低温和超低温预冷下大米淀粉凝沉特性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大米淀粉凝沉是制约大米类食品行业发展的瓶颈问题。大米淀粉凝沉在很大程度上决定了大米类食品的凝沉性质和品质劣变。温度是影响淀粉凝沉的主要因素,人们对常温和普通低温下大米淀粉凝沉性质已经有较多的认识,但在低温和超低温预冷下大米淀粉凝沉性质方面研究较少,低温和超低温预冷处理对大米淀粉及其制品凝沉抑制作用尚不清楚。因此,本论文从以下几方面展开研究:(1)大米淀粉及米粉物理化学性质及其相关性,(2)低温和超低温预冷下大米支链淀粉、淀粉和米粉凝沉性质及其凝沉机理,(3)低温和超低温预冷对米饭品质及其凝沉性质的影响。本文研究目的是为工业化生产高品质即食米制品提供理论基础。
     根据大米中直链淀粉的含量将大米分为中直链淀粉含量大米(SM)、低直链淀粉含量大米(DH)、极低直链淀粉含量大米(TML)和糯性大米(SN2)。本文系统地研究了四类大米淀粉及米粉物化性质,X衍射表明大米淀粉及大米粉特征图谱为A型,2θ在15°、17°、18°和23°有较强衍射峰;扫描电镜(SEM)证实了大米淀粉及大米粉颗粒形状为多角形,粒径为2~8μm。大米淀粉及米粉的膨润性、溶解性、浊度、糊化性质、质构及凝沉性质与大米直链淀粉/支链淀粉比例有关,直/支链比越高,大米淀粉及米粉浊度、糊化温度、硬度及糊化焓变越大,膨润性、溶解度及黏性越小。
     通过差示扫描量热仪(DSC)对低温(-20、-30和-60℃)和超低温(-100℃)预冷下大米支链淀粉凝沉性质研究发现,预冷后的新鲜支链淀粉没有明显凝沉现象发生。低温和超低温预冷处理大米支链淀粉,在4℃冷藏下1 d内迅速凝沉,1~11 d凝沉焓变持续增长,11 d大米支链淀粉凝沉焓变值分别达到最大11.0 J/g(SM),7.0 J/g(DH)和10.0 J/g(TML),14~21 d支链淀粉凝沉焓变基本不变,21 d大米支链淀粉完成凝沉过程。大米支链淀粉冻藏1~5月凝沉没有发生。低温(-20和-30℃)预冷下大米淀粉有轻微凝沉,低温(-60℃)和超低温(-100℃)预冷下大米淀粉DSC扫描曲线上没有凝沉现象发生。大米淀粉冷藏4℃初期淀粉凝沉发生,1~7 d淀粉迅速凝沉,7~14 d淀粉凝沉焓变缓慢上升,21 d大米淀粉凝沉过程完成。低温和超低温(-100℃)预冷-冻藏方法能有效抑制大米淀粉凝沉。大米直链淀粉-脂类复合物在冷藏或冻藏期间性质稳定,热特性参数没有变化。
     采用DSC和质构仪对低温和超低温预下大米粉凝沉性质研究发现,低温(-60℃)和超低温(-100℃)快速预冷-冻藏可以抑制大米粉凝沉。DSC扫描发现大米粉冷藏初期重结晶现象开始发生,1~7 d大米粉迅速重结晶,7~14 d大米粉凝沉焓变缓慢上升,21 d大米粉凝沉过程完成。大米粉糊硬度和黏性在0~7 d变化最大,14~21 d基本不变。超低温(-100℃)预冷处理的米粉冻藏1~5月期间没有凝沉现象发生,冻藏期间米粉质构性质变化不大。大米粉中直链淀粉-脂类复合物的在冷藏或冻藏期间性质稳定。
     通过对大米支链淀粉、淀粉及米粉动力学研究发现,大米支链淀粉、淀粉及米粉凝沉动力学遵从Avrami方程,凝沉成核方式分为三种类型:SM支链淀粉、淀粉及米粉为瞬间成核;SN2支链淀粉、淀粉及米粉成核方式为自发成核;DH和TML支链淀粉、淀粉及米粉成核方式具有自发和瞬间成核共同作用,成核方式随预冷速率增加而从瞬间成核向自发成核转变。淀粉及米粉凝沉主要表现为支链淀粉凝沉,直链淀粉对支链淀粉凝沉起协同作用,淀粉和米粉凝沉是直链淀粉和支链淀粉凝沉共同作用的结果。
     采用DSC和质构仪研究米饭品质影响因素,结果表明大米淀粉凝沉导致了米饭硬度上升和黏性下降,高直链淀粉含量大米米饭硬度高、黏性低,快速预冷可以抑制米饭短期的凝沉和品质劣变。冷冻速率和贮藏温度对淀粉凝沉和米饭质构性质有重要影响,米饭硬度和黏性与冷冻速率和淀粉凝沉成相关性,快速冷冻(1.45℃/min)的米饭硬度值低、黏性高,缓慢冷冻(0.09℃/min)处理过程加剧了米饭的凝沉。快速冷冻米饭的优良品质会在冷藏过程中逐渐失去,而快速冷冻结合冻藏处理可以有效抑制米饭凝沉和米饭品质劣变。因此,快速冷冻-冻藏是米饭品质最佳处理条件,这些发现有助于工业化生产加工出高品质、长货架期的即食米饭。
Rice starch retrogradation restrict the development of food industry. Rice starch is the major components of rice foods, the retrogradation and textural properties of rice foods are depended upon rice starch retrogradation. Up to now, a lot of works were focused on rice starch retrogradation at low and room temperature, however, the rertogradaion of rice starch precooling with low and ultra-low temperatures has not been studied in detail. Therefore, in this paper, these projects will be investigated: (1) Physicochemical properties of rice starch and rice flour, (2) The retrogradation properties and retrogradation mechanism of rice amylopectin, rice starch and flour by low and ultra-low temperature precooling, (3) The effects of low and ultralow temperature precooling on the quality and retrogradation properties of cooked rice. The work in this dissertation is devoted to help the food industry to produce high quality instant ready meal.
