稻米蒸煮和营养品质性状的QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻米品质改良是水稻遗传育种的重要研究领域。QTL定位和分析可为分子标记辅助选择改良稻米品质和开展相关基因的精细定位及图位克隆提供理论基础。本研究利用日本晴/Kasalath//日本晴衍生的回交重组自交系(backcross inbred lines,BILs)群体以及245个分子标记连锁图谱,在杭州和海南两个环境对稻米蒸煮和营养品质进行QTL分析。同时在重金属胁迫环境下对籽粒重金属含量开展了糙米重金属铜、镉、铅和锌低积累材料的筛选和QTL定位。主要的研究结果如下:
     1.本研究在杭州和海南两个环境种植了BIL群体,同时应用WinQTLCart 1.13进行单环境的QTL定位和应用QTLMAPPER 1.6定位软件检测稻米蒸煮食用品质的主效应与上位性QTL及与环境互作效应。结果表明,在第6染色体R1962-C191B标记区间均检测到1个控制稻米直链淀粉含量(AC)和1个控制胶稠度(GC)的QTL,具有明显的主效应,贡献率分别为54.87%和62.80%,应为Wx基因的等位基因,说明胶稠度主要由Wx基因或与Wx基因紧密连锁的基因控制,这2个QTL同时存在着显著的环境互作效应。在第6染色体C1478-R2171区间则检测到1个控制碱消值(ASV)的QTL,其主效应也已达到显著水平,贡献率为59.90%,应为ALK基因的等位基因,但其环境互作效应未达显著水平。另外,还在Wx基因位点检测到1个具有遗传主效应和环境互作效应的ASV QTL,贡献率9.56%。本研究中检测到4对互作对(qAC5和qAC,qGC6和qGC9,qASV1和qASV6-1以及qASV6-2和qASV9),但这些上位性QTL对性状表型变异的贡献率较低。AC、GC和ASV的QTLs所具有的显著环境互作效应,可以较好地解释同一品种在不同环境下稻米蒸煮品质有较大差异的遗传基础。其中位于R1962-C191B区间控制AC和GC以及位于C1478-R2171区间控制ASV的主效应QTL在杭州和海南二个环境下均能分别检测到。在杭州和海南共检测到控制AC、GC和ASV的QTL共21个,分布于第1、2、4、6、7和8染色体上,并且集中分布于第6染色体Wx基因和ALK基因所在区域。
     2.蛋白质含量(PC)和氨基酸含量是重要的营养品质性状。本研究利用BIL群体进行多环境的QTL联合分析,在蛋白质含量性状上检测到1个具有主效应的QTL(qPC6-3)和4对上位性QTLs(qPC1和qPC8,qPC6-1和qPC6-4,qPC6-2和qPC6-6,qPC6-5和qPC12);在16种氨基酸中,仅在赖氨酸含量(Lys)、苏氨酸(Thr)、天冬氨酸(Asp)和甘氨酸(Gly)4种氨基酸含量中检测到6个具有主效应的QTLs(qLYS6-1,qLYS6-2,qTHR6-1,qTHR6-2,qASP6和qGLY6),均位于第6染色体蒸煮品质性状QTLs的相同区间或邻近位点,这反映出稻米蒸煮品质和营养品质性状的表现可能具有一定相关性,这些区间在今后的研究中值得重视。还检测到3对影响氨基酸含量的上位性QTLs(qTHR3和qTHR6-2,qTHR10-1和qTHR10-2以及qGLY6和qGLY11)在杭州环境中定位到1个影响蛋白质含量、35个影响16种氨基酸含量的QTLs,而在海南环境下则定位到3个影响蛋白质含量、69个影响16种氨基酸含量的QTLs,都有集中分布的趋势,杭州环境条件下主要集中在第5、12、6和8等4条染色体,海南环境下集中分布于第1、2、6和12等4条染色体。由于氨基酸受环境条件变化的影响较大,除赖氨酸外其他氨基酸很少在二个环境检测到相同QTL位点。本研究在第6染色体定位到2个(qLYS6-1和qLYS6-2)影响赖氨酸含量的QTLs,具有显著的加性效应,可解释变异的74.64%。这2个QTL分别位于第6染色体的R1962-C191B和C1478-R2171标记区域,贡献率为27.08%和47.56%,其增加赖氨酸含量的增效基因分别来源于Kasalath和日本晴,前者与环境存在着显著的互作效应,在杭州和海南两个环境条件下均能分别检测到。
     3.上述利用近红外光谱(NIRS)分析技术测定稻米品质,定位稻米直链淀粉含量、胶稠度、碱消值及蛋白质含量QTL的结果,与利用相同遗传群体和其他群体已有研究结果能相互印证,证实了利用NIRS技术分析稻米品质开展品质性状QTL定位的可行性。
     4.在重金属污染严重的稻田,种植367份不同材料,测定糙米铜、镉、铅和锌以筛选重金属低积累的材料。结果表明,重金属含量在不同品种间差异明显,从中筛选到一批低铜、低镉、低铅和低锌含量材料,同时筛选到铜、镉、铅和锌含量均低的材料27份。利用BIL群体,共检测到13个控制重金属铜、镉、铅和锌含量的QTLs,分布在第3、4、5、6、7、9、11和12等8条染色体上,其中单个QTL的表型贡献率在7.26~15.92%之间。在第3、9和12染色体检测到3个影响Cu含量的QTLs;在第3、7和11染色体定位到3个影响Cd含量的QTLs;在第4、5和12(2个)染色体定位到4个影响Pb含量的QTLs。
Grain quality improvement is a very important area of rice breeding. In this study, the backcross recombinant inbred line population derived from Nipponbare (japonica)/ Kasalath (indica)//Nipponbare and its genetic linkage map were used to map the QTLs controlling cooking and nutrient quality traits in two distinct environments, Hangzhou and Hainan. QTLs for Cu, Cd, Pb and Zn contents were also studied under heavy metal stress. Molecular markers tightly linked to the QTLs were identified based on the study and could be used for grain quality improvement by marker-assisted selection (MAS). The results are summarized as follows:
     1. QTL detection for rice cooking quality traits
     Four main effect QTLs (qAC6, qGC6, qASV6-1 and qASV6-2) were identified in the BIL population by using of QTLMAPPER 1.6 software. Among them, qAC6, qGC6 and qASV6-l were also detected to have significant G×E interaction. In addition, 4 pairs of QTLs with additive×additive epistasis (qAC5 vs qAC6, qGC6 vs qGC9, qASV1 vs qASV6-1 and qASV6-2 vs qASV9 ) were detected, but they had no G×E interaction. Three out of four main effect QTLs detected above, qAC6, qGC6 and qASV6-2, were also detected in both two experimental locations by using of WinQTLCart 1.13a software. In Hangzhou and Hainan, totally 21 putative QTLs for cooking quality traits were identified on chromosome 1, 2, 4, 6, 7 and 8. 11 out of 21 QTLs were found near the loci of Wx and ALK genes on chromosome 6.
