自动转移飞行器自主导航方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以自动转移飞行器(ATV)为背景,深入研究了不同飞行任务下的自主导航方法。
     研究了ATV在中低轨飞行时的自主导航方法。建立了ATV的飞行运动状态方程、误差状态方程及观测方程。为提高导航精度,将ATV上的惯性测量装置误差方程中的惯导工具误差系数增广为状态变量,同时考虑了杆臂效应的影响,将观测量与惯性测量装置的误差系数联系在一起。提出了采用单接收机天线定姿方案对ATV进行姿态校正,该方案无需增加额外的硬件,简单可靠。分析了紧组合和松组合两种方式对导航精度的影响,结果表明紧组合的导航精度优于松组合。为了降低状态方程的维数,减轻导航计算机的负担,提出采用惯性测量装置的一阶惯性模型替代误差系数模型,仿真分析了两者的等价性,并证明了一阶惯性模型可以节省大量的计算时间。
     研究了ATV在中高轨飞行时的自主导航方法。通过计算卫星信号在空间链路中衰减因子,分析了ATV在中高轨飞行时GNSS卫星的可用性。在ATV进行轨道机动时,采用连续两个时刻历元的星敏感器测量信息对其姿态进行校正,该方案仅需一个星敏感器,节省了导航设备成本。中高轨ATV飞行高度跨度很大,为避免在此过程中引力偏差统计特性不准确造成滤波发散,本文采取两个措施,一是将引力偏差作为一阶马尔科夫过程来考虑,二是引入了强跟踪滤波器进行信息融合,并分析了不同强跟踪滤波器对导航精度的影响,结果表明强跟踪无迹卡尔曼滤波(STUKF)的精度优于强跟踪扩展卡尔曼滤波(STEKF)的精度,且STUKF比STEKF具有更快的收敛速度。针对不同滤波过程的特点,利用不同参数来表征ATV的姿态运动,在STEKF中,采用四元数表征ATV姿态运动;在STUKF中,则引入了Rodrigues参数避免在运算过程中四元数无法满足归一化条件的问题。仿真表明,采用这样的方案,在GNSS卫星可用性很差的情况下,ATV最终位置导航精度(1σ)优于100m,速度导航精度(1σ)优于0.1m/s。
     研究了ATV与合作目标交会时的自主导航方法。提出了利用GNSS差分对ATV和合作目标进行相对导航的方案,该方案摆脱了对地面站的依赖,不需要在多套导航设备中进行切换。首先对ATV和合作目标上两接收机测得的数据进行时间同步,进行周跳处理,然后,在远距离导引段末端采用位置差分的方法获得ATV与合作目标的相对位置和速度;近距离导引段,采用双差载波相位平滑伪距差分技术,提高相对导航精度;在逼近阶段,使用滤波器估计整周模糊度的浮点值,利用估出的值解算ATV与合作目标的相对位置和速度;在靠拢对接段,提出了一种适用于单频接收机的整周模糊度快速求解算法,利用解得的整周模糊度整数解提高导航精度。仿真表明,此方案简单方便,易于工程实现,且完全能满足ATV与合作目标交会时的精度需求。
     研究了ATV与非合作目标飞行器交会时的自主导航方法。以时间载波相位差分信息为观测量,利用EKF进行信息融合以提高ATV的导航精度。在J2000坐标系下建立了非合作目标的绝对运动方程,在轨道坐标系下建立了ATV与非合作目标的相对运动方程,利用两种不同运动方程解算非合作目标间导航信息,比较了两种不同模型的导航精度。仿真表明,采用时间载波相位差分信息,ATV的位置导航精度可达厘米量级,速度导航精度可达毫米/秒的量级;采用绝对运动方程的非合作目标间最终导航精度稍优于采用C-W相对运动方程的导航精度。
     上述研究成果可为我国新一代空间运输系统的自主导航方案提供重要的技术支持。
The purpose of this research is to investigate proper navigation methods for different missions of Automated Transfer Vehicle(ATV).
     Autonomous navigation method is presented to meet the navigation precision of low earth orbit ATV. Coupled GNSS/SINS navigation systems are hired to compensate the lack of one single system. In a tightly coupled system, GNSS pseudorange and deltarange measurements are processed by the data fusion algorithm to calibrate the IMU, which allows for a limited aiming of the SINS in situations with less than four satellites in view, where the GNSS receiver cannot provide postion and velocity information anymore in a loosely coupled system. The system dynamic model and GNSS mesasurement models are discussed which are the key to the development of GNSS/SINS data fusion algorithms. To improve the navigation precision, the guidance instrumentation error coefficients are modeled as augmented states and the leverarm effect is also considered. SINS errors are modeled as Markov processes to reduce the order of the system. Simulation results indicate that two different coupled systems have similar results in accuracy and the Markov process model can spend less time to accomplish the filter and achieve the similar navigation precision.
     For high orbit ATV, the usable conditions of GNSS are analyzed by estimating the carrier to noise spectral density which includes the received power plus constant assumptions regarding the noise figure of the receiver and antennas, the system noise tempreture, and the implementation losses in the receiver. A star sensor is utilized to correct the ATV attitude when a ATV moving occurs. Strong tracking EKF and UKF are derived to avoid the steady bias in identifying the parameter bias fault of nonlinear system and restrain the influence of modeling errors. Quaternion and Rodrigues parameters are expressed to describe ATV attitudes. Simulation results show that even GNSS satellite visibility is not good, it is feasible to use GNSS for ATV navigaton.