     We investigated the physicochemical properties and correlation of starch and flour of intermediate amylose content rice (SM), low amylose content rice (DH), very low amylose content rice (TML) and waxy rice (SN2). The results of SEM indicated that the granule of rice starch and flour was polygonal shape, the size was 2~8μm. The X-ray results indicated that the rice starch and flour was A pattern, the strong peak of 2θwas 15°, 17°, 18°and 23°. The results of swelling power, solubility, turbidity, pasting properties, gel textural properties and retrogradation enthalpy were correlated to the ratio of rice amylose to amylopectin.The higher the ratio value, the higher of the turbidity, pasting temperature, hardness and gelatinization enthalpy, however, the lower of swelling power and solubility. The retrogradation properties of rice amylopectin precooling with low and ultra-low temperatures were investigated by Differential Scanning Calorimeter (DSC).
     Rapid cooling can retard amylopectin retrogradation effectively, and the rice amylopectin didn’t retrograde after precooling immediately. However, the rice amylopectin retrograded rapidly within 1 day, the retrogradation enthalpy continuely increased from 1~11 days, and the rice amylopectin of SM, DH and TML reached the highest retrogradation enthalpy values of 11.0 J/g (SM), 7.0 J/g (DH) and 10.0 J/g (TML) in the 11th day, respectively. From 14 to 21 days, the retrogradation enthalpy of rice amylopectin changed slowly during chill storage.
     The retrogradation process of waxy rice (SN2) amylopectin was very different with SM, DH, and TML. The SN2 amylopectin retrograded slowly in 0~11 days, increased rapidly from 11 to 14 days, and reached the highest retrogradation enthalpy value of 9.0 J/g in the 21th day of chill storage. Furher study indicated that low and ultralow temperature precooling and frozen effectively retrard amylopectin retrogradation, there was no amylopectin retrogradation when amylopectin frozen for 1~5 months. The retrogradation properties of rice starch precooling with low and ultralow temperatures were investigated by DSC and texture analyzer (TA). Rice starch retrograded rapidly from 1 to 7 days, increased slowly from 7 to 14 days, and the retrogradation process finished within 21 days during chill storage. Low and ultra-low temperature precooling and frozen effectively retrard rice starch retrogradation, there was no starch retrogradation when frozen for 1~5 months. The textural properties of rice starch increased rapidly from 1 to 7 days, increased slow from 7 to 21 days, and the textural properties changed slowly during frozen storage. The amylose-lipid complex was not changed during chill or frozen storage, and the properties of rice amylose-lipid complex were related to amylose variety and molecule structure.
     The retrogradation properties of rice flour precooling with low and ultra-low temperatures were investigated by DSC and TA. The rice flour retrograded rapidly from 1 to 7 days, retrogradation enthalpy increased slowly from 7 to 14 days, and the retrogradation process was finished within 21 days during chill storage. The hardness and adhesiveness of rice flour paste changed rapidly from 0 to 7 days, changed slowly from 7 to 14 days, and changed slowly from 14 to 21 days. The resuts indicated that low and ultra-low temperature precooling combined with frozen method can effectively retard rice flour retrogradation, there was no starch retrogradation when frozen for 1~5 months. The amylose-lipid complex in rice flour was not changed during chill or frozen storage.
     Rcie amyloepctin, rice starch and flour retrogradation kinetics were accorded with Avrami equation. The SM amylopectin, rice starch and flour retrogradation were instant crystallization. The SN2 amylopectin, rice starch and flour retrogradation were spontaneous crystallization process. The DH and TML amlopectin, rice starch and flour retrogradation were both instant crystallization and spontaneous crystallization, which were depended upon freezing or cooling rate. The retrogradation of rice starch and flour mainly caused by amylopetin and amylose retrogradation, the two process contributed to rice starch and flour retrogradation.
     The effects of low and ultra-low temperature precooling on the eating quality and retrogradation properties of cooked rice were investigated. Rice starch retrogradation contributed to hardness increase and adhesiveness decrease of cooked rice, higher amylose content of cooked rice had higher hardness and low adhesiveness value. The textural properties of cooked rice were related to starch retrogradation and cooling rate. Rapid precooling could effectively retard cooked rice staling and textural properties loss during a short time chill storage. Freezing rate and storage temperature showed significantly effects on retrogradation and textrual properties of cooked rice, the textural properties of cooked rice were positively related to freezing rate and starch retrogradation. Rapid freezing (1.45℃/min) can produce a high quality of cooked rice, i.e. lower hardness and higher adhesiveness value, however, slow freezing increased the staling of cooked rice. The advantages (lower hardness and higher adhesiveness, less starch retrogradaton) of cooked rice gained by rapid freezing, were lost quickly within 3 days of storage at 4℃. However, rapid freezing combined with -18℃frozen storage can effectively retard starch retrogradation and maintain the textural properties of cooked rice for at least 7 months. Therefore, high quality cooked rice can be produced by combined rapid freezing with frozen storage. The work in this dissertation is devoted to help the food industry to produce high quality instant cooked rice.
