大黄酸在刺参、南美白对虾体内的代谢及大黄对刺参的免疫影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究分为三个部分,第一部分以刺参为实验对象,研究了单次体腔注射大黄酸后药物在刺参肌肉、呼吸树、体腔液和体壁中的代谢规律,探讨刺参对该药物的代谢特征,为生产中的实际应用提供理论指导。第二部分,研究南美白对虾单次肌肉注射大黄酸后药物在其肌肉、血淋巴、肝胰脏和鳃中的药物代谢动力学,为大黄及大黄制剂在治疗对虾烂鳃病方面提供组方依据。第三部分,在刺参空白饲料(鼠尾藻粉和海泥)中添加不同剂量的大黄粉,研究大黄对刺参免疫方面的影响,从免疫方面指导大黄的使用。主要结果如下:
     一、大黄酸在刺参体内的药动学研究:在水温14±1℃条件下,给健康刺参体腔注射5.33mg/kg剂量的大黄酸,利用高效液相色谱(HPLC)法,测定大黄酸在其体腔液、呼吸树、肌肉、体壁中的药物浓度时间变化,数据分析采用3p87药代学软件。结果表明:除体壁中的大黄酸代谢规律符合一级吸收一室模型外,大黄酸在其它三种组织中均符合一级吸收二室模型。大黄酸在上述四种组织中的达峰时间(Tmax)分别为0.26h、0.67h、0.54h和0.88h;消除半衰期(T1/2β)分别为6.24h、26.1h、71.48h和8.93h;药时曲线下总面积(AUC)分别为69.29mg/L?h、105.6mg/L?h、132.38mg/L?h、20.99mg/L?h。以上研究表明,体腔注射大黄酸后,药物在刺参各组织中能迅速达到峰值,具有吸收快、消除半衰期长、代谢慢的特点,主要经呼吸树排出体外。
     二、大黄酸在南美白对虾体内的研究:采用循环水槽养殖南美白对虾,水温控制在26~27℃。利用高效液相色谱法对南美白对虾单次肌肉注射5mg/kg大黄酸后的药物浓度进行检测,研究大黄酸在南美白对虾体内的药代动力学。测定南美白对虾单次肌注大黄酸后,不同时间点药物在其血淋巴、鳃、肌肉和肝胰脏中的浓度变化,利用3p97对药物-时间浓度进行拟合。实验结果表明大黄酸在南美白对虾四种组织中的药动学模型均符合一级吸收一室模型,主要药动学参数如下:大黄酸在南美白对虾血淋巴、鳃、肌肉、肝胰脏中的达峰时间(Tmax)分别为0.17h、0.23h、0.44h和2.73h;最大药物Cmax分别为1.81mg/L、2.06mg/L、0.44mg/L和2.31mg/L;表观分布容积(V)分别为2.62L/kg、2.33L/kg、10.35L/kg和0.96L/kg;药时曲线下总面积(AUC)分别为5.85mg/L?h、11.54mg/L?h、2.18mg/L?h和17.56mg/L?h;消除半衰期(T1/2β)分别为2.13h、3.72h、3.12h和2.36h。大黄酸在南美白对虾各组织中能较快达到药物浓度峰值,具有吸收快、分布广泛,清除能力强、消除速度快等特点。大黄酸在南美白对虾鳃部的含量较高,为养殖生产中使用大黄制剂治疗南美白对虾烂鳃病的合理性提供了理论依据。
     三、大黄对刺参非特异性免疫的影响:刺参分为四组,一个空白对照组(投喂鼠尾藻和海泥),和三个分别含2%、5%、10%(质量分数)大黄粉的剂量实验组。各组连续投喂相应饲料28天,之后投喂空白饵料2周。在不同时间取样,测定刺参体腔液中的溶菌酶(LSZ)、超氧化物歧化酶(SOD)、碱性磷酸酶(AKP)、和酸性磷酸酶(ACP)的活性。结果显示,10%剂量组第七天时的LSZ活力比空白组提高了一倍,在第二十一天时2%剂量组和5%剂量组相对于空白组酶活分别提高了92.86%和96.43%;三个剂量组的SOD活力均在第七天达到最高,分别比空白组提高了4.36%、8.87%和9.28%,第二十八天时各剂量组酶活均低于空白组,且差异性显著(P<0.05);2%和5%剂量组的AKP酶活低于空白组,10%剂量组的AKP酶活在第二十一天时达到最高值,与空白组间的差异极显著,为空白组酶活的6.99倍;相对于空白各剂量组ACP的最大酶活分别为3.55倍、3.79倍和8.61倍。研究结果表明,大黄能提高刺参的非特异性免疫,建议投喂含2%和5%大黄的饲料三周,含10%大黄的饲料两周,可提高刺参的非特异性免疫,持续投喂时间不宜过长,各免疫指标在停止投喂药饵两周左右可恢复至平常水平。
This study is divided into three parts. In the first part Apostichopus japonicus is used as a test object. Pharmacokinetics of rhein was studied on coelomic fluid, respiratory trees, muscle and integument of Apostichopus japonicus after single dose injection, providing a theoretical guidance for the production of practical application. The second part is about pharmacokinetics of rhein in Penaeus vannamei after a single intramuscular injection. The concentrations of rhein in muscle, hemolymph, hepatopancreas and gill were detected, which can provide a basis for rhubarb and its preparation in the treatment of shrimp gill-rot disease. The third part is studied the effects of rhubarb on non-specific immune in Apostichopus japonicus, guiding the use of rhubarb in the aspect of immunization on Apostichopus japonicus. The main results are as follows:
     Part one: Studies were conducted on the pharmacokinetics of rhein in Apostichopus japonicus. Coelomic fluid, respiratory trees, muscle and integument were sampled after coelomic injecting with a single dose of rhein 5.33mg/kg. The contents of rhein were determined by high performance liquid chromatography. The results showed that the peak time (Tmax), elimination half-time (T1/2β) and the area under the concentration-time curve (AUC) in Coelomic fluid, respiratory trees, muscle and integument were as follows: Tmax 0.26h, 0.67h, 0.54h and 0.88h ; T1/2β6.24h, 26.1h, 71.48h and 8.93h; AUC 69.29mg/L?h, 105.6mg/L?h, 132.38mg/L?h and 20.99mg/L?h. The concentration-time course of rhein in coelomic fluid, respiratory trees and muscle could be described by a two-compartment model, except for the course in integument being described by a one-compartment model. These results are suggesting that rhein can reach the peak time with a high speed absorption in Apostichopus japonicus after injection, while it is slowly metabolized with a long elimination half-time. Rhein is mainly excreted from respiratory trees.
