运用原子力显微术磁驱动模式研究骨关节炎软骨细胞生物力学特性的改变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     骨关节炎(Osteoarthritis,OA)是最常见关节疾病之一。其主要表现为关节软骨退变磨损和骨赘形成,导致关节肿胀、疼痛、畸形和功能障碍等。力学因素与骨关节炎之间有着密切的关系,在关节退行病变的开始和发展中起重要作用。软骨细胞力学是软骨细胞工程及软骨组织工程的基础和重要影响因素,种子细胞的三维培养和增殖与细胞的力学行为密切相关。了解软骨细胞在正常和病理条件下如何响应细胞外力信号及其调节情况,可进一步揭示软骨组织工程化细胞种植的最佳力学环境。而传统的单细胞力学研究多集中在单细胞整体平均力学特性的分析上,其常用的研究手段如微管吸吮法无法在细胞自然生活状态下进行力学检测,也不能提供细胞不同区域和部位更加精确的力学特性。为进一步分析细胞不同部位的力学特性和对应力刺激反应的差异,需要发展新的不损伤细胞的应力加载方法和生物学测量手段。这些方法所获得的基础信息将对实现体外大规模扩增培养软骨细胞以及软骨移植修复的发展和临床应用提供有益的帮助。
     研究目的
     运用原子力显微术(Atomic Force Microscopy,AFM)新近发展的磁驱动轻敲模式(Magnetic AC mode,MAC mode)能够对培养状态下的活细胞表面超微形貌结构进行更清晰的成像和对细胞不同部位进行力学测定的优点,来研究体外培养的正常人与骨关节炎患者活软骨细胞表面形貌结构及细胞核和细胞质不同部位力学特性的差异。
     研究方法
     体外培养正常人与骨关节炎患者的膝关节软骨细胞,运用MAC mode AFM在细胞培养的生活状态下对两组细胞的表面形貌进行高分辨成像,观察动态变化。并通过对细胞核与细胞质不同区域的力曲线(Force Curve)进行描述,分析软骨细胞核区与细胞质区的力学特性变化及细胞局部对力学刺激的反应情况。通过观察力曲线形态差异,分析正常与骨关节炎软骨细胞的力学特性差异。
     研究结果
     MAC mode AFM可实现生理条件下活软骨细胞的表面形貌超微结构的高分辨成像,同时可对液态培养环境中的附壁软骨细胞进行实时动态监测,观察细胞的生理活动现象。活软骨细胞细胞核区的可变形能力和弹性高于细胞质区(P<0.001),而表面粘滞性区别不显著(P>0.05)。骨关节炎软骨细胞细胞核区与细胞质区的可变形能力和弹性均明显低于正常软骨细胞(P<0.001),表面粘滞性也低于正常软骨细胞(P<0.001)。
     结论
     MAC Mode AFM不仅能进行活细胞的高分辨成像和实时动态观察,还可通过对单细胞局部施加微应力及描绘力曲线形态,来研究细胞不同区域的弹性和粘滞性等力学特性。活软骨细胞的细胞质区和细胞核区表现出不同的力学性质。骨关节炎软骨细胞的弹性和粘滞性等力学特性明显不同于正常软骨细胞。
The Mechanical Properties of Living Osteoarthritis Chondrocytes by Using Magnetic AC mode Atomic Force Microscopy
     Background Osteoarthritis (OA) is one of the most common articular diseases, with major clinical symptoms of articular cartilage degeneration and abrasion, and brings on joint pain and dysfunction. Mechanical factor has a close relationship with OA and plays a crucial role in the development of joint degeneration. Mechanical properties of chondrocytes is the foundation and key influence in chondrocyte engineering and cartilage tissue-engineering. The three dimensional culture of seed cells is tightly related to the mechanical behavior of chondrocytes. Our understanding of how chondrocytes responds to force loading and adjusts correspondingly can further reveal the best mechanical circumstance for articular cartilage cell implantation. Traditional cytomechanics research focus upon average mechanical properties of a single cell, and the methods used such as micropipette aspiration are unable to undergo mechanical detection in terms of in vitro live adhered culture cells and can not provide mechanical properties in various parts of living cells. In order to make an in-depth investigation regarding the mechanical properties at various parts of cells and the difference between reaction of local force stimulation, it's required to develop a new instrument of stress loading and biological measurement without damaging the cell. All these basic information obtained will greatly benefit the extensive spread of cultured chondrocytes in vitro and the development and clinical application of tissue-engineered cartilage repair and cells transplantation.