引文
1李兆丰,顾正彪,洪雁.稻米淀粉的研究进展.食品科学. 2004, 25 (12): 184~187
    2顾正彪,李兆丰,洪雁等.大米淀粉的结构、组成与应用.中国粮油学报. 2004, 19 (2): 21~26
    3 I. Park. A Study of Molecular Structure and Functional Properties of Rice Starhers. University of California Doctoral paper. 2005: 1~29
    4谢新华.稻米淀粉物性研究.西北农林科技大学博士论文. 2007: 1~3
    5李玥.大米淀粉的制备方法及物理化学特性研究.江南大学博士论文. 2008: 1~7
    6顾尧臣.大米食品的制作(一).粮食与饲料工业. 1986, 04: 1~18
    7于泓鹏,高群玉,曾庆孝.大米淀粉制备及其综合利用研究进展.粮食与油脂. 2004, (4): 14~16
    8王领军,王立,姚惠源等.大米淀粉的性质、生产及应用.粮食与饲料工业. 2004, (11): 22~25
    9 G. E. Vandeputte, J. A. Delcour. From Sucrose to Starch Granule to Starch Physical Behaviour: A Focus on Rice Starch. Carbohydrate Polymers. 2004, 58: 245~266
    10胡磊,胡保民,王沛政等.超低温对棉花花粉活力的影响.新疆农业科学. 2009, 46 (5): 941
    11丁文平,丁霄霖.大米直链淀粉的研究进展.粮食与饲料工业. 2002, (1): 38~40
    12卢敏,殷涌光.稻米直链淀粉研究进展.食品科技. 2005, (8): 5~7
    13熊善柏,赵思明,张声华.稻米淀粉的理化特性研究Ⅱ:稻米直链淀粉和支链淀粉的理化特性.中国粮油学报. 2003, 18 (2): 5~8
    14李玥,钟芳,麻建国.大米直链淀粉分子量分布及分子旋转半径的研究.农业工程学报. 2007, 23 (11): 36~40
    15 M. Seguchi, M. Hayashi, Y. Suzuki, et al. Role of Amylose in the Maintenance of the Configuration of Rice Starch Granules. Starch/St?rke. 2003, 55: 524~528
    16 P. J. Jenkins, A. M. Donald. The Influence of Amylose on Starch Granule Structure. Int. J. Biol. Marcromol. 1995, 17 (6): 315~319
    17 N. W. H. Cheetham, L. T. Sidney. Amylose Conformational Transitions in Binary DMSO Mater Mixtures. Starch/St?rke. 1997, 49: 407~414
    18 S. J. M. Grane, D. E. Mainwaring, H. J. Cornell. The Role of Hydrogen Bonding in Amylose Gelation. Starch/St?rke. 2004, 56: 122~131
    19赵思明.稻米淀粉特性与老化机理研究.华中农业大学博士论文. 2001: 1~5,64~65
    20 M. E. Heineck, M. B. Cardoso, F. C. Giacomelli, et al. Evidences of Amylose Coil-to-helix Transition in Stored Dilute Solutions. Polymer. 2008, 49: 4386~4392
    21 G. Richardson, S. Kidman, M. Langton, et al. Differences in Amylose Aggregation and Starch Gel Formation with Emulsifiers. Carbohydrate Polymers. 2004, 58: 7~13
    22 C. Rondeau-Mouro, P. L. Bail, A. Buléon. Structural Investigation of Amylose Complexes with Small Ligands: Inter- or Intra-helical Associations?. International Journal of Biological Macromolecules. 2004, 34: 251~257
    23 J. Kawada, R. H. Marchessault. Solid State NMR and X-ray Studies on Amylose Complexes with Small Organic Molecules. Starch/St?rke. 2004, 56: 13~19
    24 C. E. Snape, W. R. Morrison, M. M. Maroto-Valer, et al. Solid State 13C NMR Investigation of Lipid Ligands in V-amylose Inclusion Complexes. Carbohydrate Polymers. 1998, 36: 225~237
    25 O. Nimz, K. Gessler, I. Us?n, et al. Inclusion Complexes of V-amylose with Undecanoic Acid and Dodecanol at Atomic Resolution: X-ray Structures with Cycloamylose Containing 26 D-glucoses (cyclohexaicosaose) as Host. Carbohydrate Research. 2004, 339: 1427~1437
    26 S. H. D. Hulleman, W. Herbert, H. Chanzy. Single crystals of V amylose Complexed with Glycerol. International Journal of Biological Macromoleeules. 1996, 18:115~122
    27 G. Wulff, G. Avgenaki, M. S. P. Guzmann. Molecular Encapsulation of Flavours as Helical Inclusion Complexes of Amylose. Journal of Cereal Science. 2005, 41: 239~249
    28 J.-L. Putaux, M. B. Cardoso, D. Dupyre, et al. Single Crystals of V-Amylose Inclusion Complexes. Macromol. Symp. 2008, 273: 1~8
    29 Y. Dumoulin, S. Alex, P. Szabo, et al. Cross-linked Amylose as Matrix forDrug Controlled Release X-ray and FT-IR Structural Analysis. Carbohydrate Polymers. 1998, 37: 361~370
    30 X. C. Yu, C. Houtman, R. H. Atalla. The Complex of Amylose and Iodine. Carbohydrate Research. 1996, 292: 129~141
    31 C. A. Knutson. Evaluation of Variations in Amylose–iodine Absorbance Spectra. Carbohydrate Polymers. 1999, 42: 65~72
    32 W. Ciesielski, P. Tomasik. Complexes of Amylose and Amylopectins with Multivalent Metal Salts. Journal of Inorganic Biochemistry. 2004, 98: 2039~2051
    33丁文平.加热糊化温度对大米淀粉中直链淀粉结晶形成的影响.食品科技. 2006, (8): 60~61
    34 L. Lamberts, S. V. Gomand, V. Derycke, et al. Presence of Amylose Crystallites in Parboiled Rice. J. Agric. Food Chem. 2009, 57: 3210~3216
