8. Lee S H, Ha S H, Hiep N M, et al. Lipase-catalyzed synthesis of glucose fatty acid ester using ionic liquids mixtures[J]. Journal of Biotechnology, 2008, 133: 486-489
    9. Palocci C, Falconi M, Chronopoulou L, et al. Lipase-catalyzed regioselective acylation of tritylglycosides in supercritical carbon dioxide[J]. Journal of Supercritical Fluid, 2008, 45: 88-93
    10. Foresti M L, Pedernera M, Bucala V, et al. Multiple effects of water on solvent-free enzymatic esterifications[J]. Enzyme and Microbial Technology. 2007, 41:62-70
    11. Eibes G, Moreira M T, Feijoo G, et al. Operation of a two-phase partitioning bioreactor for the oxidation of anthracene by the enzyme manganese peroxidase[J]. Chemosphere, 2007, 66: 1744-1751
    12. Vandermeer K D, Daugulis A J. Enhanced degradation of a mixture of polycyclic aromatic hydrocarbons by a defined microbial consortium in a two-phase partitioning bioreactor[J]. Biodegradation, 2007, 18: 211-221
    13. Kobayashi T, Adachi S, Nakanishi K, et al. Synthesis of alkyl glycosides throughβ-glucosidase-catalyzed condensation in an aqueous-organic biphasic system and estimation of the equilibrium constants for their formation[J]. Journal of Molecular Catalysis B: Enzymatic, 2000, 11: 13-21
    14. Kobayashi T, Adachi S, Nakanishi K, et al. A continuous process for the synthesis of hexylβ-D-glucoside in aqueous phase using immobilizedβ-glucosidase and extractive product recovery with 1-hexanol[J]. Biotechnology Letters, 2000, 22: 1845-1848
    15. Sandford V, Breuer M, Hauer B, et al. (R)-Phenylacetylcarbinol production in aqueous/organic two-phase systems using partially purified pyruvate decarboxylase from Candida utilis[J]. Biotechnology and Bioengneering, 2005, 91: 190-198
    16. Cull S G, Holbrey J D, Vargas-Mora V, et al. Room temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations[J]. Biotechnology and Bioengneering, 2000, 69: 227-233
    17. Ganske F, Bornscheuer U T. Optimization of lipase-catalyzed glucose fatty acid ester synthesis in a two-phase system containing ionic liquids and t-BuOH[J]. Journal of Molecular Catalysis B: Enzymatic, 2005, 36: 40-42
    18. Reetz M T, Wiesenhofer W, Francio G, et al. Biocatalysis in ionic liquids: batchwise and continuous flow processes using supercritical carbon dioxide as the mobile phase[J]. Chemical Communications, 2002, 992-993
    19.中国冶金百科全书总编辑委员会《有色金属冶金》卷编辑委员会,冶金工业出版社《中国冶金百科全书》编辑部编.中国冶金百科全书?有色金属冶金[M].北京:冶金工业出版社.1999: 176
    20. Ducret A, Trani M, Lortie R. Lipase-catalysed enantioselective esterification of ibufuren in organic solvents under controlled water activity[J]. Enzyme and Microbial Technology. 1998, 22: 212-216
    21. Carrea G, Ottolina G, Riva S. Role of solvent in the control of enzyme selectivity in organic media[J].Trends in Biotechnology, 1995, 13: 63-70
    22. Ferrer M, Cruces M A, Plou F J, et al. A simple procedure for the regioselective synthesis of fatty acid esters of maltose, leucrose, maltotriose and n-dodecyl maltosides[J]. Tetrahedron, 2000, 56: 4053-4061
    1. S?derman O, Johansson I. Polyhydroxyl-based surfactants and their physico-chemical properties and applications[J]. Current opinion in colloid & interface science, 2000, 4(66): 391-401
    2.李祖义,徐国梁,袁长贵,施邑屏.生物表面活性剂催化合成蔗糖酯及其应用[J].上海化工, 1999, 24 (21): 6-8
    3. Greenwald H L, Brown G L, Fineman M N. Determination of the Hydrophile-Lipophile Character of surface active agents and oils by a water titration [J]. Analytical Chemistry, 1976, (7): 1693-1696
    4.路亦景.水数法测定蔗糖酯的HLB值[J].表面活性剂工业, 1989, (1): 51-55
    5.乔建江,徐心茹.非离子型表面活性剂亲水-亲油平衡值的水数表征法[J].石油学报, 1998, 14 (3): 62-65
    6. Chen J, Kimura Y, Adachi S. Synthesis of linoleoyl disaccharides through lipase-catalyzed condensation and their surface activities [J]. Journal of Bioscience and Bioengineering, 2005, 100: 274-279
    7. Chen J, Kimura Y, Adachi S. Surface activities of monoacyl trehaloses in aqueous solution [J]. LWT, 2007, 40: 412-417
    8. Soultani S, Ognier S, Engasser J M, et al. Comparative study of some surface active properties of fructoseesters and commercial sucrose esters [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 227: 35-44
    9. Watanabe Y, Miyawaki Y, Adachi S, et al. Synthesis of lauryl saccharides through lipase-catalyzed condensation in microaqueous water-miscible solvents [J] Journal of Molecular Catalysis B: Enzymatic, 2000, (10): 241-247
    10. Watanabe Y.Continuous production of acyl mannoses by immobilized lipase using a packed-bed reactorand their surfactant properties[J]. Biochemical Engineering Journal, 2001, 8: 213-216
    11. Piao J, Kishi S, Adachi S. Surface tensions of aqueous solutions of 1-O-monoacyl sugar alcohols[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 277:15-19
    12. S?derberg I, Drummond C J, Furlong D N, et al. Non-ionic sugar-based surfactants: Self assembly and air/water interfacial activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995(102): 91–97.