     Differential GNSS methods are developed when ATV approaches a cooperative target. Raw GNSS data are first processed through time synchronizing and cycle detection. Coordinate diffential navigation is used during the far-distance rendezvous mission planning. In the course of automatic homing, the method of double-differential carrier phase smoothing is applied. When the two spacecrafts are close, the float solustion is very efficient. A method is presented to resolve the integer ambiguity when using single frequency receiver. Firstly, the differential technique for carrier phase smoothing pseudorange is used in relative positioning to estimate the floate numbers of integer ambiguities. Secondly, the LAMBDA searching method is utilized to achieve the solution of integer ambiguity. After the integer ambiguity acquision, the integer solution can have a very high precision.
     Time differenced carrier phase(TDCP) measurements without the need of ambiguity resolution techniques are developed to acquire high precision of ATV. Absolute dynamic functions and relative dynamic functions are built to compare the navigation results using two different navigation algorithms. Simulation results indicate that TDCP method can obtain centimeter precision and absolute navigation algorithm is better than C-W algorithm.
引文
[1] Philippe LEBLOND and Francois BERRE. ATV Mission Operations-system Testing and Operability with Space Network System[A]. 24th AIAA International Communications Satellite Systems Conference[C]. San Diego, California: American Institute of Aeronautics and Astronautics.
    [2] Andrea CERESETTI and Primo TAMBURINI. Automated Transfer Vehicle a European Versatile Multi-mission Vehicle[A]. AIAA Space Programs and Technologies Confereance[C]. Huntsville, AL: American Institute of Aeronautics and Astronautics.
    [3] Hélène Blachère. Non Real-time Simulator Dedicated to ATV GNC Nominal Algorithms Validation[A]. AIAA Modeling and Simulation Technologies Conference and Exhibit[C]. Austin, Texas: American Institute of Aeronautics and Astronautics.
    [4] Bayle, V.L Hullier, M Ganet, P.Deply, J.L.Francart and D.Paris. Influence of the ATV Propellant Sloshing on the GNC Performance[A]. AIAA Guidance, Navigation, and Control Conference and Exhibit[C]. Monterey California: American Institute of Aeronautics and Astronautics.
    [5] Delage R. An Overview of ATV Integrated Mission Analysis and Mission Preparation[R]. IAC-03-V.2.09.
    [6] John T. Collins and Robert T. Conger. Mans: Autonomous Navigation and Orbit Control for Communications Satellites[A]. AIAA International Communications Satellite Systems Conference 15th[C]. San Diego, CA: American Institute of Aeronautics and Astronautics. 1438-1448.
    [7] N. Barbour. Inertial Components-Past, Present, and Future[A]. 2001 AIAA Guidance, Navigation and Control Conference[C]. Montreal, Canada: American Institute of Aeronautics and Astronautics.
    [8] Mueller F.K. Considerations on Inertial Guidance for Missiles[J]. Navigation: Journal of the Institute of Navigation, 1959, 6(4).
    [9] Wrigley W. History of Inertial Navigation[J]. Navigation: Journal of the Institute of Navigation, 1977, 24(1).
    [10] Swanson C. DRIRU I/SKIRU-The Application of the DTG to Spacecraft Attitude Control[A]. AIAA Guidance and Control Conference[C]. San Diego, CA: American Institute of Aeronautics and Astronautics. 667-674.
    [11]曾庆华,刘建业,赖际舟,熊智.环形激光陀螺的最新进展[J].传感器技术,2004,23(11):1-4.
    [12] Usuir, Ohno, A. Recent Progress of Fiber Optic Gyroscopes and Applications at JAE[A]. Optical Fiber Sensors Conference Technical Digest[C]. USA:11-14.
    [13] Barbour N. MEMS for Navigation– A Survey, Plenary Session[A]. ION National Technical Meeting[C]. Long Beach, CA.
    [14]谭健荣,刘永智,黄琳.光纤陀螺的发展现状[J].激光技术,2006,30(5):544-547.
    [15]徐景硕.惯性传感器技术及发展[J].传感器技术,2001,20(5):1-4.
    [16] Gounley R., White, R. and Gai, E. Autonomous Satellite Navigation by Stellar Refraction[A]. Guidance and Control Conference 1983[C]. American Institute of Aeronautics and Astronautics: 359-367.
    [17]周凤岐,赵黎平,周军.基于星光大气折射的卫星自主轨道确定[J].宇航学报,2002,23(4):20-23.
    [18] Pines D.J. X-ray Source-based Navigation for Autonomous Position Determination Program[R]. DARPA/TTO, 571-218-4339,USA.
    [19]郑伟,孙守明,汤国建.基于X射线脉冲星的深空探测自主导航方法[J].中国空间科学技术,2008,28(5):1-6.
    [20]孙守明,郑伟,汤国建.基于X射线脉冲星的航天器自主导航数值分析研究[J].空间科学学报,2008,28(6):573-577.
    [21]李黎.基于X射线脉冲星的航天器自主导航方法研究[D].长沙:国防科技大学,2006.
    [22]席献光,张锁熊,王慧君.卫星导航系统发展动态[J].飞行器测控学报,2003,22(1):1-6.