    35何天白,胡汉杰.海外高分子科学的新进展.化学工业出版社. 1997: 284~287
    36 Z. C. Ma, S. M. Zhao, K. Cheng, et al. Molecular Weight and Chain Conformation of Amylopectin from Rice Starch. Journal of Applied Polymer Science. 2007, 104 (3): 3124~3128
    37 F. Zhong, W. Yokoyama, Q. Wang, et al. Rice Starch, Amylopectin, and Amylose: Molecular Weight and Solubility in Dimethyl Sulfoxide-Based Solvents. Journal of Agricultural and Food Chemistry. 2006, 54: 2320~2326
    38 D. B. Thompson. On the Non-random Nature of Amylopectin Branching. Carbohydrate Polymers. 2000, 43: 223~239
    39 E. Bertoft. On the Nature of Categories of Chains in Amylopectin and Their Connection to the Super Helix Model. Carbohydrate Polymers. 2004, 57: 211~224
    40 Y. Nakamura, A. Sakurai, Y. Inaba, et al. The Fine Structure of Amylopectin in Endosperm from Asian Cultivated Rice can be Largely Classified into Two Classes. Starch/St?rke, 2002, 54: 117~131
    41 K.-S. Wong, A. Kubo, J.-L. Jane, et al. Structures and Properties of Amylopectin and Phytoglycogen in the Endosperm of sugary-1 Mutants of Rice. Journal of Cereal Science. 2003, 37: 139~149
    42 N. Inouchi, H. Ando, M. Asaoka, et al. The Effect of Environmental Temperature on Distribution of Unit Chains of Rice Amylopectin.Starch/St?rke. 2000, 52: 8~12
    43 X.-Z. Han, B. R. Hamaker. Amylopectin Fine Structure and Rice Starch Paste Breakdown. Journal of Cereal Science. 2001, 34: 279~284
    44 S. Singh, N. Singh, N. Isono, et al. Relationship of Granule Size Distribution and Amylopectin Structure with Pasting, Thermal, and Retrogradation Properties in Wheat Starch. Journal of Agricultural and Food Chemistry. 2010,
    58 (2): 1180~1188
    45 M. O. A. Hardan, S. E. Hill, I. A. Farhat. A Calorimetric Study of the Interaction between Waxy Maize Starch and Lipid. Starch/St?rke. 2007, 59: 217~223
    46 G. E. Vandeputte, R. Vermeylen, J. Geeroms, et al. Rice starches. III. Structural Aspects Provide Insight in Amylopectin Retrogradation Properties and Gel Texture. Journal of Cereal Science. 2003, 38: 61~68
    47 L. Wang, Y.-J. Wang, R. Porter. Structures and Physicochemical Properties of Six Wild Rice Starches. Journal of Agricultral and Food Chemistry. 2002, 50: 2695~2699
    48 N. S. Sodhi, N. Singh. Morphological, Thermal and Rheological Properties of Starches Separated from Rice Cultivars Grown in India. Food Chemistry. 2003, 80: 99~108
    49 L. Iturriaga, B. Lopez, M. A?on. Thermal and Physicochemical Characteriza- tion of Seven Argentine Rice Flours and Starches. Food Research International. 2004, 37: 439~447
    50 D. K. Cameron, Y.-J. Wang, K. A. Moldenhauer. Comparison of Starch Physicochemical Properties from Medium-Grain RiceCultivars Grown in California and Arkansas. Starch/St?rke. 2007, 59: 600~608
    51 N. Singh, Y. Nakaura, N. Inouchi, et al. Fine Structure, Thermal and Viscoelastic Properties of Starches Separated from Indica Rice Cultivars. Starch/St?rke. 2007, 59: 10~20
    52 F. Zhong, Y. Li, A. M. Ibanz, et al. The Effect of Rice Variety and Starch Isolation Method on the Pasting and Rheological Properties of Rice Starch Pastes. Food Hydrocolloids. 2009, 23: 406~414
    53 Z.-H. Lu, T. Sasaki, Y.-Y. Li, et al. Effect of Amylose Content and Rice Type on Dynamic Viscoelasticity of a Composite Rice Starch Gel. Food Hydrocolloids. 2009, 23: 1712~1719
    54 I.-M. Park, A. M. Ibá?ez, F. Zhong, et al. Gelatinization and Pasting Properties of Waxy and Non-waxy Rice Starches. Starch/St?rke. 2007, 59: 338~396
    55 A. M. Ibá?ez, D. F. Wood, W. H. Yokoyama, et al. Viscoelastic Properties of Waxy and Nonwaxy Rice Flours, Their Fat and Protein-free Starch, and the Microstructure of Their Cooked Kernels. Journal of Agricultural and Food Chemistry. 2007, 55: 6761~6771
    56 S. F. Yu, Y. Ma, L. Menager, et al. Physicochemical Properties of Starch and Flour from Different Rice Cultivars. Food and Bioprocess Technology. 2010, DOI 10.1007/s11947-010-0330-8