     2. QTL detected for rice nutrient quality traits
     Protein content (PC) and amino acids content are very important nutrient quality trait. The identification of QTL for PC and amino acids content and analysis of possible epistasis among the QTLs and QTL×environment interaction were conducted using QTLMAPPER 1.6. For PC, one main effect QTL (qPC6-3) and 4 pairs of epistatic QTLs (qPC1 vs qPC8, qPC6-1 vs qPC6-4, qPC6-2 vs qPC6-6 and qPC6-5 vs qPC12) were identified. Among 16 types of amino acids tested, only 6 main effect QTLs (qLYS6-1, qLYS6-2, qTHR6-1, qTHR6-2, qASP6 and qGLY6 ) and 3 pairs of epistatic QTLs (qTHR3 vs qTHR6-2, qTHR10-1 vs qTHR10-2 and qGLY6 vs qGLY11 ) for 4 types of amino acids ( Lys, Thr, ASP and Gly) content were detected. Results showed that the same region near the Wx and ALK loci on chromosome 6 was also an important region for main effect QTLs of PC and the amino acids content. A total of 35 and 69 putative QTLs were detected in Hangzhou and Hainan, respectively, but very few QTLs except for lysine content were detected commonly in the two experimental locations. It can be deduced that enhancing cooking and nutrient quality simultaneously was a complicated and tough job, and further research needs to be done.
     Two putative QTLs (qLYS6-1 and qLYS6-2) for lysine content with genetic main effects were detected on chromosome 6, which contributed to 27.08% and 47.56% of the total phenotypic variations, respectively. The qLYS6-1 was also detected to have significant G×E interaction. The additive effects of qLYS6-1 came from Kasalath while qLYS6-2 came from Nipponbare. In addition, no QTLs with additive×additive epistasis were detected in this experiment. Both qLYS6-1 and qLYS6-2 were detected in Hangzhou and Hainan, respectively. The results could be useful for pyramiding qLYS6-1 and qLYS6-2 by MAS in breeding programs to enhance lysine content in rice grain.
     3. Feasibility of QTL detection by the near infrared spectroscopy (NIRS)
     In this study, cooking and nutrient quality traits were determined by the established near infrared spectroscopy (NIRS) predication model. Comparison QTLs controlling cooking quality traits detected in this study with other studies revealed that those QTLs controlling AC, GC and ASV with large effect were detected in the same or different populations. The results proved that mapping QTLs of grain quality traits via the use of the NIRS measurement is feasible.
     4. Screening genotypes with low heavy metals accumulation in grains and QTL detection for heavy metals accumulation traits
     Three hundred sixty seven rice genotypes were planted in a paddy field contaminated by toxic heavy metals. Concentrations of Copper (Cu), Cadmium (Cd), plumbum (Pb) and zinc (Zn) in rice grain were analyzed. The results showed that there was a great difference in heavy metal concentrations in rice grains among the genotypes. Some rice genotypes with low Cu, Cd, Pb and Zn concentrations were identified. Among them, 27 rice genotypes were found with a jointly Cu, Cd, Pb and Zn concentrations below 0.1, 10.0, 0.2 and 50.0 mg/kg, tolerance limit of the national hygienic standards for foodstuffs, respectively.
     Copper (Cu), Cadmium (Cd), plumbum (Pb) and zinc (Zn) content of the parents and BIL lines were determined in rough rice powder. The quantitative trait loci (QTLs) for each trait were analyzed based on the constructed molecular linkage map of this population. Totally, 13 QTLs for accumulation of 4 heavy metals were detected on chromosome 3, 4, 5, 7, 9, 11 and 12. Their variance explained by each of them ranged from 7.26%-15.92%. Three putative QTLs for Cu content (qCu3, qCu9 and qCu12) were mapped on chromosome 3, 9 and 12, respectively. Three QTLs for Cd content (qCd3, qCd7 and qCd11) were located on chromosome 3, 7 and 11, respectively. Four QTLs for Pb content (qPb4, qPb5, qPb12-1 and qPb12-2) were identified on chromosome 4, 5 and 12, respectively. Three QTLs for Zn content (qZn4, qZn6 and qZn7) were detected on chromosome 4, 6 and 7, respectively.
引文
1.包劲松、H Corke、何平和朱立煌,利用一个水稻RIL群体定位控制淀粉特性的QTL。植物学报,2003,45(8):986-994
    2.包劲松、何平、李仕贵、夏英武、陈英和朱立煌,异地比较定位控制稻米蒸煮食用品质的数量性状基因。中国农业科学,2000,33(5):8-13