    [23]王解先.全球导航卫星系统GPS/GNSS的回顾与展望[J].工程勘察,2006,(3):55-60.
    [24]廖春发,葛榜军,刘焕杰.俄罗斯全球导航卫星系统、概况、现状与发展趋势[J].卫星应用,1999,(4):60-64.
    [25] Inception Study to Support the Development of Business Plan for the GALLILEO Programme, TREN/B5/23-2001.
    [26] Paul Flament. GALILEO: A New Dimension In International Satellite Navigation[A]. 46th International Symposium Electronics[C]. Zadar, Craotia, 6-14.
    [27] J.C.Chiarini. The Galileo Satellite[A]. 21st International Communications Satellite Systems Conference and Exhibit[C]. American Institute of Aeronautics and Astronautics.
    [28] The Galilei Project Galileo Design Consolidation. ESA.
    [29] Galileo Mission High Level Definition. ESA.
    [30] Werner Enderle. Galileo: Impact on Spacecraft Navigation System[J]. Journal of Global Positioning Systems, 2003, 2(2): 135-138.
    [31] Guenter W. Hein. Status of Galileo Frequency and Signal Design.
    [32]周露,刘宝忠.北斗卫星定位系统的技术特征分析与应用[J].全球定位系统,2004,(4):12-16.
    [33]陈俊勇.中国第一代导航卫星系统北斗一号无线电波的频谱特征[J].测绘科学,2006,31(5):11-12.
    [34]郝燕玲,陈实如,徐定杰.陆基增强/双星定位组合系统[J].哈尔滨工程大学学报,2002,23(1):47-51.
    [35]王鹏,沈锋,陈国宇.区域无线电导航系统中几何精度因子的分析[J].应用科技,34(4):27-31.
    [36]刘奕辰,周晓尧,许化龙.无线电导航系统中基于GDOP的伪卫星定位误差研究[J].军事通信,2007,(7):10-12.
    [37] James R. Wertz and Robert Bell. Autonomous Rendezvous and Docking Technologies-Status and Prospects[A]. Space Systems Technology and Operations Conference 2003[C]. Orlando Florida.
    [38] Johnson, Eric N, Calise, Anthony, J, Watanabe, Yoko. Real-time Vision-based Relative Navigation[A]. AIAA Guidance, Navigation, and Control Conference Proceedings, 2006[C]. American Institute of Aeronautics and Astronautics.
    [39] Hablni, Hari, Boeing Co, Huntington Beach. Autonomous Relative Navigation, Attitude determination, pointing and tracking for spacecraft rendezvous[A]. 2003 AIAA Guidance, Navigation, and Control Conference and Exhibit[C]. Austin TX: American Institute of Aeronautics and Astronautics.
    [40] Jianping Yuan, Jianjun Luo, Xiaomou Dou and Qun Fang. Relative Navigation for Multi-spacecraft System with GPS[J]. Aerospace and Electronic Systems Magazine IEEE, 25-28.
    [41] Jian Wang, Baigen Cai. A Low-cost Integrated GPS/SINS Navigation System for the Land Vehicle[A]. Intelligent Transportation Systems, 2003[C]. IEEE: 1022-1026.
    [42] Nguyen Ho Quoc, Hee-Jun Kang. A GPS/INS Integrated System for Land Vehicle Application[A]. SICE-ICASE International Joint Conference 2006[C]. Bexco, Busan: IEEE. 482-487.
    [43] Andy Wu, Douglas H. Hein. Stellar Inertial Attitude Determination for LEO Spacecraft[A]. Proceedings of the 35th Conference on Decision and Control[C]. Kobe, Japan: IEEE.3237-3244.
    [44]仲元昌. GPS/INS组合系统在飞船自主定位中的应用[J].重庆大学学报,2002,25(7):30-32.
    [45] E. Mooij, Q.P.Chu. Tightly-coupled IMU/GPS Re-entry Navigation System[A]. AIAA Guidance, Navigation and Control Conference and Exhibit[C]. Monterey, California: American Institute of Aeronautics and Astronautics.
    [46]张贵明,黄顺吉. GPS/SINS全组合系统确定SAR卫星的轨道和姿态[J].系统工程与电子技术,2002,,24(5):65-69.
    [47] Sasiadek J.Z. , Hartana, P. Sensor Fusion for Navigation of an Autonomous Unmanned Aerial Vehicle[A]. 2004 IEEE International Conference on Robotics&Automation[C]. New Orieans, LA: IEEE. 4029-4034.
    [48]景韶光,陈新海. GPS/SINS组合导航系统在飞航导弹中的应用[J].西北工业大学学报,1997,15(1):79-83.
    [49]刘建业,袁信,孙永荣.惯性组合导航系统的融合技术研究[J].南京航空航天大学学报,1997,29(4):372-377.
    [50] F X Cao, D K Feng and J Ma. Low Cost SINS/GPS Integration for Land Vehicle Navigation[A]. The IEEE 5th International Conference on Intelligent Transportation Systems[C]. Sigapore: IEEE. 910-913.
    [51] Brumo M. Scherzinger, Joseph J. Hutton and J. Christopher. Low Cost Inertial/GPS Integrated Position and Orientation System for Marine Applications[A]. Position Location and Navigation Symposium, IEEE 1996[C]. IEEE. 452-456.