     Objective Studies on the topography and mechanical properties in different region of living normal and osteoarthritis chondrocytes in vitro by using the novel tapping mode atomic force microscopy (AFM) named magnetic AC mode AFM (MAC mode AFM).
     Methods The MAC mode AFM was carried out to observe the topographic details and dynamic state of the cultured normal and osteoarthritis human knee joint chondrocytes under the physiological state in vitro. Meantime, the force curve of MAC mode AFM was performed at certain regions to compare the mechanical properties of the nuclear area with its cytoplasm. Analyze the difference of mechanical properties and response of local force loading in different areas of normal and osteoarthritis chondrocytes.
     Results The high resolution imaging and time-lapse development of the living chondrocytes was successfully acquired by this experimental system. The force curve showed the much higher elasticity of nuclear region comparing with the body region in normal chondrocytes (P<0.001) and there was no obvious difference of surface viscosity between them (P>0.05). Either of nuclear and body region of osteoarthritis chondrocytes has a much lower elasticity (P<0.001) and a lower surface viscosity (P<0.001) than that of normal chondrocytes.
     Conclusions By using MAC Mode AFM, we can obtain high-resolution imaging, carry out real-time observation of living cells, and study such mechanical properties at various parts of the cell as elasticity and glutinosity through loading force on partial single cell and portraying change of force curve. Cytoplasmic and nuclear area of living chondrocytes represents different mechanical properties. The mechanical properties of osteoarthritis chondrocytes is obviously distinct with that of normal chondrocytes.
引文
1. Nerem RM.Shear force and its effect on cell structure and function. ASGSB Bull. 1991 Jul;4(2):87-94.
    2. Schwarzbauer JE. Cell migration: may the force be with you.Curr Biol. 1997 May 1; 7(5): R292-4. Review.
    3. Stephanou A, Tracqui P. Cytomechanies of cell deformations and migration: from models to experiments. C R Biol. 2002 Apr;325(4):295-308.
    4. Yang S, Saif T. Reversible and repeatable linear local cell force response under large stretches. Exp Cell Res. 2005 Apr 15;305(1):42-50.
    5.王小虎,卫小春,陈维毅.软骨细胞力学特性的研究进展.中华医学杂志2006,86(21):1502-04.
    6. Wilkins RJ, Browning JA, Urban JP. Chondrocyte regulation by mechanical load. Biorheology. 2000;37(1-2):67-74.
    7.郑诚功.骨科生物力学的研究进展.中华创伤骨科杂志.2004,6(1):43-45.
    8. G.Binning, C.F.Quate, C.Rohrer. Atomic Force Microscope. Phys, Rev, Lett, 56(9): 1986: 930-933.
    9.白春礼,田芳,罗克.扫描力显微术.北京:科学出版社,2000,7-32.
    10. P.P. Lehenkari, G.T. Charras, A. Nyka K, et al. Adapting atomic force microscopy for cell biology. Ultramicroscopy. 2000, (82): 289-295.
    11. Dufrene Y F. Atomic force microscopy, a powerful tool in microbiology. J Bacteriol.2002,184(19): 5205-5213.
    12. Daniel M C, Iw amoto H, Shao ZF. Atomic force microscopy in structural biology: from the subeellular to the submolecular. Journal of Electron Microscopy. 2000; 49(3): 395-406
    13. Ge G, Han D, Lin D,et al. MAC mode atomic force microscopy studies of living samples, ranging from cells to fresh tissue. Ultramicroscopy, 2007 Apr-May; 107(4-5):299-307.
    14. Yunxu S, Danying L, Yanfang R, et al. Three-dimensional structural changes in living hippocampal neurons imaged using magnetic AC mode atomic force microscopy.J Electron Microsc (Tokyo). 2006 Jun;55(3): 165-72. Epub 2006 Jun 14.
    15. Knecht S, Vanwanseele B, Stussi E.A review on the mechanical quality of articular cartilage -implications for the diagnosis of osteoarthritis. Clin Biomech (Bristol, Avon). 2006 Dec,21(10):999-1012.
    16. Griffin TM, Guilak F.The role of mechanical loading in the onset and progression of osteoarthritis. Exerc Sport Sci Rev. 2005 Oct,33(4):195-200.
    17. Boyd SK, Muller R, Zernicke RF. Mechanical and architectural bone adaptation in early stage experimental osteoarthritis.J Bone Miner Res. 2002 Apr;17(4):687-94.