    3.曹立勇、庄杰云、占小登、郑康乐和程式华,抗白叶枯病杂交水稻的分子标记辅助育种。中国水稻科学,2003,17(2):184-18
    4.陈能、罗玉坤、谢黎虹、朱智伟、段彬伍和章林平,我国水稻品种的蛋白质含量及与米质的相关性研究。作物学报,2006,32(8):1193-1196
    5.程旺大、张国平、姚海根、吴伟、汤美玲、朱祝军和徐民,晚粳稻籽粒中As、Cd、Cr、Ni、Pb等重金属含量的基因型与环境效应及其稳定性。作物学报,2006,32(4):573-579
    6.樊叶杨、姜华武、佃蔚敏、吴运荣和吴平,水稻淀粉合成代谢相关基因与千粒重QTLs的连锁分析。分子植物育种学,2003,1(3):321-330
    7.高振宇、曾大力、崔霞、周奕华、颜美仙、黄大年、李家洋和钱前,水稻稻米糊化温度控制基因ALK的图位克隆及其序列分析。中国科学C辑,2003,33(6):481-487
    8.郭益全、刘清、张德梅和谢顺景,籼稻烹调与食用品质及谷粒性状之遗传。中华农业研究,1985,34(3):243-257
    9.郝伟、金健、孙世勇、朱美珍和林鸿宣,覆盖野生稻基因组的染色体片段替换系的构建及其米质相关数量性状基因座位的鉴定。植物生理与分子生物学学报,2006,32:354-362
    10.何光华、谢戎、郑家奎、阴国大、杨正林、左永树、黄建国和邵启明,水稻杂种后代中籽粒蛋白质含量的分离和变异。中国水稻科学,1997,11(2):118-120
    11.何光华、袁祚谦、郑家奎、谢戎、黄建国、邵启明、袁玲和杨正林,水稻籽粒蛋白质含量及其产量的遗传效应。西南农业学报,1995,8:4-9
    12.何平、李仕贵、李晶昭、马育清、钱前、王文明、陈英和朱立煌,影响稻米品质几个性状的基因座位分析。科学通报,1998,43:1747-1750
    13.胡茂龙、张迎信、孔令娜、杨权海、王春明、翟虎渠和万建民,利用回交重组自交系群体检测3个水稻光合功能相关性状QTL。作物学报,2006,32(11):1630-1635
    14.黄超武和黄远生,籼稻游离氨基酸含量与饭味关系的初步研究。谷类作物品质性状遗传研究进展。南京:江苏科技出版社,1990,58-63
    15.黄超武和李锐,水稻杂种直链淀粉含量的遗传分析。华南农业大学学报,1990,11(1):23-29
    16.黄光文、陈觉梁、王伟成、卢向阳和陈良碧,运用ISSR标记鉴别水稻品种的初步研究。杂交水稻,2006,21:64-67
    17.黄英金、刘宜柏、饶治祥和潘晓云,几个名优水稻品种特异晶质性状的配合力分析。江西农业大学学报,1995,17(4):361-367
    18.黄英金和刘宜柏,香稻品种香味性状的遗传研究。江西农业学报.1995,7(2):88-93
    19.黄祖六、谭学林和S Tragoonrung,稻米直链淀粉含量基因座位的分了标记定位。作物学报,2000,26(6):777-782
    20.纪素兰、江玲、王益华、刘世家、刘喜、翟虎渠和万建民,利用回交重组自交群体检测水稻耐低温发芽数量性状基因座位。南京农业大学学报,2002,30(1):1-6
    21.焦桂爱、唐绍清、罗炬、M Fitzgerald、L T Roferos和胡培松,水稻抗性淀粉突变体抗性淀粉结构的比较研究。中国水稻科学,2006,20(6):645-648
    22.姜理英、杨肖娥、叶海波、石伟勇和蒋玉根,炼铜厂对周边土壤和作物体内重金属含量及其空间分布的影响。浙江大学学报(农业与生命科学版),2002,28(6):689-693
    23.柯永培,玉米营养品质性状的遗传分析与育种研究。四川大学博士论文,2006
    24.李晨、潘大建、孙传清、周汉钦、范芝兰、陈建酉和王象坤,水稻糙米高蛋白基因的QTL定位。植物遗传资源学报,2006,7(2):170-174
    25.李金华、王丰、柳武革、金素娟和刘宜柏,水稻粤丰B的香味遗传分析与SSR标记定位。分子植物育种学,2006,4(1):54-58
    26.李欣、顾铭洪和潘学彪,稻米品质研究Ⅱ.灌浆期间环境条件对稻米品质影响。江苏农学院学报,1989,10(1):7-12
    27.李泽福、夏加发、苏泽胜、翟虎渠和万建民,水稻产量及其相关性状的数量性状基因座分析。南京农业大学学报,2002,25(2):1-6
    28.林蓉辉,1985年籼稻品质测定结果分析。中国水稻所年报(1983~1985),1985:47-49
    29.刘建学、吴守一和方如明,近红外光谱法快速检测大米蛋白质含量。农业机械学报,2001,32(3):68-72
    30.刘巧瑜 赵思明,熊善柏和张声华,稻米淀粉及其级分的凝胶色谱分析。中国粮油学报,2003,18(1):28-30
    31.刘永胜、朱立煌、孙敬三、何平、王玉忠和沈利爽,水稻籼粳杂种生殖障碍的基因定位分析。植物学报,1997,39:1099-1104
    32.孟亚丽和周志国,结实期温度与稻米品质的关系。中国水稻科学,1907,11(1):51-54
    33.莫惠栋,谷类作物胚乳品质性状的遗传研究。中国农业科学,1995a,28(2):1-7
    34.莫惠栋,谷类作物胚乳性状遗传控制的鉴别。遗传学报,1995b,22(2):126-132
    35.莫惠栋,我国稻米品质改良。中国农业科学,1993,26(4):8-14
    36.潘学彪、邹军煌、陈宗祥、陆驹飞、于恒秀、李海涛、王了斌、M C Rush和朱立煌,水稻品种Jasmine85抗纹枯病主效QTLs的分了标记定位。科学通报,1999,44(15):1629-1635.
    37.彭应财、李文宏、樊叶扬和郑昀晔,利用分子标记辅助选择技术育成抗白叶枯病杂交稻协优218。杂交水稻,2003,18(5):5-7
    38.钱瑞生和檀亦兵,用差示扫描量热法研究辐照淀粉的糊化特性。淀粉与淀粉糖, 1991,4:30-31,29
    39.乔保建、洪德林、王盈盈和朱晓彪,不同生长环境下水稻最上节间长度QTL定位研究。遗传,2007,29(印刷中)
    40.任玉玲、石春海、吴建国和张海珍,油菜籽三种氨基酸含量的胚、细咆质和母体遗传效应分析。浙江大学学报(农业与生命科学版),2005,31(1):41-46
    41.杉山纯一,食品加工新物性测定器的开发。日协会报,1989,8:6-12
    42.沈圣泉、庄杰云、舒庆尧、包劲松、吴殿星和夏英武,稻米淀粉黏滞性QTL定位及其G×E互作分析。作物学报,2005a,31(10):1289-1294
    43.沈圣泉、庄杰云、王淑珍、舒庆尧、包劲松和夏英武,水稻米粒延伸性QTL定位和基因型与环境互作分析。中国水稻科学,2005b,19(4):319-322
    44.石春海和朱军,稻米营养品质种子效应和母体效应的遗传分析。遗传学报,1995,22(5):372-379
    45.石春海和朱军,籼稻稻米蒸煮品质的种子和母体遗传分析。中国水稻科学,1994,8(3):129-134
    46.舒庆尧、吴殿星、夏英武、高明尉和A McClung,籼稻和粳稻中蜡质基因座位上微卫星标记的多态性及其与表观直链淀粉含量的关系.遗传学报,1999a,26(4):350-358
    47.舒庆尧、吴殿星、夏英武 高明尉和A McCluang,用近红外反射光谱测定小样本糙粉的品质性状。中国农业科学,1999b,32(4):92-97
    48.宋文昌、陈志勇和张玉华,同源四倍体和二倍体水稻香味的遗传分析。作物学报1989,15(3):273-277
    49.孙黛珍、江玲、刘世家、张迎信、黄培鸿、程遐年、翟虎渠和万建民,水稻条纹病毒和介体灰飞虱抗性的QTL分析。作物学报,2006,32:805-810
    50.汤桂容和彭辉辉,稻米氨基酸的含量及其影响因素。中国稻米,2006,(2):7-10
    51.汤圣祥、张云康和余汉勇,籼粳杂交稻米胶稠度遗传。中国农业科学,1996,29(5):51-55
    52.汤圣祥和G S Khush,籼稻胶稠度的遗传。作物学报,1993,19(2):119-123
    53.唐绍清、石春海、焦桂爱、胡培松、王海莲和万建民,利用近红外漫反射光谱技术测定稻米中脂肪含量的研究初报。中国水稻科学,2004,18(6):563-566
    54.万映秀、邓其明、王世全、刘明伟、周华强和李平,水稻Wx基因的遗传多态性及其与主要米质指标的相关性分析。中国水稻科学,2006,20(6):603-609
    55.王德仁、卢婉芳、温怀南和杨志根,水稻高产、高效、高氨基酸含量及营养价的施氮量优化。中国农学通报,1995,11(2):24-27
    56.王冠军和胡丽玲,水稻香味及其遗传。安徽技术师范学院学报,2001,15(3):23-25
    57.王萌、周舟、兰盛银和徐珍秀,不同大麦淀粉胚乳细胞中淀粉和贮藏蛋白的积累。中国农业科学,2004,37(10):1464-1467
    58.翁建峰、万向元、吴秀菊、王海莲、翟虎渠和万建民,利用CSSL群体研究稻米 AC和PC相关QTL表达稳定性。作物学报,2006,32(1):14-19
    59.吴长明、孙传清、陈亮、李自超和王象坤,稻米营养品质的QT1及其与食味品质的关系研究。吉林农业科学,2002,27(4):3-7
    60.吴长明、孙传清、陈亮、李自超和王象坤,水稻直链淀粉含量与籼粳分化度的QTL及其相互关系研究。中国农业大学学报,2000,5(5):6-11
    61.吴建国和石春海,近红外反射光谱分析技术在植物育种与种了资源研究中的应用。植物遗传资源学报,2003,4(1):68-72。
    62.吴建国、石春海、张小明和费万辛,用近红外反射光谱法分析稻米3种必需氨基酸含量的研究。作物学报,2003,29(5):688-692
    63.伍时照、黄超武和欧烈才,水稻籼型品种胚乳淀粉性状的扫描电镜观察。植物学报,1986,28(2):145-149