    57 T. Tukomane, S. Varavinit. Classification of Rice Starch Amylose Content from Rheological Changes of Starch Paste after Cold Recrystallization. Starch/St?rke. 2008, 60: 292~297
    58 K. N. Nakorn, T. Tongdang, P. Sirivongpaisal. Crystallinity and Rheological Properties of Pregelatinized Rice Starches Differing in Amylose Content. Starch/St?rke. 2009, 61: 101~108
    59程科.大米淀粉物化特性、分子结构及其相关性研究.华中农业大学硕士论文. 2006: 21~59
    60 C. C. Seow, C. H. Teo, C. K. V. Nair. A DSC Study of the Effects of Sugars on Thermal Properties of Rice Starch Gels before and after Aging. Journal of Thermal Analysis. 1996, 47: 1201~1212
    61 Z. K. Zhou, K. Robards, S. Helliwell, et al. Effect of the Addition of Fatty Acids on Rice Starch Properties. Food Research International. 2007, 40: 209~214
    62 K. Ohishi, M. Kasai, A. Shimada, K. Hatae. Effects of Acetic Acid on the Rice Gelatinization and Pasting Properties of Rice Starch during Cooking. Food Research International. 2007, 40: 224~231
    63 X. Liang, J. M. King. Pasting and Crystalline Property Differences of Commercial and Isolated Rice Starch with Added Amino Acids. Journal of Food Science. 2003, 68 (3): 832~837
    64 Y. Wu, Z. X. Chen, X. X. Li, et al. Effect of Tea Polyphenols on the Retrogradation of Rice Starch. Food Research International. 2009, 42: 221~225
    65 Y. Tian, Y. Li, F. A. Manthey, et al. Influence ofβ-cyclodextrin on the Short-term Retrogradation of Rice Starch. Food Chemistry. 2009, 116: 54~58
    66 Y. Viturawong, P. Achayuthakan, M. Suphantharika. Gelatinization and Rheological Properties of Rice Starch/xanthan Mixtures: Effects of Molecular Weight of Xanthan and Different Salts. Food Chemistry. 2008, 111: 106~114
    67 J. Bao, Z. Ao, J.-L. Jane. Characterization of Physical Propertiesof Flour and Starch Obtained from Gamma-Irradiated White Rice. Starch/St?rke. 2005, 57: 480~487
    68 A. F. Devi, K. Fibrianto, P. J. Torley, et al. Physical Properties of Cryomilled Rice Starch. Journal of Cereal Science. 2009, 49: 278~284
    69 A. M. I. Carranza. A Study of the Pasting Properties of Rice Flour and Starch as Affected by Rice Variety and Physicochemical Properties. University of California Davis Doctoral paper. 2002: 1~27
    70丁文平,丁霄霖.温度对大米淀粉胶凝和回生影响的研究.粮食与饲料工业. 2002, (12): 32~34
    71 C.-L. Hsu. Influence of Cooling Rate on Glass Transition Temperature and Starch Retrogradation during Low Temperature Storage. Universiy of Missouri-Columbia Doctoral paper. 1998: 7~41, 102~122
    72 H.-J. Chung, Q. Liu. Impact of Molecular Structure of Amylopectin and Amylose on Amylose Chain Association during Cooling. Carbohydrate Polymers. 2009, 77: 807~815
    73赵思明,熊善柏,张声华.淀粉糊物系及其老化特性研究.中国粮油学报. 2001, 16 (2): 18~21
    74 C. J. A. M. Keetels, G. T. Oostergetel, T. V. Vliet. Recrystallization of Amylopectin in Concentrated Starch Gels. Carbohydrare Polymers. 1996, 30: 61~54
    75 A. M. Matalanis, O. H. Campanella, B. R. Hamaker. Storage Retrogradation Behavior of Sorghum, Maize and Rice Starch Pastes Related to Amylopectin Fine Structure. Journal of Cereal Science. 2009, 50: 74~81
    76丁文平,丁霄霖.普鲁兰酶和β-淀粉酶对大米支链淀粉回生影响研究.中国粮油学报. 2003, 18 (1): 13~15
    77李浪,周平,杜平定.淀粉科学与技术.河南科学技术出版社. 1994:23
    78赵思明,熊善柏,俞兰苓.稻米淀粉糊老化动力学研究.农业工程学报. 2003, 19 (1): 37~39
    79丁文平,王月慧,丁霄霖.大米淀粉胶凝和回生机理的研究.粮食与饲料工业. 2003, (3): 11~16
    80丁文平,王月慧,夏文水.淀粉的回生机理及其测定方法.粮食与饲料工业. 2004, (12): 28~30
    81周建芹,姜绍通,潘丽军等.淀粉糊回生研究及应用.郑州工程学院.2002, 23 (4): 80~82
    82魏西根,许琳,刘建伟.大米淀粉回生的研究进展.农产品加工. 2007. (10): 32~34
    83赵思明,熊善柏,张声华.淀粉老化动力学研究述评.农业机械学报. 2000, 31(6): 114~117
    84丁文平,王月慧,丁霄霖.大米淀粉理化指标对其回生特性的影响.郑州工程学院. 2003, 24 (1): 38~42
    85余世锋,马莺.贮藏温度和时间对五常大米米饭品质影响研究.食品科学. 2010, 31 (2): 250~253
    86 Y. Ji, K. X. Xu, H. F. Qian, et al. Staling of Cake Prepared from Rice Flour and Sticky Rice Flour. Food Chemistry. 2004, 104: 53~58
    87 J. P. Mua, D. S. Jackson. Retrogradation and Gel Textural Attributes of Corn Starch Amylose and Amylopectin Fractions. Journal of Cereal Science.1998, 27: 157~166