    [52] Rajtilok Chakravarty and David F. Chichka. Including Vision Information in a GPS/INS Fusion Filter[A]. AIAA Guidance, Navigation, and Control Conference and Exhibit 21-24 August 2006. Keystone, Colorado, American Institute of Aeronautics and Astronautics.
    [53] Bouvet D., Garcia G. Improving the accuracy of dynamic localization systems using RTK GPS by identifying the GPS latency[A]. Proceedings of the 2000 IEEE International conference on Robotics & Automation[C]. San Francisco, CA. 2525-2530.
    [54] Farrell J., Grewal M., Djodat M. and Barth M. Differential GPS with latency compensation for autonomous navigation[A]. Proceedings of the 1996 IEEE International Symposium on Intelligent control[C]. Dearbom, MI. 20-25.
    [55] Philippe Bonnifait, Pascal Bouron, Paul Crubillé, and Domminique Meizel. Data fusion of four ABS sensors and GPS for an enhanced localization of car-like vehicles[A]. Proceedings of the 2001 IEEE International Conference on Robotics & Automation[C]. Seoul, Korea. 1597-1602.
    [56] Grewal M.S. , Farrell J. and Barth M. Application of DGPS/INS to automobile navigation with latency compensation.
    [57] William Kwan , Thomas Devries , Lawrence Lupash and John Mclean. AC-130U aircraft GPS-INS integration.
    [58] Denis Bouvet and Ga?tan Garcia. GPS latency identification by Kalman filtering.
    [59] Jan Wendel, Andreas Maier, Jürgen Metzger and Gert F. Trommer. Comparison of extended and Sigma-Point Kalman Filters for tightly coupled GPS/INS integration[A]. AIAA Guidance, Navigation, and Control Conference and Exhibit 2005[C]. San Francisco, California.
    [60] Shan Mohiuddin, Mark L. Psiaki. Filtered Dual-frequency Carrier Phase Differential GPS for Relative Navigation of High-Altitude Spacecraft[A]. AIAA Guidance, Navigation, and Control Conference and Exhibit 2006[C]. Keystone, Colorado: American Institute of Aeronautics and Astronautics.
    [61]唐树明,刘智敏. GPS载波相位平滑伪距精度分析与应用探讨[J].测绘信息与工程,2005,30(3):37-39.
    [62] Hatch R. The Synergism of GPS Code and Carrier Measurements[A]. The 3rd Int. Geo. Symp. on Satellite Doppler Positioning[C]. New Mexico.
    [63]杨春钧.载波相位差分GPS/惯性组合导航[J].南京航空航天大学学报,2000,32(1):25-30.
    [64]田亚军. GPS载波相位整周模糊度的解算[J].制导与引信,2003,24(4):50-53.
    [65] Weidong Ding. Integration of MEMS INS with GPS carrier phase derived velocity: a new approach[J].
    [66] Farrell, J.L. Carrier Phase processing without integers[A]. Proceedings of the Institute of Navigation 57th Annual Meeting 2001[C]. Albuquerque, NM,USA.423-428.
    [67] Farrel, J.L. GPS/INS-a very different way[A]. Proceedings of the Institute of Navigation 57th Annual Meeting 2001[C]. Albuquerque, NM, USA. 715-721.
    [68] Farrel, J.L. GPS/INS-streamlined[J].Navigation: Journal of the Institute of Navigation, 2002, 49(4):171-182.
    [69] M.Ge, G.Gendt, M.Rothacher, C.Shi and J.Liu. Resolution of GPS carrier-phase ambiguities in precise point positioning with daily observations. Springer
    [70] Wendel, J. , Meister O., M?nikes, R. and Trommer , G.F. Time-differenced carrier phase measurements for tightly coupled GPS/INS integration[A]. Proceedings of Institute of Navigation/IEEE Position , Location, and Navigation Symposium 2006[C].San Diego.54-60.
    [71] Ben K. H. Soon,Steve Scheding, Hyung Kuen Lee. An Approach to Aid INS Using Time-Differenced GPS Carrier Phase Measurements. Springer.
    [72] Luis Serrano, Don Kim and Richard B. Langley. A single GPS receiver as a real-time accurate velocity and acceleration sensor[A].ION GNSS 2004[C].Long Beach, California.
    [73]刘志俭. GPS载波相位差分技术、捷联惯性导航系统初始对准技术及其组合技术研究[D].长沙:国防科技大学博士学位论文,2003:95-98.
    [74] Oscar L. Colombo, Udayan V. Bhapkar, Alan G Evans. Inertial-aided Cycle-slip Detection/Correction for Precise, Long-Baseline Kinematic GPS.
    [75] Mark L. Psiaki and Shan Mohiudinn. Modeling Analysis, and Simulation of GPS Carrier Phase for Spacecraft Relative Navigation[A]. AIAA Guidance Navigation, and Control Conference and Exhibit 2005[C]. San Francisco, California: American Institute of Aeronautics and Astronautics.
    [76] Psiaki M. L. Block Acquisition of Weak GPS Signals in a software Reciever[A]. Proceedings of the ION GPS 2001[C]. Salt Lake City, Utah. 2838-2850.
    [77] Psiaki M. L. and Jung H. Extended Kalman Filter Methods for Tracking Weak GPS Signals[A]. Proceedings of the ION GPS 2002[C]. Portland OR. 2539-2553.