    64.伍时照和黄超武,水稻品种品质性状的研究。中国农业科学,1985,18(5):1-7
    65.武小金,稻米蒸煮品质性状的遗传研究。湖南农学院学报,1989,15(4):6-9
    66.向远鸿、唐启源和黄燕湘,稻米品质性状相关性研究:籼型粘稻食味与其它米质性状的关系。湖南农学院学报,1990,16(4):325-330
    67.肖应辉、罗丽华、闫晓燕、高艳红、王春明、江玲、矢野昌裕、翟虎渠和万建民,水稻品种倒伏指数QTL分析。作物学报,2005,31(3):348-354
    68.谢黎虹、杨仕华、陈能、段彬伍、朱智伟和廖西元,不同生态条件下籼稻米饭质地和淀粉RVA谱的特性。作物学报,2006,32(10):1479-1484
    69.徐辰武、莫惠栋和顾铭洪,籼稻米直链淀粉含量的遗传研究。In:莫惠栋和顾铭洪,谷类作物品质性状研究进展。南京:江苏科学技术出版社,1990,75-81
    70.徐辰武和莫惠栋,籼稻糊化温度的质量-数量遗传研究。作物学报,1998,22(4):385-391
    71.许永亮、程科、赵思明和熊善柏,大米淀粉的分子量分布及其与粘性的相关性研究。中国农业科学,2007,40(3):566-572
    72.寻梅梅、江玲、刘世家、陈平、工茂青、翟虎渠和万建民,利用回交重组自交系群体检测水稻苗期耐冷性基因座。南京农业大学学报,2006,29(2):123-126
    73.严长杰、徐辰武、裔传灯、梁国华、朱立煌和顾铭洪,利用SSR标记定位水稻糊化温度的QTLs。遗传学报,2001,2(1):1006-1011
    74.严长杰和顾铭洪,高代回交QTL分析与水稻育种。遗传,2000,22:419-422
    75.严衍禄,近红外光谱分析基础与应用。北京:中围轻工业出版社,2005
    76.杨权海、陆巍、胡茂龙、工春明、张荣铣、M Yano和万建民,水稻叶片叶绿素和过氧化氢含量的QTL检测及上位性分析。遗传学报,2003,30:245-250
    77.易小红和邹同华,差示扫描量热法在食品热物性测量中的应用。计量与测试技术,2006,33(9):22-23
    78.易小平和陈芳远,籼型杂交水稻稻米蒸煮品质、碾米品质及营养品质的细胞质遗传效应。中国水稻科学,1992,6(4):187-189
    79.游晴如、黄庭旭、周仕全和陈泳和,香稻“A04”香味的遗传研究。福建稻麦科技,2003,21(4):21-23
    80.翟虎渠、夏加发、万建民和李泽福,水稻外观品质的数量性状基因位点分析。遗传学报,2003,30(3):251-259
    81.张光恒、曾大力、郭龙彪、钱前、张国平、滕胜和朱立煌,水稻米粒延伸性的遗传剖析。遗传,2004,26(6):887-892
    82.张海珍、石春海、吴建国、任玉玲和李长涛,油菜籽硫代葡萄糖昔含量的胚、细胞质、母体遗传效应分析。作物学报,2004,30(1):31-35
    83.张小明、石春海、吴建国、富田桂、鲍根良和叶胜海,杂交稻米必需氨基酸含量与亲本的关系。中国水稻科学,2003,17(1):91-94
    84.张元虎、姜萍、张晓芳和段有群,水稻香味的遗传及其利用。贵州农业科学,1996,(6):16-19
    85.周坤炉、白德郎和阳和华,杂交香稻香味的遗传与应用。湖南农业科学,1989(5):43
    86.朱军,复杂数量性状基因定位的混合模型方法。王连铮和戴景瑞,全国作物育种学术讨论会论文集。北京:中国农业科技出版社,1998,19-20.
    87.朱军,运用混合线性模型定位复杂数量性状基因的方法。浙江大学学报(自然科学版),1999,33(3):327-335.
    88.朱昌兰、江玲、张文伟、王春明、翟虎渠和万建民。稻米直链淀粉含量和胶稠度对高温耐性的QTL分析。中国水稻科学,2006,20:248-252
    89. Ahn S N, C N Bollich and S D Tanksley, RFLP tagging of a gene for aroma in rice. Theor. AppL Genet., 1992, 84: 825-828
    90. Ahn S N, C N Bollich, A M McClung and S D Tanksley, RFLP analysis of genomic regions associated with cooked kernel nelongation in rice. Theor. Appl. Genet., 1993, 87: 27-32
    91. Ali S S, S J H Jafri, M G Khan and M A Butt, Inheritance studies for aroma in two aromatic varieties of Pakistan. Intl. Rice Res. Newsl., 1993, 18(2): 6
    92. Aoki N, T Umemoto, S Yoshida, T lshii, O Kamijima, U Matsukura and N lnouchi, Genetic Analysis of Long Chain Synthesis in Rice Amylopectin, Euphytiea, 2006, 151(2): 225-234
    93. Arao T and N Ae, Genotypic variation in cadmium levels of rice grain. Soil Sci. &Plant Nutr., 2003, 49(4): 473-479
    94. Ashikari M, J Wu, M Yano, T Sasaki and A Yoshimura, Rice gibberellin-insensitive dwarf mutant gene dwarf 1 encodes the alpha-subunit of GTP-binding protein. Proc Nat. Acad Sci. USA, 1999, 96: 10284-10289
    95. Ashikari M, H Sakakibara, S Y Lin, T Yamamoto, T Takashi, A Nishimura, E R Angeles, Q Qian, H Kitano and M Matsuoka, Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745
    96. Austin D F and M Lee, Comparative mapping in F_(2:3) and F_(6:7) generation of quantitative trait loci for grain yield and yield components in maize. Theor. Appi. Genet., 1996, 92: 817-826
    97. Ayres N M, A M McClung, P D Larkin, H F J Bligh, C A Jones and W D Park, Microsatellites and a single nucleotide polymorphism differentiate apprant amylose classes in an extended pedigree of US rice germplasm. Theor. Appi. Genet., 1997, 94: 773-781
    98. Barber S, Chemical and biological data of rice proteins for nutrition and feeding. Amino Acid Composition and Biological Value of Cereal Proteins, 1985: 481-494
    99. Bernacehi D, T Beck-Bunn, Y Eshed, J Lopez, V Petiard, J Uhlig, D Zamir and S Tanksley, Advance backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor. Appl. Genet., 1998a, 97: 381-397
    100. Bernacchi D, T Beck-Bunn, Y Eshed, J Lopez, V Petiard, J Uhlig, D Zamir and S Tanksley, Advance backcross QTL analysis in tomato. Ⅱ. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable with QTL-aileles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor. Appl. Genet., 1998b, 97: 170-180
    101. Berner D K and J Hoff, Inheritance of scent in Americanlong grain rice. Crop Sci, 1986, 26: 876-878
    102. Bhattacharya K R, C M Sowbhagya and Y M lndudhara Swamy, Importance of insoluble amylose as a determinant of rice quality. J. Sci. Food Agr., 1978, 29: 359-364.