    88姚远,丁霄霖,吴加根.淀粉凝沉研究进展(I)回生机理、回生测定方法及淀粉种类对回生的影响.中国粮油学报. 1999, 14 (2): 24~30
    89 T.-J. Lu, J.-L. Jane, P. L. Keeling. Temperature effect on retrogradation rate and crystalline structure of amylose. Carbohydrate Polymers. 1997, 33: 19~26
    90 N. N. Kelekci, S. Pascut, R. D. Waniska. The Effects of Storage Temperature on the Staling of Wheat Flour Tortillas. Journal of Cereal Science. 2003, 37: 377~380
    91丁文平,檀亦兵,丁霄霖.水分含量对大米淀粉糊化和回生的影响.粮食与饲料工业. 2003, (8): 44~47
    92姚远,丁霄霖.米饭凝沉研究(III)米饭回生抑制的原理与工艺.中国粮油学报. 2000, 15 (1): 4~8
    93丁文平,李清,夏文水.淀粉酶对大米淀粉回生影响机理的研究.粮食与饲料工业. 2005, (10): 16~17
    94姚远,丁霄霖,吴加根.淀粉回生研究进展(II)脂类、糖类与淀粉酶对回生的影响.中国粮油学报. 1999, 14 (3): 9~13
    95邱泼,李喜宏,韩文凤等.生物酶法抑制淀粉回生机理研究进展.粮食加工. 2006, 31 (6): 59~65
    96 C.-Y. Li, M.-F. Lai, K.-F. Liu. Factors Influencing the Retrogradation of Two Rice Starches in Low-Molecular-Weight Saccharide Solutions. Journal of Cereal Science. 1998, 28: 175~185
    97丁文平,王月慧.米粉体系和米淀粉体系回生特性的比较研究.郑州工程学院学报. 2004, 25 (3): 16~19
    98 N. J. N. Yau, J. J. Huang. Sensory Analysis of Cooked Rice. Food Quality and Prefernce. 1996, 7 (3): 263~270
    99莫紫梅,许金东,赵思明.米饭品质的研究进展.粮食与饲料工业. 2008, (11): 5~11
    100徐群英,张丽萍,李文魁.稻米品种对米饭品质影响的研究.武汉工业学院学报. 2004, 23 (4): 1~4
    101迟明梅.大米食用品质的研究进展.粮油加工与食品机械. 2005, 1: 63~66
    102 D. Mohapatra, S. Bal. Cooking Quality and Instrumental Textural Attributes of Cooked Rice for Different Milling Fractions. Journal of Food Engineering. 2006, 73: 253~259
    103 Y. Ogawa, G. Glenn, W. J. Orts, et al. Histological Structures of Cooked Rice Grain. Journal of Agricultural and Food Chemistry. 2003, 51 (24): 7019~7023
    104杨晓蓉,李歆,凌家煜.不同类别大米糊化特性和直链淀粉含量的差异研究.中国粮油学报. 2001, 16 (6): 37~41
    105闫清平,朱永义.大米淀粉、蛋白质与其食用品质的关系.粮食与油脂. 2001, 5: 29~34
    106 M. Ramesh, S. Z. Ali, K. R. Bhattacharya. Structure of Rice Starch and Its Relation to Cooked-rice Texture. Carbohydrate Polymers. 1999, 38: 337~347
    107 M. H. Ong, J. M. V. Blanshard. Texture Determinants in Cooked, Parboiled Rice. I: Rice Starch Amylose and the Fine Stucture of Amylopectin. Journal of Cereal Science. 1995, 21: 251~260
    108 M. H. Ong, J. M. V. Blanshard. Texture Determinants in Cooked, Parboiled Rice.Ⅱ: Physicochemical Properties and Leaching Behaviour of Rice. Journal of Cereal Science. 1995, 21: 261~269
    109 M. Martin, M. A. Fitzgerald. Proteins in Rice Grains Influence Cooking Proper -ty. Journal of Cereal Science. 2002, 36: 285~294
    110 K. Kitta, M. Ebihara, T. Iizuka, et al. Variations in Lipid Content and Fatty Acid Composition of Major Non-glutinous Rice Cultivars in Japan. Journal of Food Composition and Analysis. 2005, 18: 269~278
    111 K. Kaur, N. Singh. Amylose-lipid Complex Formation during Cooking of Rice Flour. Food Chemistry. 2000, 71: 511~517
    112朱建丽,许时婴,杨瑞金.方便米饭生产中脂肪与脂肪酸变化研究.粮食与油脂, 2001, 5: 4~6
    113 S. Takeuchi, M. Maeda, Y.-I Gomi, et al. The Change of Moisture Distribution in a Rice Grain during Boiling as Observed by NMR Imaging. Journal of Food Engineering. 1997, 33: 281~297
    114叶敏,许永亮,李洁等.蒸煮方式对米饭品质的影响.食品工业. 2007, 4: 32~34
    115刘敬科,郑理,赵思明等.蒸煮方法对米饭挥发性成分的影响.中国粮油学报. 2007, 22 (5): 12~15
    116 M. Bello, R. Baeza, M. P. Tolaba. Quality Characteristics of Milled and Cooked Rice Afected by Hydrothermal Treatment. Journal of Food Engineering. 2006, 72: 124~133
    117 B. K. Yadav, V. K. Jindal. Water Uptake and Solid Loss during Cooking of Milled rice (Oryzasativa L.) in Relation to its Physicochemical Properties. Journal of Food Engineering. 2007, 80: 46~54
    118 P. Leelayuthsoontorn, A. Thipayarat. Textural and Morphological Changes of Jasmine Rice under Various Elevated Cooking Conditions. Food Chemistry. 2006, 96: 606~613
    119杨铭铎,陈霞,孙兆远等.大米通电加热特性的研究.食品科技. 2008, (8): 74~76
    120王睿,马晓军.几种淀粉酶对即食米饭回生影响的研究.中国粮油学报. 2007, 22 (4): 114~116
    121 G. Baxter, C. Blanchard, J. Zhao. Effects of Prolamin on the Textural and Pasting Properties of Rice Flour and Starch. Journal of Cereal Science. 2004, 40:205~211