    [78] Thomas D. Powell, Phillip D. Martzen, Steve B. Sedlacek and Chia-chun Chao. GPS Signals in a Geosynchronous Transfer Orbit:―Falcon Gold‖Data Processing.
    [79] Coil J.A.―Falcon Gold– Orbit Determination Above the GPS Constellation[A]. Proceedings 11th AIAA/USU Conference on Small Satellites 1997.
    [80] Michael C. Moreau, Edward P. Davis and J. Russell Carpenter. Results from the GPS Flight Experiment on the High Earth Orbit AMSAT Oscar-40 Spacecraft[A]. ION GPS 2002 Conference[C]. Portland ,OR.
    [81] George Davis. GPS-based Navigation and Orbit Determination for the AMSAT AO-40 Satellite[A]. AIAA Guidance, Navigation, and Control Conference and Exhibit 2002[C]. Monterey, California: American Institute of Aeronautics and Astronatutics.
    [82] Oliver Balbach, Bernd Eissfeller and Günter W. Hein. Tracking GPS above GPS Satellite Altitude : First Results of the GPS Experiment on the HEO Mission Equator-S[J]. IEEE, 1998, 243-249.
    [83]余江林,刘东升.利用GPS对地球静止轨道卫星定轨的可行性[J].空间科学学报,2000,(4):36-40.
    [84] J. D. Kronman. Experience Using GPS for Orbit Determination of a Geosynchronous Satellite[A]. ION GPS 2000[C]. Salt Lake City, UT. 1622-1626.
    [85]俞朔春,高益军.基于GPS的静止轨道卫星自主定轨技术研究[J].航天控制,2005,23(4):35-40.
    [86]韩健,刘岩,原洪峰.星载GPS地球静止轨道卫星自主定轨的新方法[J].测绘学院学报,2005,22(3):166-168.
    [87]袁安存. GPS信噪比与测距精度[J].船用导航雷达,2006,(4):8-11.
    [88] Psiaki, M.L. Autonomous orbit determination for two spacecraft from relative position measurements[J]. Journal of Guidance, Control and Dynamics, 1999, 22(2): 305-312.
    [89]刘广军,吴晓平,田庆新. GPS用于航天器交会对接的方案与模糊度OTF解算研究[J].航天控制,2001,(3):54-59.
    [90] Gregory F. Ivey and Eric N. Johnson. Investigation of methods for target state estimation using vision sensors[A]. AIAA Guidance, Navigation, and Control Conference and Exhibit 2005[C]. San Francisco, California.
    [91] Hari B. Hablani. Autonomous relative navigation, attitude determination, pointing and tracking for spacecraft rendezvous[A]. AIAA Guidance, Navigation, and Control Conference and Exhibit 2003[C]. Austin, Texas.
    [92] Yang Yong, Miao Lingjuan. GDOP Results in All-in-view Positioning and in Four Optimum Satellites Positioning with GPS PRN Codes Ranging[A]. Positioning Location and Navigation Symposium 2004[C]. IEEE: 723-727.
    [93] Jijie Zhu. Calculation of Geometric Dilution of Precision[J]. IEEE Transactions 1992 on Aerospace and Electric Systems, 1992, 28(3): 893-895.
    [94] Enge P.K., Kalafus, R.M., Ruane M.F. Differential Operation of the Global Positioning System[J]. IEEE, 1998, 26(7):48-60.
    [95] Counselman C. C. and S. A. Gourevitch. Miniature Interferometer Terminals for Earth Surveying: Ambiguity and Multipath with Global Positioning System[J]. IEEE Transactions on Geoscience and Remote Sensing, 1981, 19(4):244-252.
    [96]郑冲.双星/道路组合定位技术及基于双星定位系统的快速定向技术研究[D].长沙:国防科技大学,2005,8-9.
    [97] Han, S. and C. Rizos. Improving the Computational Efficiency of the Ambiguity Function Algorithm[J]. Journal of Geodesy, 1996, 70(6): 330-341.
    [98] Cocard, M. and A. Geiger. Systematic Search for All Possible Widelanes[A]. Proceedings of 6th International Geodetic Symposium on Satellite Positioning[C]. Columbus, Ohio. 312-318.
    [99] Frei. E. and G. Beutler. Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach―FARA‖: Theory and First Results[J]. Menuscripta Geodaetica, 1990, 15(4):325-356.
    [100] Conway, P. Montgomery, S. Rock, R. Cannon, and B. Parkinson. A New Motion-based Algorithm for GPS Attitude Integer Resolution[J]. Navigation, 1996, 43(2): 179-190.
    [101] Axelrad, P., Behre, C.P. Satellite Attitude Determination Based on GPS Signal-to-noise Ratio[J]. Proceedings of the IEEE, 1999, 87(1): 122-144.
    [102] P. J. G. Teuissen. A New Method for Fast Carrier Phase Ambiguity Estimation[A]. Proceedings of IEEE 1994[C], Las Vegas. 562-573.
    [103] P. J. G. Teunissen. Integer Least-squares Statistics for Three Frequency GPS/GNSS Ambiguity Resolution[J]. AIAA, 2000, 838-846.
    [104] Yunhua Wu, Xibin Cao, Dan Xue. Autonomous Relative Navigation for Formation Flying Satellites[A]. Systems and Control in Aerospace and Astronautics 2006 ISSCAA[C]. 332-337.