    103. Blakeney A B, Developing rice varieties with different textures and tastes. Chem. Australia, 1992, 59: 475-476
    104. Biigh H F J, R I Hill and C A Jones, A macrosatellite sequence closely linked to the Waxy gene of Oryza Sativa. Euphytica, 1995, 86: 83-85
    105. Bollich C N and B D Webb, Inheritance of Amylose content in two hybrid populations of rice. CerealChem., 1973, 50: 631-636
    106. Bollich C N, J N Rutger and B D Webb, Development in rice research in United states. Intl Rice Res Newslt, 1992, 41: 32-34
    107. Bradbury L M T, T L Fitzgerald, R J Henry, Q S Jin and D L E Waters, The gene for fragrance in rice. Plant Biotech. J., 2005, 3(3): 363-370
    108. Brondani C, B H N Rangel, R P V Brondani and M E Ferreira, QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor. Appl. Genet., 2002, 104: 1192-1203
    109. Cagampang G B, C M Perez and B O Juliano, A gel consistency test for eating quality of rice. J. Sci. FoodAgr, 1973, 24: 1589-1594
    110. Chang W L and W Y Li, Inheritance of amylose content and gel consistency in rice. Bot. Bull. Acad. Sinica, 1981, 22: 35-47
    111. Cho Y G, M W Blair, O Panaud and S R McCouch, Cloning and mapping of variety-specific rice genomic DNA sequences amplified fragment length polymorphisms (AFLP) from silver-stained polyacrylamide gels. Genome, 1996, 39(2): 373-378
    112. Choi H C, H C Hong and H Nahm, Physicochemical and structural characteristics of grain associated with palatability in Japonica rice. Korean J. Breed., 1997, 29(1): 15-27
    113. Chrastil J. Protein-starch interactions in rice grains: Influence of storage on oryzenin and starch. J.Agric. Food Chem., 1990, 38 (9): 1804-1809
    114. Deivedi J L and J S Nanda, Inheritance of amylose content in three crosses of rice. Indian J. Agric. Sci. 1979, 49(10): 753-755
    115. Dela Cruz N, I Kumar, R P Kaushik and G S Khush, Effect of temperature during grain development on stability of cooking quality components in rice. Japan J. Breed., 1989, 39: 299-306
    116. Feltus F A, J Wan, S R Schulze, J C Estill, N Jiang and A H Paterson. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments.Genome Res, 2004,14:1812-1819
    117. Geetha S, Inheritance of aroma in two rice crosses, Intl. Rice Res. Notes, 1994, 19(2): 5
    118. Goff SA, D Ricke, T H Lan, G Presting, R Wang, M Dunn, J Glazebrook, A Sessions, P Oeller, H Varma, D Hadley, D Hutchison, C Martin, F Katagiri, B M Lange, T Moughamer, Y Xia, P Budworth, J Zhong, T Miguel, U Paszkowski, S Zhang, M Colbert, W L Sun, L Chen, B Cooper, S Park, T C Wood, L Mao, P Quail, R Wing, R Dean, Y Yu, A Zharkikh, R Shen, S Sahasrabudhe, A Thomas, R Cannings, A Gutin, D Pruss, J Reid, S Tavtigian, J Mitchell, G Eldredge, T Scholl, R M Miller, S Bhatnagar, N Adey, T Rubano, N Tusneem, R Robinson, J Feldhaus, T Macalma, A Oliphant and S Briggs, A draft sequence of the rice genome (Oryza saliva L. ssp. japonica). Science, 2002,296:92-100
    119. Gregorio G B, D Senadhira, H Htut and R D Graham, Breeding for trace mineral density in rice. Food Nutr. Bull., 2000, 21: 382-386
    120. He P, S G Li, Q Qian, Y Q Ma, J Z Li, W M Wang, Y Chen and L H Zhu. Genetic analysis of rice grain quality. Theor. Appl. Genet., 1999, 98: 502-508
    121. Heda G D and G M Reddy, Studies on the inheritance of amylose content and gelatinization temperature in rice. Genet. Agr., 1986, 40: 1-8
    122. Heu M H and Z R Choe, Inheritance of alkali digestibility of rice in indica-japonica crosses. Korean J.Breed, 1973, 5(1): 32-36
    123. Hittalmani S, A Parco, T V Mew, R S Zeigler and N Huang, Fine mapping and DNA marker assisted pyramiding of the three major genes for blast resistance in rice. Theor. Appl. Genet., 2000, 100: 1121-1128