    18. Trickey WR, Lee GM, Guilak F, et al. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J Orthop Res, 2000, Nov;18(6):891-8.
    19. Hochberg MC, Airman RD, Brandt KD, et al. Guidelines for the medical management of osteoarthritis. Part II. Osteoarthritis of the knee. American College of Rheumatology. Arthritis Rheum. 1995 Nov;38(11):1541-6.
    20. Pier C arlo B raga, D avide Ricci. Atomic F orce M icroscopy for B iomedical Methods and Applications. USA: Humana Press, 2004,105-124.
    21. Santos NC, Castanho MA.An overview of the biophysical applications of atomic force microscopy. Biophys Chem. 2004 Feb 1; 107(2): 133-49. Review.
    22. Charras G, Lehenkari P, Horton M. Biotechnological applications of atomic force microscopy. Methods Cell Biol. 2002;68:171-91.
    23. H.X. You, J.M. Lau,etc. Atomic force microscopy imaging of living cells: a study of the disruptive effect of cantilever tip on cell morphology. Ultramicroscopy 2000 Feb;82(1-4):297-305
    24. Le Grimellec C, Lesniewska E, et al. Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. Biophys J. 1998 Aug;75(2):695-703.
    25. Hansma PK, Cleveland JP , Radmacher M , et al. Tapping mode atomic force microscopy in liquids. Appl Phys Lett ,1994 ,64(13) :1738 -1740.
    26. Putman CA, van der Werf KO, de Grooth BG, et al. Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy.Biophys J. 1994 Oct;67(4):1749-53.
    27. Moreno-Herrero F, Colchero J, Gomez-Herrero J, et al.Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids.Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt l):031915. Epub 2004 Mar 31.
    28. Kawagishi T, Kato A, Hoshi Y, et al. Mapping of lateral vibration of the tip in atomic force microscopy at the torsional resonance of the cantilever. Ultramicroscopy. 2002 May;91(1-4):37-48.
    29. Rogers B, Manning L, Sulchek T, et al. Improving tapping mode atomic force microscopy with piezoelectric cantilevers. Ultramicroscopy. 2004 Aug;100(3-4):267-76. Erratum in: Ultramicroscopy. 2005 Jun;103(3):251-2.
    30. Henderson E, Haydon PG, Sakaguchi DS, et al.Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science. 1992 Sep 25;257(5078):1944-6.
    31. Henderson E, Sakaguchi DS.Imaging F-actin in fixed glial cells with a combined optical fluorescence/atomic force microscope. Neuroimage. 1993 Sep;l(2):145-50.
    32. Le Grimellec C, Lesniewska E, Giocondi MC, et al Simultaneous imaging of the surface and the submembraneous cytoskeleton in living cells by tapping mode atomic force microscopy.C R Acad Sci III. 1997 Aug;320(8):637-43.
    33. T Ushiki, S Yamatoto, J Hitomi, et al. Atomic force microscopy of living cells. Jpn J Appl Phys, 2000, 39: 3761-3764.
    34. Sharma A, Anderson KI, Muller DJ,et al. Actin microridges characterized by laser scanning confocal and atomic force microscopy. FEBS Lett. 2005 Mar 28;579(9):2001-8.
    35. Santacroce M, Orsini F, Perego C,et al.Atomic force microscopy imaging of actin cortical cytoskeleton of Xenopus laevis oocyte. J Microsc. 2006 Jul;223(Pt l):57-65.
    36. David G C,Krochmalnic G,Penman S, et al. A new method of preparing embeddment-free sections for transmission electron microscopy: Applications to the cytoskeletal framework and other three-dimensional networks [J]. J Cell Biol ,1984,98:1878-1885.
    37. Han D, Ma W, Liao F, et al.Time-series observation of the spreading out of microvessel endothelial cells with atomic force microscopy.Phys Med Biol. 2003 Dec 7;48(23):3897-909.
    38. Haga H, Nagayama M, Kawabata K, et al.Time-lapse viscoelastic imaging of living fibroblasts using force modulation mode in AFM.J Electron Microsc (Tokyo). 2000;49(3):473-81.
    39. Lehto T, Miaczynska M, Zerial M, et al. Observing the growth of individual actin filaments in cell extracts by time-lapse atomic force microscopy. FEBS Lett. 2003 Sep 11;551(1-3):25-8.