    [105] Son-Goo Kim, John L. Crassidis, Yangcheng , Adam M. Fosbury and John L. Junkins. Kalman Filtering for Relative Spacecraft Attitude and Position Estimation[A]. AIAA Guidance, Navigation, and Control Conference and Exhibit 2005[C]. San Francisco, California: American Institute of Aeronautics and Astronautics.
    [106] Robert Bell, Thomas Monphopoulos, Jun Pollack, John Collins, James R. Wattz and Richard E. Van Allen. Hardware-in-the Loop Tests of an Autonomous GN&C System for On-orbit Servicing[A]. AIAA-CA Section ISSTC Responsive Space Conference 2003[C].
    [107]车汝才,张洪华.追踪星跟踪空间非合作目标的相对轨道设计[J].航天控制,2006,24(5):40-45.
    [108]车汝才,张洪华.跟踪空间非合作目标的一种相对轨道确定方法研究[J].中国空间科学技术[J]. 2007,(4):7-13.
    [109]刘勇,徐世杰.基于两步多模型估计的非合作航天器相对导航[J].宇航学报,2008,29(2):576-600.
    [110]李立涛,杨旭,李顺利.针对非合作目标的中距离相对导航方法[J].吉林大学学报,2008,38(4):986-990.
    [111] Isao Kawano, Hiroshi Ueno, Yoshiyuki Ishijima, Tadashi Adachi and Takahiko Iijima. Study on Laser Rangefinder for Non-cooperative Rendezvous[A]. Proceedings of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space: i-SAIRAS 2003[J]JAPAN:NASA.
    [112]张世杰,曹喜滨,陈闽.非合作航天器间相对位姿的单目视觉确定系统[J].南京理工大学学报,2006,30(5):564-568.
    [113] Julie K. Thienel, Steven Z. Queen, John M. VanEepoel and Robert M. Sanner. Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission[A]. AIAA Guidance, Navigation, and Control Conference and Exhibit 2005[C]. San Francisco, California: American Institute of Aeronautics and Astronautics.
    [114] R.E.Kalman. A New Approach to Linear Filtering and Prediction Problems [J]. Trans. ASME. Basic Eng. 1960. 83-94.
    [115] Phan, Minh Horta and Lucas G. Juang. Improvement of Observer/Kalman Filter Identification(OKID) by Residual Whitening[A]. AIAA Guidance, Navigationand Control Conference, 1992[C]. Washington: American of Institute Aeronautics and Astronautics. 344-353.
    [116] Kuo Chien-Hsun, Chinvorarat Sinchai Huang and Jen-kuang. Closed-loop System Identification by Residual Whitening[A]. AIAA Guidance, Navigation and Control Conference and Exhibit 1998[C]. Boston , MA:American of Institute Aeronautics and Astronautics. 1630-1638.
    [117] Paul Vergez, Luke Sauter and Scott Dahlke. An Improved Kalman Filter for Satellite Orbit Predictions[J]. The Journal of the Astronautical Sciences, 2004, 52(3): 359-380.
    [118] Zhilan Xiong, Yanling Hao, Jinchen Wei and Lijuan Li. Fuzzy Adaptive Kalman Filter for Marine INS/GPS Navigation[A]. Mechatronics and Automation 2005 IEEE International Conference[C]. Niagara Falls, Canada:IEEE. 747-751.
    [119] Quanbo Ge, Zhulin Zheng, Sujun Zhang and Chenglin Wen. A Data Fusion Approach Based on Sequential and Strong Tracking Filters with Nonlinear Dynamic Systems[A]. Systems and Control in Aerospace and Astronautics 2006 ISSCAA[C]. IEEE. 1344-1349.
    [120] Kenefic, R.J., Goulette. P.J. Sensor Netting via the Discrete Time Extended Kalman Filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, 17(4): 482-489.
    [121] Myeong-Jongyu, Jang Gyo Lee and Chan Gook Park. Nonlinear Robust Observer Design for Strapdown Ins in-flight Alignment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 797-807.
    [122] Simon J. Julier, Jeffrey K. Uhlmann and Hugh F. Durrant-Whyte. A New Approach for Filtering Nonlinear Systems[A]. Proceedings of the American Control Conference 1995[C]. Seattle, Washington.
    [123] John L. Crassidis. Sigma-point Kalman Filtering for Integrated GPS and Inertial Navigation[A]. AIAA Guidance, Navigation, and Control Conference and Exhibit 2005[C]. San Francisco, California.
    [124] Matthew C. VanDyke, Jana L. Schwartz, and Christopher D. Hall. Unscented Kalman Filtering for Spacecraft Attitude State and Parameter Estimation.
    [125] Rodolph van der Merwe and Eric A. Wan. Sigma-point Kalman Filters for Nonlinear Estimation and Sensor-fusion-applications to Integrated Navigation[A]. AIAA Guidance, Navigation, and Control Conference and Exhibit 2004 [C]. Providence, Rhode Island.
    [126] John L. Crassidis and F. Landis Markley. Unscented filtering for spacecraft attitude estimation[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(4):536-542.
    [127] Kazufumi Ito and Kaiqi Xiong. Gaussian filters for nonlinear filtering problems[J]. IEEE Transaction on Automatic Control, 2000, 45(5):910-927.