    124. Hizukuri S, Recent advances in molecular structure of starch. Denpun Kagaku, 1988, 35: 185-198.
    125. Hizukwri S, Y Takeda, N Maruta and B Juliano, Molecular structures of rice starch. Carbohydro Res., 1989, 189: 227-235
    126. Horino T, T Fukuoka and K Wakimoto, Characteristics of palatability of cooked rice in relation to the mineral components of brown rice. Japan. J. Crop Sci., 1984, 53(Suppl.):226-227
    127. Huang N, E R Angeles, J Doming, G Magpantay, S Singh, G Zhang, N Kumaravadivel, J Bennett and Khush GS, Pyramiding of bacterial blight resistance genes in rice: Marker-aid selection using RFLP and PCR. Theor. Appl. Genet, 1997, 95:313-320
    128. International Rice Genome Sequencing Project, The map-based sequence of the rice genome. Nature, 2005, 436: 793-800
    129. Ishimaru K, M Yano, N Aoki, K Ono, T Hirose, S Y Lin, L Monna, T Sasaki and R Ohsugi, Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theor. Appl. Genet., 2001, 102: 793-800
    130. Iwasaki T, Eating quality of the cooked rice. In: Matsuo T and Hoshikawa ed, Science of the rice plant. Tokyo Japan : Japanese Ministry of Agricultures, Forestry and Fisheries, 1993,398-404
    131. Jia Y, S A McAdams, G T Bryan, H P Hershey and B Valent, Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J, 2000, 19(15):4004-4014
    132. Jin Q S, Vanavichit A and S Tragoonrung, Identification and potential use of RAPD marker for aroma in rice. J. Genet Breed., 1996, 50(4): 367-370
    133. Juliano B O, Amylose analysis in rice-A review. In: Chemical Aspects of Rice Grain Quality Proceedings of a Workshop, International Rice Research Institute, 23-25. October 1979, IRRI, Los Banos, Laguna, Philippines , 251-260
    134. Juliano B O, Rice Chemistry and Technology 2~(nd) ed., Philippines: IRRI, 1985
    135. Juliano B O, Rice grain quality: Problems and challenges. Cereal Foods World, 1990, 35(2): 245-253
    
    136. Kao C H, Z B Zeng, Teasdaierd, Multiple interval mapping for quantitative trait loci. Genetics, 1999,152:1203- 1216
    137. Khush G S, C M Paule and N M De La Cruze, Rice grain quality evaluation and improvement at IRRI. In: IRRI, Proceedings of the Workshop on Chemical Aspects of Rice Grain Quality, Los Banos, Philippines, 1979, 21-31
    138. Konishi S, T Izawa, S Y Lin, K Ebana, Y Fukuta, T Sasaki and M Yano, A SNP caused loss of seed shattering during rice domestication. Science, 2006, 312:1392-1396
    139. Kojima S, Y Takahashi, Y Kobayashi, L Monna, T Sasaki, Araki T and M Yano, Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol., 2002, 43 (10): 1096-1105
    140. Kommori T, S M Ohta, N murai, Y Takakura , Y Kuraya, S Suzuki, Y Hiei, H Imaseki and N Nitta, Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L. ). Plant J., 2004, 37(3): 315-325
    141. Kubo T, Y Aida, K Nakamura, H Tsunematsu, K Doi and A Yoshimura, Reciprocal chromosome seg-ment substitution series derived from japonica and indica cross of rice (Oryza sativa L). Breeding Sci, 2002, 52: 319-325
    142. Kubo T, Nakamura K, Yoshimura A. Development of a series of Indica chromosome segment substitution lines in Japonica back-ground of rice. Rice Genet. Newslett., 1999, 16: 104-106
    143. Kumar I and G S Khush G S, Genetics of amylose content in rice(Oryza sativa L.). J. Genet., 1986,65:1-11
    144. Lanceras J C , Z L Huang, O Naivikul, A Vanavichit, V Ruanjaichon and S Tragoonrung, Mapping of Genes for Cooking and Eating Qualities in Thai Jasmine Rice (KDML105). DNA Res., 2000, 7(2): 93-101
    145. Lander E S and D Botstein, Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps. Genetics, 1989, 121: 185-199
    146. Lander E S, P Green, J Abraharmson, A Barlow, M J Daly, S E Lincoln and L Newburg, MapMaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987,1: 174-181
    147. Li J X, S B Yu, C G Xu, Y F Tan, Y J Gao, X H Li and Q F Zhang. Analyzing quantitative trait loci for yield using a vegetatively replicated F_2 population from a cross between the parents of an elite rice hybrid. Theor. Appl. Genet., 2000, 101: 248-254
    148. Li X Y, Q Qian, Z M Fu, Y H Wang, G S Xiong, D L Zeng, X Q Wang, X F Liu, S Teng, F Hiroshi, M Yuan, D Luo, B Han and J Y Li, Control of tillering in rice. Nature, 2003,422:618-621
    149. Li X, M Gu, Z Cheng and H Yu, Chromosome location of a gene for aroma in rice. Chinese J.Rice Res., 1995,4(2): 5-6
    150. Li Z F, J M Wan, J F Xia and M Yano, Mapping of quantitative trait loci controlling physico-chemical properties of rice grains (Oryza sativa L.) . Breeding Sci., 2003, 53:209-212
    151. Li Z F, J M Wan, J F Xia, H Q Zhai and H Ikehashi, Identification of quantitative trait loci underlying milling quality of rice (Oryza sativa) grains. Plant Breeding, 2004, 123 : 229-234
    152. Lin H X, T Yamamoto, T Sasaki and M Yano, Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor. Appl. Genet., 2000, 101:1021-1028
    153. Lin J R, C H Shi, M G Wu and J G Wu, Analysis of genetic effects for cooking quality traits of japonica rice across environments. Plant Science, 2005, 168(6): 1501-1506.
    154. Lin S Y, T Sasaki and M Yano, Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor. Appl. Genets., 1998, 96: 997-1003
    155. Liu J G, J S Liang, K Q Li, Z J Zhang, B Y Yu, L X Lu, J C Yang and S Q Zhu, Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemospbere, 2003, 52: 1467-1473
    156. Liu Y S, L H Zhu, J S Sun and Y Chen, Mapping QTLs for defective female gametophyte development in an inter-subspecific cross in Oryza sativa L. Theor. Appl. Genet.,2001, 102: 1243-1251
    157. Lu S, C Y Chen and Y L Cheng, Gel-Chromatography Fractionation and Thermal Charactrization of Rice Starch Affected by Hydrothermal Treatment. Cereal Chem., 1996, 73(1): 5-11
    158. Manner D J, Recent development in our understanding of amylopectin structure, Carbohydr. Point., 1989, 11: 87-91
    159. McCouch S R, Y G Cho, M Yano, E Paul, M Blinstrub, H Morishima and Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13
    160. Mckenzie K S and J N Rutger, Genetic analysis of amylose content, alkali spreading score and grain dimensions in rice. Crop Sci., 1983, 23(2):306-319
    161. Miura K, S Y Lin , M Yano and T Nagamine, Mapping quantitative trait loci controlling low temperature germinability in rice (Oryza sativa L.). Breeding Sci., 2001, 51: 293-299
    162. Miura K, S Y Lin , M Yano and T Nagamine, Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl. Genet., 2002, 104: 981-986
    163. Miyata M, Yamamoto T, Komori T, Nitta N. Marker-assisted selection and evaluation of the QTL for stigma exsertion under japonica rice genetic background. Theor. Appl. Genet., 2007, 114:539-548
    164. Moncada P, J Borrero, M Chatel, H Gauch, E Guimaraes, J Tohme, S R McCouch and C P Martinez , Quantitative trait loci for yield and yield components in an Oryza sativa× Oryza rufipogon BC_2F_2 population evaluated in an upland environment. Theor. App. Gene., 2001, 102(1): 41-52
    165. Morrison W R, T P Milligan and M N Azudin, A relation between the amylose and lipid contents of starches from diploid cereals, J. Cereal Sci., 1984, 2: 257-271
    166. Nakagawa H, J Yamagishi, N Miyamoto, M Motoyama, M Yano and K Nemoto, Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theor. Appl. Genet., 2005, 110: 778-786
    167. Normita D, L Cruza and I Kumar, Effect of temperature during grain development on stability of cooking quality components in rice. Japan J. Breed., 1989, 39: 299-306
    168. Obanni M and J N Bemiller, Properties of some starch brands. Cereal Chent., 1997, 74(4): 431-436