    40. Fehrenbacher A, Steck E, Roth W, et al.Long-term mechanical loading of chondrocyte-chitosan biocomposites in vitro enhanced their proteoglycan and collagen content. Biorheology. 2006;43(6):709-20.
    41. Lee DA, Noguchi T, Frean SP, et al.The influence of mechanical loading on isolated chondrocytes seeded in agarose constructs.Biorheology. 2000;37(1-2):149-61.
    42. Holmvall K, Camper L, Johansson S, et al. Chondrocyte and chondrosarcoma cell integrins with affinity for collagen type II and their response to mechanical stress. Exp Cell Res. 1995 Dec;221(2):496-503.
    43. Fioravanti A, Benetti D, Coppola G, et al. Effect of continuous high hydrostatic pressure on the morphology and cytoskeleton of normal and osteoarthritic human chondrocytes cultivated in alginate gels. Clin Exp Rheumatol. 2005 Nov-Dec;23(6):847-53.
    44. Capin-Gutierrez N, Talamas-Rohana P, Gonzalez-Robles A, et al. Cytoskeleton disruption in chondrocytes from a rat osteoarthrosic (OA) -induced model: its potential role in OA pathogenesis. Histol Histopathol. 2004 Oct;19(4): 1125-32.
    45. Mitchsion JM, Swann MM. The mechanical properties of the red cell surface I. the cell elastimeter. J. Exp. Biol. 1954: 31: 443-460.
    46. Sato M, Theret DP, Wheeler LT, et al.Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties.J Biomech Eng. 1990 Aug;112(3):263-8.
    47. Shiga T, Maeda N, Suda T, et al.A kinetic measurement of red cell deformability: a modified micropipette aspiration technique. Jpn J Physiol. 1979;29(6):707-22.
    48. Haider MA, Guilak F,An axisymmetric boundary integral model for assessing elastic cell properties in the micropipette aspiration contact problem.J Biomech Eng. 2002 Oct;124(5):586-95.
    49. Trickey WR, Baaijens FP, Laursen TA, et al. Determination of the Poisson's ratio of the cell: recovery properties of chondrocytes a fter release from complete micropipette aspiration. J Biomech. 2006;39(1):78-87. Epub 2005 Jan 13.
    50. 翟中和,王喜中,丁明孝,主编.细胞生物学.北京:高等教育出版社,2003.
    51. Benjamin M, Archer CW, Ralphs JR Cytoskeleton of cartilage cells. Microsc Res Tech. 1994 Aug 1;28(5):372-7.
    52. Langelier E, Suetterlin R, Hoemann CD,The chondrocyte cytoskeleton in mature articular cartilage: structure and distribution of actin, tubulin, and vimentin filaments. J Histochem Cytochem. 2000 Oct;48(10):1307-20.
    53. Trickey WR, Vail TP, Guilak F. The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J Orthop Res. 2004 Jan;22(1):131-9.
    54. Radmacher M. Measuring the Elastic Properties of Living Cells by the Atomic Force Microscope. Methods. Cell Biol. 2002, 68: 67-90.
    55. Green N H, Allen S, Davies M C, et al. Force sensing and mapping by atomic force microscopy. Trends in analytical chemistry, 2002, 21(1): 64-73.
    56. Darling EM, Zauscher S, Guilak F.Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthritis Cartilage, 2006 Jun;14(6):571-9. Epub 2006 Feb 14.
    57. Rotsch C, Radmacher M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J. 2000 Jan;78(1):520-35.
    58. Kidoaki S, Matsuda T, et al. Relationship between Apical Membrane Elasticity and Stress Fiber Organization in Fibroblasts Analyzed by Fluorescence and Atomic Force Microscopy. Biomech Model Mechanobiol, 2006, Nov;5(4):263-72.
    59. Haga H, Sasaki S, Kawabata K, et al. Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy, 2000, Feb;82(1-4):253-8.
    60. LA, Archer CW, Benjamin M, Ralphs JR, et al. Organization of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture. Durrant J Anat, 1999, Apr;194 (Pt 3):343-53.
    61. Fioravanti A, Benetti D, Coppola G, et al. Effect of continuous high hydrostatic pressure on the morphology and cytoskeleton of normal and osteoarthritic human chondrocytes cultivated in alginate gels. Clin Exp Rheumatol. 2005 Nov-Dec;23(6):847-53.
    62. Capin-Gutierrez N, Talamas-Rohana P, Gonzalez-Robles A, et al. Cytoskeleton disruption in chondrocytes from a rat osteoarthrosic (OA) -induced model: its potential role in OA pathogenesis.Histol Histopathol. 2004 Oct;19(4):1125-32.