    [128] Deok-Jin Lee and Kyle T. Alfriend. Adaptive Sigma Point Filtering for State and Parameter Estimation[A]. AIAA/AAS Astrodynamics specialist Conference and Exhibit 2004[C]. Providence, Rhode Island.
    [129] Jie Li, Yanru Zhong and Haipeng Ren. Speed Estimation of Induction Machines Using Squre Root Unscented Kalman Filter. IEEE 2005 ,674-679
    [130] Arulamppalam M S, Maskell S and Gordon N. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J]. IEEE Trans on Signal Processing, 2002, 50(2):174-188.
    [131] Hammersley J M, Morton K W. Poor Man’s Monte Carlo[J]. J of the Royal Statistical society B, 1954, 16(1):23-38.
    [132] GorCon N J, Salmond D J, Smith A F M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation[J]. IEEE Proceedins-F, 1993, 140(2):107-113.
    [133] Carine Hue, Jean-Pierre Le Cadre. Sequential Monte Carlo Methods for Multiple Target Tracking and Data Fusion[J]. IEEE Trans. on Signal Processing. February 2002, 50(2): 309-325.
    [134] X Wang, R Chen. Adaptive Bayesian Multiuser Detection for Synchronous CDMA with Gaussian and Impulsive Noise[J]. IEEE Trans. on Signal Processing, 2000, 48(7):2013-2029.
    [135] Kanekar A J, Feliach A. State Estimation Using Artificial Neural Networks[A]. Proceedings of IEEE Systems and Engineering Conference 1990[C]. IEEE. 552-556.
    [136]王子亮,房建成,全伟.基于遗传算法的多模型Kalman滤波算法及应用研究[J].北京航空航天大学学报,2004,30(8):748-752.
    [137]刘建娟,徐晓苏,刘锡祥.遗传优化小波神经网络在组合导航系统中的应用[J].中国惯性技术学报,2006,14(2):33-37.
    [138]柯熙政,席晓莉,陈坚,邓方林.熵理论在组合导航系统信息结构中的应用研究[J].宇航学报,2004,25(6):632-636.
    [139] D. Goshen-Mekin and I.Y. Bar-Itzhack. Observability Analysis of Piece-wise Constant Systems with Application to Inertial Navigation[A]. Proceedings of the 29th Conference on Decision and Control 1990[C]. Honolulu, Hawaii: IEEE.821-826.
    [140]帅平,陈定昌,江涌. GPS/SINS组合导航系统状态的可观测度分析方法[J].中国空间科学技术,2004,(2),12-19.
    [141]吴海仙,俞文伯,房建成. SINS/CNS组合导航系统的降阶模型研究[J].航天控制,2005,23(6):12-16.
    [142] Sinpyo Hong, Man Hyung Lee, Sun Hong Kwon and Ho Hwan Chun. A Car Test for the Estimation of GPS/INS Alignment Errors[J]. IEEE Trans. on Intelligent Transportation Systems, 2004, 5(3): 208-217.
    [143] Yeon Fyh Jiang, Yu Ping Lin. Error Estimation of INS Ground Alignment Through Observability Analysis[J]. IEEE Trans. on Aerospace and Electronic Systems, 1992, 28(1): 92-97.
    [144] Ihnsoek Rhee, Mamoun F. Abdel-Hafez and Jason L. Speyer. Observability of an Integrated GPS/INS During Maneuvers[J]. IEEE Trans. on Aerospace and Electronic Systems, 2004, 40(2):526-535.
    [145] Sinpyo Hong, Man Hyung Lee, Ho-Hwan Chun, Sun-Hong Kwon and Jason L. Speyer. Observability of Error States in GPS/INS Integration[J]. IEEE Trans. on Vehicle Technology, 2005, 54(2): 731-743.
    [146]何秀凤,刘建业,袁信. GPS/INS组合导航系统降阶滤波器设计[J].宇航学报,1997,18(3):75-79.
    [147]董文丽,孔金生.变维卡尔曼滤波算法在车辆导航系统中的应用[J].计算技术与自动化,2006,25(4):42-45.
    [148] Seung-Min Oh, Eric N. Johnson. Development of UAV Navigation System Based on Unscented Kalman Filter[A]. AIAA Guidance, Navigation, and Control Conference and Exhibit 2006[C]. Keystone, Colorado: American Institute of Aeronautics and Astronautics.
    [149] D. Goshen-Meskin and L.Y.Bar-Itzhack. Obsevability analysis of piece-wise constant systems-part II: application to inertial navigation in-flight alignment[J]. IEEE Transactions on Aerospace and Electronic systems, 1992, 28(4):1068-1075.
    [150] Rudolph van der Merwe and Eric A. Wan. The Square-root Unscented Kalman Filter for State and Parameter Estimation[A]. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing[C]. New York, 3461-3464.
    [151] Pio, R. L. Symbolic Representation of Coordinate Transform[J]. IEEE Transactions on Aerospace and Navigational Electronics, 1964, 11, 128-134.
    [152] Pio, R. L. Euler Angle Transformations[J]. IEEE Transactions on Automatic Control, 1966, 11(4): 707-715.
    [153] Bar-Itzhack, I. Y. The Program: an Essay Tool for Angular Position and Rate Computations[J]. Journal of the Astronautical Sciences, 1993, 41(4):519-529.
    [154] Jones, D. W. Quaternions Quickly Transform Coordinate Without Error Buildup[J]. EDN, 1995, 40(5): 95-100.