    169. Obara M, M Kajiura, Y Fukuta, M Yano, M Hayashi, T Yamaya and T Sato, Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). J. Experimental Botany, 2001, 52: 1209-1217
    170. Ohtsubo K, A Kobayashi and H Shimizu, Quality valuation of rice in Japan. JARQ, 1993, 27(2): 95-101
    171. Okamoto M, Studies on effect of chemical components on stickiness of cooked rice and their selection methods for breeding. Bull. Chugoku Natl. Agric. Exp. Stn., 1994, 14: 1-68
    172. Olson R A.(eds.), Nutritional Quality of Cereal Grains: Genetic Agron. Improvement, 1987
    173. Ong M H, J M W Blanshard, Texture determinants in cooked, parboiled rice I :Rice Starch amylose and the fine structure of amylopectin. J. Cereal Sci., 1995a, 21: 251-260
    174. Ong M H, J M W Blanshard , Texture determinants in cooked, parboiled rice II: Physicochemical properties and leaching behavior of rice. J. Cereal Sci., 1995b, 21:261-269
    175. Panthee D R, V R Pantalone, A M Saxton, D R West and C E Sams, Genomic regions associated with amino acid composition in soybean. Molecular Breed., 2006, 17:79-89
    176. Pooni H S, I Kumar and G S Khush, Genetical control of amylose content in selected crosses of indica rice. Heredity, 1993, 70(3): 269-280
    177. Prioul J L, S Pelleschi, M Sene, C Thevenot, M Causse, D de Vienne and A Leonardi, From QTLs for enzyme activity to candidate gene in maize. J. Exp. Bot., 1999, 50(337):1281-1288
    178. Puri R P and E A Siddeq, Inheritance of geletinezation temperature in rice. Indian J. Genet. Plant Breed., 1980, 40(2): 450-455
    179. Puri R P and E A Siddeq, Studies on cooking and nutritive qualities of cultivated rice.I. Qualitative genetic characterization of amylose content. Genetica Agraria, 1983, 34(1-2): 1-14
    180. Rivai I F, H Koyama and S Suzuki, Cadmium content of rice and its daily intake in various countries. Bull. Environ. Contam. Toxicol., 1990, 44: 910-916
    181. Sano Y, M Katsumata and K Okuno, Genetics studies of speciation in cultivated Rice. 5: Inter- and Intra-specific differentiation in the waxy gene expression of rice, Euphytica, 1986,35:1-9
    182. Sato Y I and K Hayashi, The genetic control of the basic vegetative phase in early maturing native rice varieties. Japan J. Breed., 1985, 35: 160-166
    183. Sato T, T Ueda , Y Fukuta, T Kumagai and M Yano, Mapping of quantitative trait loci associated with ultraviolet-B resistance in rice (Oryza sativa L.). Theor. Appl. Genet., 2003, 107: 1003-1008
    184. Shi C H, J Zhu, R C Zang and G L Chen, Genetic and heterosis analysisfor cooking quality traits of indica rice in different environment. Theor. Appl. Genet., 1997, 94(1-2):294-300
    185. Singh N B and H G Sing, Gene action for guality components in rice, Indian J. Agric. Sci., 1982, 52(8):485-488
    186. Singh R K, U S Singh and G S Khush, Genetics and Biotechnology of quality traits in aromatic rices. In: Singh RK, U S Singh and G S Khush (ed), Aromatic Rices, Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, India, 2000, 47-69
    187. Song WY, G L Wang, L L Chen, H S Kim, L Y Pi, T Holsten, J Gardner, B Wang , W X Zhai and L H Zhu, A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270: 1804-1806
    188. Song X J, W Huang, M Shi, M Z Zhu and H X Lin, A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39, 623-630
    189. Sood B C and E A Siddiq, Genetic analysis of kernel elongation in rice. Indian J Genet., 1983, 43: 40-43
    190. Sood BC and E A Siddiq, Studies on component quality attributes of basmati rice. Z. Planzenzuecht, 1980, 84: 299-301
    191. Stangoulis J C R, B L Huynh, R M Welch, E Y Choi and R D Graham, Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica, 2007, 154(3): 289-294
    192. Stansel J W, The influence of heredity and environment on the endosperm characteristics of rice(Oryza saliva L.). Diss. Abstr., 1966, 27: 488
    193. Stuber C W, Mapping and manipulating quantitative traits in maize. Trends Genet., 1995, 11:477-481
    194. Su C C, H Q Zhai, X N Cheng and J M Wan, Detection and analysis of QTLs for resistance to brown planthopper, Nilaparvata lugens (Stal), in rice (Oryza saliva L.), using backcross inbred lines. Rice Genet. Newsl., 2002, 19: 88-89
    195. Sun S Y, W Hao, H X Lin, Identification of QTLs for Cooking and Eating Quality of Rice Grain. Rice Sci., 2006, 13: 161-169
    196. Taguchi-shiobara F, S Y Lin , K Tanno, T Komatsuda, M Yano, T Sasaki and S Oka, Mapping quantitative trait loci associated with regeneration ability of seed callus in rice,Oryza sativa L.. Theor.Appl. Genet., 1997,95:828-833
    197. Taguchi-Shiobara F, T Yamamoto, M Yano and S Oka. Mapping QTLs that control the performance of rice tissue culture and evaluation of derived near-isogenic lines. Theor. Appl. Genet., 2006, 112: 968 - 976
    198. Takahashi Y, A Shomura, T Sasaki and M Yano, Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc. Natl. Acad. Sci. USA, 2001, 98:7922-7927
    199. Takeda Y, N Maruta, S Hizukar and Juliano BO, Structures of indica rice starches (IR8 and IR64) having inter mediate affinities for iodine. Carbohydrate Res., 1989, 187(2): 287-290
    200. Takeda Y, S Hizukuri and B O Juliano, Purification and structure of amylose from rice starch. Carbohydrare Res., 1986, 148: 299- 308
    201. Takehisa H, T Shimodate, Y Fukuta, T Ueda, M Yano, T Yamaya, T Kameya and T Sato, Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crops Res., 2004, 89: 85-95
    202. Tan Y F, J X Li, S B Yu , Y Z Xing, C G Xu and Q Zhang, The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou63. Theor.Appl. Genet, 1999, 99: 642-648
    203. Tan Y F, M Sun, Y Z Xing, J P Hua, X L Sun, Q Zhang and H Corke, Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid. Theor. Appl. Gent., 2001, 103: 1037-1045
    204. Tang S Q, P S Hu, G A Jiao, H Q Zhai and J M Wan, Mapping quantitative trait loci controlling palatability of Milled Rice (Oryza sativa L.) using backcross inbred lines. Rice Sci., 2005, 12(1): 19-24
    205. Tang S X, G S Khush and B O Juliano, Diallel analysis of gel consistency in rice. SABRAOJ., 1989,21: 135-142
    206. Tanksley S D and S R McCouch, Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277:1063-1066
    207. Tanksley S D, N D Young, A H Paterson and M W Bonierbale, RFLP mapping in plant breeding: New tools for an old science. Bio/Tech., 1989,7:257-264
    208. Tanksley S D, S Grandillo, T M Fulton, D Zamir, Y Eshed, Lopez and T Beck-Bunn, Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pinpinellifolium. Theor. Appl. Genet., 1996, 92:213-224
    209. Tomar J B, J S Nanda. Genetics of gelatization temperature and its association with protein content in rice. Indian J. Genet, 1984, 44: 84-87
    210. Topuz A, Ozdemir F, Influences of gamma irradiation and storage on the capsaicinoids of sun-dried and dehydrated paprika. Food Chem., 2004, 86(4): 509-515
    211. Tsuzuki E and E Shimokawa, Inheritance of aroma in rice. Euphytica, 1990, 46:157-159
    212. Umemoto T, M Yano, H Satoh, A Shomura and Y Nakamura, Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor.Appl. Genet., 2002, 104:1-8
    213. Villareal C P, S Hizukuri and B O Jiuliano, Amylopectin Staling of Cooked Milled Rice and Properties of Amylopectin and Amylose. Cereal Chent., 1997, 74(2): 163-167
    214. Wan J L, H Q Zhai, J M Wan and H Ikehashi, Detection and analysis of QTLs for ferrous iron toxicity tolerance in rice, Oryza sativa L.. Euphytica, 2003, 131:201-206
    215. Wang D L, J Zhu , Z K Li and A H Paterson, Mapping QTLs with epistatic effects and QTL environment interactions by mixed linear model approaches. Theor. Appl. Gene.t, 1999,99: 1255-1264.