    63. Fioravanti A, Nerucci F, Annefeld M,et al.Morphological and cytoskeletal aspects of cultivated normal and osteoarthritic human articular chondrocytes after cyclical pressure: a pilot study. 2003, Nov-Dec;21(6):739-46.
    64. Shyy.J.S,chien; Role of integrins in cellular response to mechonical stress and adhesion. Curr Opin Cell Biol,1997,9:707-713.
    65. Thomas.M,Quinn.Alan.J. Mechanical compression alter proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J Cell Sci,1998,111:573-583.
    66. Hotta H, Yamada H, Takaishi H, et al.Type II collagen synthesis in the articular cartilage of a rabbit model of osteoarthritis: expression of type II collagen C-propeptide and mRNA especially during early-stage osteoarthritis. J Orthop Sci. 2005 Nov;10(6):595-607.
    67. Hermansson M, Sawaji Y, Bolton M,et al.Proteomic analysis of articular cartilage shows increased type II collagen synthesis in osteoarthritis and expression of inhibin betaA (activin A), a regulatory molecule for chondrocytes. J Biol Chem. 2004 Oct 15;279(42):43514-21. Epub 2004 Aug 2.
    68. Buschmann MD, Gluzband YA, Grodzinsky AJ, et al. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995 Apr;108 (Pt 4):1497-508.
    69. Uchida A, Yamashita K, Hashimoto K , et al. The effect of mechanical stress on cultured growth cartilage cells. Connect Tissue Res, 1988,17: 305-311.
    70. Waldman SD, Spiteri CG, Grynpas MD, et al. Effect of biomechanical conditioning on cartilaginous tissue formation in vitro.J Bone Joint Surg Am. 2003;85-ASuppl 2:101-5.
    71. Zeng C, Morrison AR. Disruption of the actin cytoskeleton regulates cytokine-induced iNOS expression.Am J Physiol Cell Physiol. 2001 Sep;281(3):C932-40.
    72. Lotz M,Blanco FJ,von Kempis J,et al.Cytokine regulation of chondrocyte function. J Rheumatol, 1995,43(Suppl): 104-108.
    73. Westacott CI,Sharif M.Cytokines in osteoarthritis:mediators or markers of joint destruction.Semin Arthritis Rheum, 1996,25:254-272.
    74. Figensehau Y,Knutsen G,Shahazeydi S,et al.Human articular chondrocytes express functional leptin receptors. Biochemical and Biophysical Research Communications,2001,287:190-197.
    75. Cornish J,Callon K E,Bava U,et al.Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo.J Endocrinol,2002,175(2):405-415.
    76. Dumond H,Presle N,Terlain B,et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum,2003,48(11):3118-3129.
    77. Terlain B, Presle N, Pottie P, et al.Leptin: a link between obesity and osteoarthritis?Bull Acad Natl Med. 2006 Oct;190(7):1421-35; discussion 1435-7, 1475-7.
    1. G Binning, H Rohrer. Surface studies by scanning tunneling microscope. Phys. Rev. Lett.1982, 49(1):57-61.
    2. G.Binning, C.F.Quate, C.Rohrer. Atomic Force Microscope.Phys, Rev, Lett, 56(9): 1986:930-933.
    3. P.P. Lehenkari, G.T. Charras, A. Nyka K, M.A. Horton, Adapting atomic force microscopy for cell biology. Ultramicroscopy 2000 (82): 289-295
    4. Dufrene Y F. Atomic force microscopy, a powerful tool in microbiology. J Bacteriol, 2002, 184(19): 5205~5213
    5. Daniel M C, Iw amoto H, Shao ZF. Atomic force microscopy in structural biology: from the subcellular to the submolecular. Journal of Electron Microscopy, 2000; 49(3): 395-406
    6. Zlatanova J, Lindsay SM, Leuba SH. Single molecule force spectroscopy in biology using the atomic force microscope. Prog Biophys Mol Biol, 2000; 74 (122): 37-61.