    13. Puski G. Modification of functional properties of soy proteins of soy proteins by proteolytic enzyme treatment[J]. Cereal Chemistry, 1975,52:655-664
    14. Husband F A, Sarney D B, Barnard M J, et al. Comparison of foaming and interfacial properties of pure sucrose monolaurates, dilaurate and commercial preparations [J]. Food Hydrocolloids, 1995, 12: 237-244
    15.刘德荣.表面活性剂的合成与应用[M].成都:四川科学技术出版社,1987.221-226
    16. Okabe S, Suganuma M, Tada Y, et al. Disaccharide esters screened for inhibition of tumor necrosis factors-a release are new anti-cancer agents[J]. Japanese journal of cancer research, 1999, 90(6):669-676.
    17. Sadtler V M, Guely M, Marchal P, et al. Shear-induced phase transitions in sucrose ester surfactant [J]. Journal of colloid and interface science, 2004, 270(2): 270-275
    18.周家华,崔英德.表面活性剂HLB值的分析测定与计算[J].精细石油化工, 2001, 2: 11-14
    19. Garofalakis G, Murray B S, Sarney D B. Surface and critical aggregation concentration of pure sugar esters with different sugar head groups [J]. Journal of Colloid and Interface Science, 2000, 229: 391-398
    20. Drummond C J, Wells D. Nonionic lactose and lactitol based surfactants: comparison of some physico-chemical properties [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 141: 131-142
    21. Ferrer M, Comelles F, Plou F J, et al., Comparative surface activities of di- and trisaccharide fatty acid esters [J], Langmuir, 2002, 18: 667-673
    22. Ducret A, Giroux A, Trani M, et al. Characterization of enzymatically prepared biosurfactants [J]. JAOCS, 1996, 73: 109-113
    23.李延科.糖基表面活性剂蔗糖酯的研究[D].辽宁:大连理工大学应用化学系,2004
    24.徐辉碧,杨祥良.纳米医药[M],北京:清华大学出版社, 2004, 87-88
    25.金勇,董阳,魏德卿.高分子表面活性剂的合成[J],化学进展, 2005(01): 153-158
    26.赵国玺.表面活性剂物理化学[M] ,北京:北京大学出版社,1991, 245-261
    27. Kim J S, Lee Y S. Effect of reaction pH on enolization and racemization reactions of glucose and fructose on heating with amino acid enantiomers and formation of melanoidins as result of the maillard reaction[J], Food Chemistry, 2008,108: 582-592
    28. Jalbout A F, Shipar M A, Navarro J L. Density functional computational studies on ribose and glycine maillard reaction: Formation of the Amadori rearrangement products in aqueous solution[J]. Food Chemistry, 2007, 103: 919-926
    29. Lertittikul W, Benjakul S, Tanaka M. Characteristics and antioxidative activity of maillard reaction products from a porcine plasma protein–glucose model system as influenced by pH [J]. Food Chemistry,2007, 100: 669-677
    30. Nobuyasu M, Tadashi A, Chihiro S, et al. Screening system for the maillard reaction inhibitor from natural product extracts[J], Journal of health science, 2002, 48: 520-526

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700