    216. Wang S C, B Z Zeng and C J Basten, QTL Cartographer Windows, Version 1.13 [EB/OL]. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu.edu/qtlcart/WQTLCart.html), 1999
    217. Wang Z X, M Yano, U Yamanouchi, M Iwamoto, L Monna, H Hayasaka, Y Katayose, T Sasaki, The Pib gene for rice blast resistance belongs to the nucleotide binding and ieucine-rich repeat class of plant disease resistance genes. Plant J., 1999, 19: 55-64
    218. Wang Z, G Taramino, D Yang, G Liu, S VTingey, G H Miao and G L Wang, Rice ESTs with disease-resistance gene-or defense-response gene-like sequences mapped to regions containing major resistance genes or QTLs. Moi. Genet. Genomics, 2001, 265(2): 302-310
    219. Webb B D, Rice quality and grades. In: Lub BS (ed), Rice Utilization, 2nd edition, New York, 1992, 89-119
    220. Wissuwa M, M Yano and N Ae, Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor. Appl. Genet., 1998, 97: 777-783
    221. Wu J G and C H Shi, Calibration model optimization for rice cooking characteristics by near infrared reflectance spectroscopy (NIRS). Food Chem., 2007, 103(3): 1054-1061
    222. Wu J G and C H Shi, Prediction of grain weight, brown rice weight and amylose content in single seeds of rice using near-infrared reflectance spectroscopy. Field Crops Res., 2004, 87: 13-21
    223. Wu J G, C H Shi, X M Zhang and T Katsura, Genetic and genotype×environment interaction effects for the content of seven essential amino acids in indica rice. J. Genetics, 2004, 83(2): 19-24
    224. Wu J Ca, C H Shi, X M Zhang and L J Fan, Estimating the amino acid composition in the milled rice powder by near-infrared reflectance spectroscopy. Field Crops Res., 2002, 75(1): 1-7
    225. Xu Y B, Global view of QTL: Rice as a model. In: Quantitative Genetics, Genomics and Plant Breeding, ed: Kang M S, CAB International, 2002, 109-134
    226. Xue Y, J M Wan, L Jiang, C M Wang, L L Liu, Y M Zhang, and H Q Zhai, Identification of quantitative trait loci associated with aluminum tolerance in rice (Oryza Sativa L.). Euphytica, 2006, 150: 37-45
    227. Yamagata I, M Ando and H Yanase, Results of tests of palatability testers of rice. Seimaikogyo, 1990, 123: 10
    228. Yamamoto T, H Lin, T Sasaki and M Yano, Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154: 885-891
    229. Yamamoto T, Y Kuboki, S Y Lin, T Sasaki and M Yano, Fine mapping of quantitative trait loci, Hd-1, Hd-2 and Hd-3, controlling heading date of rice as single Mendelian factors. Theor. Appl. Genet., 1998, 97: 37-44
    230. Yamaya T, M Obara, H Nakajima, S Sasaki, T Hayakawa and T Sato, Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J. Experimental Botany, 2002, 53: 917-925
    231. Yano M and T Sasaki, Genetic and molecular dissection of quantitative traits in rice. Plant Mol. Biol., 1997, 35: 145-153
    232. Yano M, Y Katayose, M Ashikari, U Yamanouchi, L Monna, T Fuse, T Baba, K Yamamoto, Y Umehara, Y Nagamura and T Sasaki, Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2484
    233. Yano M. Naturally occurring allelic variations as a new resource for functional genomics in rice. In: Rice Genetics IV. Eds: Khush GS, Brar DS, Hardy B. IRRI, 2001,
    227-238
    234. Yoshimura S, U Yamanouchi, Y Katayose, S Toki, Z X Wang, I Kono, N Kurata, M Yano, N Iwata and T Sasaki, Expression of Xa1, a bacterial blight resistance gene in rice, is induced by bacterial inoculation. Proc. Natl Acad Sci. USA, 1998, 95:1663-1668
    235. Yu J , S N Hu , J Wang , K S Wong Gane, S G Li, B Liu , Y J Deng, L Dai, Y Zhou X Q Zhang, M L Cao, J Liu, J D Sun, J B Tang, Y J Chen, X B Huang, W Lin , C Ye, W Tong, L J Cong, J N Geng, Y J Han, L Li, W Li, G Q Hu, X G Huang , W J Li, J Li , Z W Liu, L Li, J P Liu, Q H Qi, J S Liu, L Li, T Li, X G Wang, H Lu, T T Wu, M Zhu, P X Ni, H Han, W Dong, X Y Ren, X L Feng, P Cui, X R Li, H Wang , X Xu, W X Zhai, Z Xu, J S Zhang, S J He, J G Zhang, J C Xu, K L Zhang, X W Zheng, J H Dong, W Y Zeng, L Tao, J Ye, J Tan, X D Ren, X W Chen, J He, D F Liu, W Tian, C G Tian, H G Xia, Q Y Bao, G Li, H Gao, T Cao, J Wang, W M Zhao , P Li, W Chen, X D Wang, Y Zhang, J F Hu, J Wang, S Liu, J Yang, GY Zhang, Y Q Xiong, Z J Li, L Mao, C S Zhou, Z Zhu, R S Chen, B L Hao, W M Zheng, S Y Chen, W Guo, G J Li, S Q Liu, M Tao, J Wang, L H Zhu, L P Yuan and H M Yang, A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296: 79-92
    236. Zeng Z B, Theoretical Basis for Separation of Multipie Linked Gene Effects in Mapping Quantitative Trait Loci. Proc. Natl. Acad Sci. USA, 1993,90: 10972-10976
    237. Zeng, ZB, Precision mapping of quantitative trait loci, Genetics, 1994, 136:1457
    238. Zhang Q F, J P Hua, S B Yu, L Z Xong and C G Xu, Genetic and molecular basis of heterosis in rice. In: Rice genetics IV, Eds: Khush GS, Brar DS, Hardy B, 2001, IRRI, 173-185
    239. Zhu C L, Y H Xiao, C M Wang, L Jiang, H Q Zhai and J M Wan, Mapping QTL for heat-tolerance at grain filling stage in rice. Rice Sci, 2005, 12(1): 33-38
    240. Zou J H, X B Pan, Z X Chen, J Y Xu, J F Lu, W X Zhai and L H Zhu, Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theor.Appl. Genet., 2000, 101: 569-573

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700