    7. Hoyt Peter, Doktycz MJ, Warmack RJ, et al.Spin column isolation of DNA-protein interactions from complex protein mixtures for AFM Imaging. Ultramicroscopy. 2001, 86(1-2): 139-143
    8. Willemsen OH, SnelMM, Cam biA, et al. Biomolecular interactions measured by atomic force microscopy. Biophys J, 2000; 79(6): 3267-81
    9.白春礼,田芳,罗克.扫描力显微术.北京:科学出版社,2000.7~32
    10.鲁哲学,张志凌,庞代文.原子力显微镜技术及其在细胞生物学中的应用.科学通报,2005,50(12):1161-1166
    11.刘岁林,田云飞,陈红等.原子力显微镜原理与应用技术.现代仪器,2006,6,9-12.
    12. Hansma PK, Cleveland JP, Radmacher M, et al. Tapping mode atomic force microscopy in liquids[J]. Appl Phys Lett, 1994,64(13): 1738-1740.
    13. Butt H-J, Wolff E K, Gould S A C, et al. Imaging cells with atomi force microscope. J Struct Biol, 1990, 105:54~61
    14. McNally HA, Rajwa B, Sturgis J, et al. Comparative three-dimensional imaging of living neurons with confocal and atomic force microscopy. J Neurosci Methods. 2005 Mar 30; 142(2): 177-84.
    15. Kenneth AB, Peter FD, L al R. Shear-stress induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Cir Res, 1994; 74(1):163
    16. Rotsch C, Braet F, Wisse E, et al. AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biol Int. 1997 Nov;21(11): 685-96.
    17. Rotsch C, Radmacher M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J. 2000 Jan;78(1):520-35.
    18. Sasaki S, Morimoto M, Haga H, et al. Elastic properties of living fibroblasts as imaged using force modulation mode in atomic force microscopy. Arch Histol Cytol. 1998 Mar;61(1):57-63.
    19. McNally HA, Borgens RB.Three-dimensional imaging of living and dying neurons with atomic force microscopy. J Neurocytol. 2004 Mar;33(2):251-8.
    20. Spagnoli C, Beyder A, Besch SR,Drift-free atomic force microscopy measurements of cell height and mechanical properties. Rev Sci Instrum. 2007 Mar;78(3):036111.
    21. Yunxu S, D anying L, Yanfang R, e t a l.Three-dimensional s tructural c hanges in living hippocampal neurons imaged using magnetic AC mode atomic force microscopy. J Electron Microsc (Tokyo). 2006 Jun;55(3):165-72. Epub 2006 Jun 14.
    22. Schneider S W, Pagel P, Rotsch C, et al. Volume dynamics in migrating epithelial cells measured with atomic force microscopy. Pflüigers Arch-Eur J Physiol, 2000, 439: 297-303
    23. Noguchi C K A, Furuno T, Nakanishi M. Atomic force microscopy for studying gene transfection mediated by cationic liposomes with a cationic cholesterol derivative. FEBS Letters, 1998,421:69-72
    24. Jena BP , Schneider SW , Geibel JP , et al. Gi regulation of secretory vesicle swelling examined by atomic force microscopy. Proc Natl Acad Sci U S A ,1997 , 94(24) :13317- 13322.
    25. H endson E, H aydon P G, S akaguchiDS. Actin filament dynamicsin living g lial cells imaged by Atomic force microscopy. Science, 1992; 257 (5078) : 1944
    26. Hofinann UG, Rotsch C, Parak WJ,Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. J Struct Biol. 1997 Jul; 119(2): 84-91.
    27. Braet F, de Zanger R, Seynaeve C, et al. A comparative atomic force microscopy study on living skin fibroblasts and liver endothelial cells. J Electron Microsc(Tokyo), 2001, 50(3): 283-290.
    28. Haga H,Sasaki S,Kawabata K, et al. Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy. 2000 Feb;82(1-4):253-8.
    29. Radmacher M. Measuring the Elastic Properties of Living Cells by the Atomic Force Microscope. Methods. Cell Biol. 2002, 68: 67-90.
    30. Alcaraz J,Buscemi L,Grabulosa M,et al. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys J,2003,84 (3):2071-79.
    31. Green N H, Allen S, Davies M C, et al. Force sensing and mapping by atomic force microscopy. Trends in analytical chemistry, 2002,21(1): 64-73
    32. Sugawara M , Ishida Y, Wada H. Local mechanical properties of guinea pig outer hair cells measured by atomic force microscopy. Hear Res , 2002 ,174(1 - 2) :222 -229.