    [155] Bar-Itzhack, I. Y. and Idan, M. Recursive Attitude Determination from Vector Observations: Euler Angle Estimation[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(2): 152-157.
    [156] Dvornychenko, V. N. The Number of Multiplications Required to Chain Coordinate Transformations[J]. Journal of Guidance, Control, and Dynamics, 1985, 8(1): 157-159.
    [157] F. Landis Markley. Attitude error reperesentations for Kalman filtering[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(2):311-319.
    [158] W.F.Phillips, C.E.Hailey and G.A.Gebert. A review of attitude kinematics for aircraft simulation[A]. AIAA Modeling and Simulation Technologies Conference and Exhibit 2000[C]. Denver, CO: American Institute of Aeronautics and Astronautics.
    [159] Panagiotis Tsiotras and James M. Longuski. Comments on a new parameterization of the attitude kinematics. AIAA
    [160] Panagiotis Tsiotras, James L. Junkins and Hanspeter Schaub. Higher order cayley transforms with applications to attitude representations. AIAA
    [161] Xueyuan Jiang and Guangfu Ma. Spacecraft attitude estimation from vector measurements using particle filter. AIAA
    [162] Shuster M.D. A survey of attitude representations[J]. Journal of the Astronautical Sciences, 1993,41(4):439-517.
    [163] Broucke, R. A. On the Use of Poincare Surfaces of Section in Rigid Body Motion[J]. Journal of Astronautical Sciences, 1993, 41(4): 593-601.
    [164] Kolve, D. I. Describing an Attitude[A]. Advances in the Astronautical Sciences , Proceedings of the 16th AAS Rocky Mountain Guidance and Control Conference 1992[C]. Keystone, CO: Univelt Inc, 289-303.
    [165] Don N. Pittman and Chris E. Roberts. Determining inertial errors from navigation-in-place data.IEEE
    [166] Yeon Fuh Jiang and Yu Ping Lin. Error estimation of INS ground alignment through observability analysis[J]. IEEE Transactions on Aerospace and Electronic systems, 1992, 28(1):92-97.
    [167] Jinhua Xu, Jiang-ning Xu Xiaofeng Zhang and Tao Zhu. Application of reduced-order extended Klman filter in marine MS860 GPS/inertial navigation system[J]. Journal of Chinese Inertial Technology, 2007,15(3):299-306.
    [168] Titterton D.H. and Weston J.L. Strapdown inertial navigation technology[M]. UK: MPG Books Limited, Bodmin, Cornwall, 2004.
    [169] IEEE Std 647-2006, IEEE standard specification format guide and test procedure for single-axis laser gyros[S].
    [170]刘准,齐建宇,宋征宇.激光陀螺误差建模与估计研究[J].航天控制,2004,22(5): 45-48.
    [171] Yeon Fuh Jiang and Yu Ping Lin. Improved strapdown Coning algorithms[J]. IEEE Transactions on Aerospace and Electronic systems, 1992, 28(2):484-490
    [172] Yuanxin Wu, Xiaoping Hu, Dewen Hu, Tao Li and Junxiang Lian. Strapdown inertial navigation system algorithms based on dual quaternions[J]. IEEE Transactions on Aerospace and Electronic systems, 2005, 41(1):110-132.
    [173] J?rg.H.Hahn and Edward D.Powers. Implementation of the GPS to Galileo time offset
    [174] David E. Gaylor and E. Glenn Lightsey. GPS/INS Kalman Filter Design for Spacecraft Operating in the Proximity of the International Space Station[A]. AIAA Guidance, Navigation, and Control Conference and Exhibit 2003[C]. Austin, Texas: American Institute of Aeronautics and Astronautics.
    [175] James Rankin, Ph.D. , P.E. GPS and Differential GPS: An Error Model for Sensor Simulation[J]. IEEE, 1994, 260-266.
    [176] Zhao Chunmei, Ou Jikun and Yuan Yunbin. Positioning Accuracy and Reliability of Galileo, Integrated GPS-Galileo System Based on Single Positioning Model[J]. Chinese Science Bulletin, 2005, 50(2): 1252-1260.
    [177] Tseng-Chan Wang and James B. Collier. Applications of square-root information filtering and smoothing in spacecraft orbit determination. 825-829
    [178] J.R.Raol and G.Girija. Sensor data fusion algorithm using square-root information filtering. IEEE
    [179] Zhang Youmin, Zhang Hongcai and Dai Guanzhong. A new bias partitioned square-root information filter and smoother for aircraft flight state and parameter estimation[A].Proceedings of the 31st Conference on Decision and Control[C].Tucson Artzona,741-742
    [180] Mark L. Psiaki. Null-space square-root information filtering and smoothing for singular problems[A]. AIAA guidance, Navigation and Control Conference and Exhibit 2005[C]. San Francisco, American Institute of Aeronautics and Astronautics:1-15.
    [181]帅平,陈绍龙,吴一帆等. X射线脉冲星导航技术研究进展[J].空间科学学报,2007,27(2):169-176.
    [182]费保俊,孙维瑾,肖昱等. X射线脉冲星自主导航的基本测量原理[J].装甲兵工程学院学报,2006,20(3):59-63.
    [183]乔黎,刘建业,熊智等.基于X射线脉冲星的深空探测器自主导航方案[J].中国空间科学技术,2007,(6):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700