    122林家莲,杨荣华,张卫斌.添加剂对大米吸水性及米饭品质影响的研究.中国粮油学报. 2000, 15 (2):16~20
    123姚远,丁霄霖,华聘聘.米饭凝沉研究I脉冲核磁共振法测定谷物及淀粉糊化度与回生度方法的建立.中国粮油学报. 1999, 14 (5):10~14
    124赵思明,熊善柏,张声华.方便米饭老化机理研究.中国粮油学报. 2002, 17 (2):23~27
    125马晓军,王睿,耿敏等.即食方便米饭的老化机理及影响因素研究. 2008,34 (7): 37~40
    126熊善柏,赵思明,张声华.方便米饭老化特性研究.食品科学. 2001, 21 (10): 18
    127李培英.米饭凝沉回生现象及原因分析.食品科学. 1982, 20~22
    128 Y. Ogawa, H. Kuensting, J. Sugiyama, et al. Structure of a Rice Grain Represented by a New Three-Dimensional Visualisation Technique. Journal of Cereal Science. 2002, 36: 1~7
    129张茂勋,何福善,尤华平等.深冷处理技术进展及应用.热加工工艺. 2001, 59~62
    130夏雨亮,金滔,汤珂等.深冷处理工艺及设备的发展现状和展望.低温与特气. 2007, 25 (1): 4~7
    131陈鼎,陈吉华,严红革等.深冷处理原理及其在工业上的应用.兵器材料科学与工程. 2003, 26 (3): 68~71
    132 J. Szymonska, F. Krok, P. Tomasik. Deep-freezing of Potato Starch. International Journal of Biological Macromolecules. 2000, 27: 307~314
    133 J. Szymonska, F. Krok, E. K. Czepirska, et al. Modification of Granular Potato Starch by Multiple Deep-freezing and Thawing. Carbohydrate Polymers. 2000, 52: 1~10
    134 L. F. Wang, Y.-J. Wang. Rice Starch Isolation by Neutral Protease and High-Intensity Ultrasound. Journal of Cereal Science. 2004, 39: 291~296
    135 V. Derycke, G. E. Vandeputte, R. Vermeylen, et al. Starch Gelatinization and Amylose–lipid Interactions during Rice Parboiling Investigated by Temperature Resolved Wide Angle X-ray Scattering and Differential Scanning Calorimetry. Journal of Cereal Science. 2005, 42: 334~343
    136敖自华,王璋,许时婴.银杏淀粉的分离和纯化.食品科学. 2001, 22 (1): 23~26
    137程科,许永亮,熊善柏等.结晶法分离纯化大米直链淀粉.中国粮油学报. 2008, 23 (2): 170~173
    138杜先锋,许时婴,王璋.葛根直链淀粉和支链淀粉分离纯化的研究.食品与发酵工业. 1998, 24 (4): 18~21
    139洪雁,顾正彪,刘晓欣.直链淀粉和支链淀粉纯品的提取及其鉴定.食品工业科技. 2004, (4): 86~88
    140 O. C. Adebooye, V. Singh. Physico-chemical Properties of the Flours and Starches of two Cowpea Varieties (Vigna unguiculata (L.) Walp). InnovativeFood Science and Emerging Technologies. 2008, 9: 92~100
    141 J.-O. Kim, W.-S. Kim, M.-S. Shin, et al. A Comparative Study on Retrogradation of Rice Starch Gels by DSC, X-Ray Methods and a-Amylase. Starch/St?rke. 1997, 49: 71~75
    142熊善柏,赵思明,李建林等.米饭理化指标与感官品质的相关性研究.华中农业大学学报. 2002, 21 (1): 83~87
    143江凌燕,秦文,梁爱华.速冻方便米饭的品质特性及最佳品质评价指标的确立.食品科学. 2008, 29 (11): 49~53
    144 S. Prisana, P. Sawidtree, C. Sirirat. Classification of Rice Amylose Content by Discriminant Analysis of Physicochemical Properties. Starch/St?rke. 2007, 59: 171
    145 L. H. Xie, N. Chen, B. W. Duan, et al. Impact of Proteins on Pasting and Cooking Properties of Waxy and Non-waxy rice. Journal of Cereal Science. 2008, 47: 372~379
    146 S. Varavinit, S. Shobsngob, W. Varanyanond, et al. Effect of Amylose Content on Gelatinization, Retrogradation and Pasting Properties of Flours from Different Cultivars of Thai Rice. Starch/St?rke. 2003, 55: 410~415
    147 H. J. Tang, T. Mitsunaga, Y. Kawamura. Functionality of Starch Granules in Milling Fractions of Normal Wheat Grain. Carbohydrate Polymers. 2005, 59: 11~17
    148 N. Singh, L. Kaur, K. S. Sandhu, et al. Relationships between Physicochemical, Morphological, Thermal, Rheological Properties of Rice Starches. Food Hydrocolloids. 2006, 20: 532~542
    149 F. J. Dautant, K. Simancas, A. J. Sandoval, et al. Effect of Temperature, Moisture and Lipid Content on the Rheological Properties of Rice Flour. Journal of Food Engineering. 2007, 78: 1159~1166
    150 S.-T. Lim, J.-H., Lee, D.-H. Shin, et al. Comparison of Protein Extraction Solutions for Rice Starch Isolation and Effects of Residual Protein Content on Starch Pasting Properties. Starch/St?rke. 1999, 51: 120~125
    151 C. Marco, C. M. Rosell. Effect of Different Protein Isolates and Transglutaminase on Rice Flour Properties. Journal of Food Engineering. 2008, 84: 132~139
    152 H.-H. Wang, D.-W. Sun, Q. X. Zeng, et al. Effect of pH, Corn Starch and Phosphates on the Pasting Properties of Rice Flour. Journal of FoodEngineering. 2000, 46: 133~138