    33. Manfred Radm acher. Measuring the elastic properties of biological samples with the AFM. IEEE Eng M ed Biol Mag, 1997; 16 (2) : 47
    34. Kidoaki S, Matsuda T, Yoshikawa K.Relationship between Apical Membrane Elasticity and Stress Fiber Organization in Fibroblasts Analyzed by Fluorescence and Atomic Force Microscopy. Biomech Model Mechanobiol. 2006 Nov;5(4):263-72. Epub 2006 Jun 10
    35. Domke J, Dannohl S, Parak WJ, et al.Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy. Colloids Surf B Biointerfaces. 2000 Dec 30;19(4):367-379.
    36. Haga H, Nagayama M, Kawabata K, et al.Time-lapse viscoelastic imaging of living fibroblasts using force modulation mode in AFM. J Electron Microsc (Tokyo). 2000;49(3):473-81.
    37. Yoshikawa Y, Yasuike T, Yagi A, et al.Transverse elasticity of myofibrils of rabbit skeletal muscle studied by atomic force microscopy. Biochem Bipphys Res Commun. 1999 Mar 5;256(1):13-9.
    1. Broom ND, Myers DB. A study of the structural response of wet hyaline cartilage to various loading situations. Connect Tissue Res, 1980, 7 : 227-237.
    2. Freeman PM, Natarjan RN, Kimura JH, et al. Chondrocyte cells respond mechanically to compressive loads. J Orthop Res, 1994,12: 311-20.
    3. Guilak F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J B iomech, 1995,28: 1529-1542.
    4. Guilak F, Ratcliffe A, Mow VC. Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J Orthop Res. 1995 May; 13(3):410-21.
    5. Buschmann MD, Gluzband YA, Grodzinsky AJ, et al. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995 Apr;108(Pt4):1497-508.
    6. Uchida A, Yamashita K, Hashimoto K , et al. The effect of mechanical stress on cultured growth cartilage cells. Connect Tissue Res, 1988,17: 305-311
    7. Waldman SD, Spiteri CG, Grynpas MD, et al. Effect of biomechanical conditioning on cartilaginous tissue formation in vitro.J Bone Joint Surg Am. 2003;85-A Suppl 2:101-5.
    8. Darling EM, Zauscher S, Guilak F.Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthritis Cartilage, 2006 Jun;14(6):571-9. Epub 2006 Feb 14.
    9. Schwartz Z, Swain LD, Kelly DW, et al. Regulation of prostaglandin E2 production by vitamin D metabolites in growth zone and resting zone chondrocyte cultures is dependent on cell maturation.Bone. 1992;13(5):395-401.
    10. Grad S, Lee CR, Gorna K, et al. Surface motion upregulates superficial zone protein and hyaluronan production in chondrocyte-seeded three-dimensional scaffolds.Tissue Eng. 2005 Jan-Feb;11(1-2):249-56.
    11. Darling EM, Athanasiou KA. Retaining zonal chondrocyte phenotype by means of novel growth environments.Tissue Eng. 2005 Mar-Apr;11(3-4):395-403.
    12. Guilak F, Erickson GR, Ting-Beall H.P. The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. J. Biophys J. 2002 Feb; 82(2): 720-7.
    13. Alexopoulos LG, Erickson GR, Guilak F. A method for quantifying cell size from differential interference contrast images: validation and application to osmotically stressed chondrocytes. J Microsc. 2002 Feb; 205(Pt 2): 125-35.
    14. Freeman JA, Cheshire LB, MacRae TH. Epithelial morphogenesis in developing artemia: the role of cell replication, cell shape change, and the cytoskeleton.Dev Biol. 1992 Aug; 152(2): 279-92.
    15. Benjamin M, Archer CW, Ralphs JR.Cytoskeleton of cartilage cells. Microsc Res Tech. 1994 Aug 1; 28(5): 372-7.
    16.翟中和,王喜中,丁明孝主编.细胞生物学.北京:高等教育出版社,2003.
    17. Langelier E, Suetterlin R, Hoemann CD,The chondrocyte cytoskeleton in mature articular cartilage: structure and distribution of actin, tubulin, and vimentin filaments. J Histochem Cytochem. 2000 Oct;48(10): 1307-20.
    18. Trickey W R, Vail T P, G uilak F.The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J Orthop Res. 2004 Jan;22(1): 131-9.
    19. Haga H, Nagayama M, Kawabata K,Time-lapse viscoelastic imaging of living fibroblasts using force modulation mode in AFM. J Electron Microsc (Tokyo). 2000;49(3):473-81.
    20. Durrant LA, Archer CW, Benjamin M, Ralphs JR Organisation of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture. J Anat. 1999 Apr; 194(Pt 3):343-53.