    153刘巧瑜,赵思明,熊善柏等.稻米淀粉及其级分的凝胶色谱分析.分析检验. 2003, 24 (3): 105~108
    154 B. I. Laura, M. L. Beatriz, C. A. Maria. A Study of the Retrogradation Process in Five Argentine Rice Starches. LWT - Food Science and Technology. 2010, 43: 670~674
    155 K. Laohaphatanaleart, K. Piyachomkwan, K. Sriroth, et al. A Study of the Internal Structure in Cassava and Rice Amylopectin. Starch/St?rke. 2009, 61: 557~569
    156张燕萍,檀亦兵.用差示量热扫描方法研究米粉糊的回生性质.无锡轻工大学学报. 2000, 19 (1): 69~71
    157姚远,丁霄霖.米饭凝沉研究(Ⅱ)米饭凝沉动力学.中国粮油学报. 1999, 14 (6): 19~21
    158 E. Armero, C. Collar. Crumb Firming Kinetics of Wheat Breads with Anti-Staling Additives. Journal of Cereal Science. 1998, 28: 165~174
    159 M.-Y. Baik, K.-J. Kim, K.-C. Cheon, et al. Recrystallization Kinetics and Glass Transition of Rice Starch Gel System. Journal of Agricultural and Food Chemistry. 1997, 45: 4242~4248
    160 J. Fan, B. P. Marks. Retrogradation Kinetics of Rice Flours as Influenced by Cultivar. Cereal Chemistry. 1998, 75 (1): 153~155
    161 Y. Yao, J. Zhang, X. Ding. Structure-Retrogradation Relationship of Rice Starch in Purified Starches and Cooked Rice Grains: A Statistical Investigation. Journal of Agricultural and Food Chemistry. 2002, 50: 7420~7425
    162 M. Riva, D. Fessas, A. Schiraldi. Starch Retrogradation in Cooked Pasta and Rice. Cereal Chemistry. 2000, 77 (4): 433~438
    163 H.-J. Koo, S.-H. Park, J.-S. Jo, et al. Gelatinization and Retrogradation of 6-year-old Korean Ginseng Starches Studied by DSC. Lebensm.-Wiss. u.-Technol. 2005, 38: 59~65
    164 R. R. D. Rosarlo, C. R. Pontiveros, L. Ba?os. Retrogradation of Some Starch Mixtures. Starch/St?rke. 1983, 35 (3): 86~92
    165 Y. Ma, D.-W. Sun. Hardness of Cooked Rice as Affected by Varieties, Cooling Methods and Chilling Storage. Journal of Food Process Engineering. 2009, 32: 161~176
    166 Z. H. Zhang, D.-W. Sun. Effects of Cooling Methods on the Cooling Efficiencyand Quality of Cooked rice. Journal of Food Engineering. 2006, 77: 269~274
    167 M. E. Karlsson, A.-C. Eliason. Gelatinization and Retrogradation of Potato (Solanum tuberosum) Starch in situ as Assessedby Differential Scanning Calorimetry (DSC). Lebensm.-Wiss. u.-Technol. 2003, 36: 735~741
    168 A. A. Perdon, T. J. Siebenmorgen, R. W. Buescher, et al. Starch Retrogradation and Texture of Cooked Milled Rice during Storage. Journal of Food Science. 1999, 64 (5): 828~832
    169 I. M. Shaikh, S. K. Ghodke, L. Ananthanarayan. Staling of Chapatti (Indian unleavened flat bread). Food Chemistry. 2007, 101: 113~119
    170 M. H. Brown. Microbiological Aspects of Frozen Foods. In W.B Bald (Ed.), Food Freezing: Today and Tomorrow. 1991: 15~25
    171 A. E. Delgado, A. C. Rubiolo. Microstructural Changes in Strawberry after Freezing and Thawing Processes. LWT - Food Science and Technology. 2005, 38: 137
    172 D. F. Olivera, V. O. Salvadori. Effect of Freezing Rate in Textural and Rheological Characteristics of Frozen Cooked Organic Pasta. Journal of Food Engineering. 2009, 90: 271~276
    173 S. D. Kock, A. Minnaar, D. Berry, et al. The Effect of Freezing Rate on the Quality of Cellular and Non-cellular Par-cooked Starchy Convenience foods. LWT - Food Science and Technology. 1995, 28: 87~95
    174 M. E. Bárcenas, M. Haros, C. Benedito, et al. Effect of Freezing and Frozen Storage on the Staling of Part-baked Bread. Food Research International. 2003, 36: 863~869
    175 M. E. Bárcenas, C. M. Rosell. Effect of Frozen Storage Time on the Bread Crumb and Aging of Par-baked Bread. Food Chemistry. 2006, 95: 438~445
    176 S.Varavinit, S. J. Shobsngob, W. Varanyanond, et al. Freezing and Thawing Conditions Affect the Gel Stability of Different Varieties of Rice Flour. Starch/St?rke. 2002, 54:31~36
    177 M. M. Farouk, K. J. Wieliczko, I. Merts. Ultra-fast Freezing and Low Storage Temperatures Are Not Necessary to Maintain the Functional Properties of Manufacturing Beef. Meat Science. 2003, 66: 171~179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700