    21. Guilak F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J B iomech, 1995, 28: 1529-1542.
    22. Quacci D, Dell'Orbo C, Pazzaglia UE. Morphological aspects of rat metaphyseal cartilage pericellular matrix. J Anat. 1990 Aug;171:193-205.
    23. Zhu W, Mow VC, Koob TJ, et al. Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments. J Orthop Res, 1993, 11: 771-781.
    24. Larson CM, Kelley SS, Blackwood AD, et al.Retention of the native chondrocyte pericellular matrix results in significantly improved matrix production.Matrix Biol. 2002 Jun;21(4):349-59.
    25. Guilak F.The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage.Biorheology. 2000;37(1-2):27-44.
    26. Guilak F, Jones WR, Ting-Beall HP, et al. The deformation behavior and mechanical properties of chondrocytes in articular cartilage.Osteoarthritis Cartilage. 1999 Jan;7(1):59-70.
    27. Guilak F, Mow VC. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J Biomech. 2000 Dec;33(12):1663-73.
    28. Guilak F, Alexopoulos LG, Haider MA ,et al. Zonal uniformity in mechanical properties of the chondrocyte pericellular matrix: micropipette aspiration of canine chondrons isolated by cartilage homogenization. Ann Biomed Eng. 2005 Oct;33(10):1312-8.
    29. Jones W.R, Ting-Beall H.P.Lee G M,et al. Mechanical properties of human chondrocytes and chondrons from normal and osteoarthritic cartilage. Traps Orthp Res Soc, 1997,22:199.
    30. Jones WR, Ting-Beall HP, Lee GM ,et al. Alterations in the Young's modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J Biomech. 1999 Feb;32(2): 119-27.
    31. Trickey WR, Lee GM, Guilak F. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J Orthop Res. 2000 Nov;18(6):891-8.
    32. Trickey WR, Vail T P, G uilak F.The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J Orthop Res. 2004 Jan;22(1):131-9
    33. Alexopoulos LG, Haider MA, Vail TP, et al. Alterations in the mechanical properties of the human chondrocyte pericellular matrix with osteoarthritis. J Biomech Eng. 2003 Jun;125(3):323-33.
    34. Alexopoulos LG, Williams GM, Upton ML, et al.Guilak F.Osteoarthritic changes in the biphasic mechanical properties of the chondrocyte pericellular matrix in articular cartilage. J Biomech. 2005 Mar;38(3):509-17.
    35. Alexopoulos LG, Setton LA, Guilak F. The biomechanical role of the chondrocyte pericellular matrix in articular cartilage. Acta Biomater. 2005 May;1(3):317-25. Epub 2005 Mar 4.
    36. Xie J, Ihara M, Jung Y, et al.Mechano-active scaffold design based on microporous poly(L-lactide-co-epsilon-caprolactone) for articular cartilage tissue engineering: dependence of porosity on compression force-applied mechanical behaviors. Tissue Eng. 2006 Mar;12(3):449-58.
    37. Mauck RL, Soltz MA,Wang CC. et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng,2000,122(3): 252-260.
    38. Bonassar LJ, Grodzinsky AJ, Frank EEL et al.The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J Orthop Res, 2001, 19(1): 11-17.
    39. Malaviya P. Nerem RM. Fluid-induced shear stress stimulates chon-drocyte proliferation partially mediated via TGF-β1. Tissue Eng, 2002, 8(4): 581-590.
    40. Smith RL Donlon B S, Gupta MK, et al. Effects of fluid. Induced shear on articular chondrocyte morphology and metabolism in vitro E. J Orthop Res, 1995, 13(6): 824-831.
    41. Vunjak-Novakovic G. Martin I. Obadovic B. et al. Bioreactor cultivation conditions modulates the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res, 1999, 17: 130-138.
    42. Temenof JS, MikosAG. Review: Tissue engineering for generation of articular cartilage. Biomaterial, 2000, 21: 431-433.
    43.Wright M , Jobanputra P , Bavington C , et al . Effects of intermittent pressure-induced strain on the electrophysiology of cultured human chondrocytes: Evidence for the presence of stretch-activated membraneion channels. Clin Sci, 1996, 90(1): 61—71.
    44. Fukuda K, Asada S, Kumano F, et al. Cyclic tensile stretch on bovine articular chondrocytes inhibits protein kinase C aetivity. J Lab Clin Med, 1997, 130(2): 209 —215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700