     Part two: Pharmacokinetics of rhein in Penaeus vannamei was studied. The concentrations of rhein in hemolymph, gill, muscle and hepatopancreas were determined by high performance liquid chromatography after intramuscular with a single dose of rhein 5mg/kg. The results showed that the peak time (Tmax), maximum concentration (Cmax), apparent volume of distribution (V), elimination half-time (T1/2β) and the area under the concentration-time curve (AUC) in hemolymph, gill, muscle and hepatopancreas were as follows: Tmax 0.17h、0.23h、0.44h and 2.73h; Cmax 1.81mg/L、2.06mg/L、0.44mg/L and 2.31mg/L; V 2.62L/kg、2.33L/kg、10.35L/kg and 0.96L/kg; T1/2β2.13h、3.72h、3.12h and 2.36h; AUC 5.85mg/L?h、11.54mg/L?h、2.18mg/L?h and 17.56mg/L?h. The concentration-time course of rhein in the four tissues could be described by a one-compartment model. These results are suggesting that rhein can reach the peak time with a high speed absorption in Penaeus vannamei after injection, and it is quickly metabolized with a short elimination half-time. Rhein mainly exists in the gill, which provides a theoretical basis on the Rhubarb treatment gill-rot disease in aquaculture production of Penaeus vannamei.
     The activities of lysozyme (LSZ), superoxide dismutase (SOD), alkaline phosphatase (AKP), and acid phosphatase (ACP) were monitored in the coelomic fluid of Apostichopus japonicus at different days after feeding Rhubarb diet. The contents of rhubarb in diet were 2%、5% and 10%(by mass), besides a control group was set up. The time of feeding Rhubarb was 28 days, after that blank diet was fed. The results showed that the LSZ activity of 10% dose group has doubled the activity of the control group on the seventh day, while 2% and 5% dose group relative to the activity of the control group increased by 92.86% and 96.43% on the twenty-one day; SOD activity of all of the three dosage groups were highest in the seventh day, respectively increased 4.36%, 8.87% and 9.28% than that of the control group, but all of them were lower than the blank Group on the twenty-eighth days with a significant (P <0.05) difference; AKP activities of 2% and 5% dose group were lower than that of the control group, while the AKP activity of the 10% dose group reached the highest value on the twenty-day, which was 6.99 times than that of the blank one, displaying with a significant difference; relative to the control group, the maximum activity of ACP in each group were 3.55 times, 3.79 times and 8.61 times. The results show that rhubarb can increase non-specific immunity of Apostichopus japonicus. We recommend feeding with 2% and 5% of rhubarb for three weeks, containing 10% rhubarb diet two weeks can improve non-specific immunity of Apostichopus japonicus. Stop feeding about two weeks can restore to the normal level of immune parameters.
引文
[1.] Calogero Canicattì, NicolòParrinello. Hemaglutinin and hemolysin level in coelomic fluid from Holothuria polii (Echinodermata) following sheep erythrocyte injection. Biological Bulletin, 1985, 168: 175~182
    [2.] Calogero Canicatti. Lysosomal enzyme pattern in Holothuria polii coelomocytes. Journal of Invertebrate Pathology, 1990, 56(1): 70~74
    [3.] Cheng T C. Selective induction of release of hydrolases from Crassostrea virginica hemocytes by certain bacteria. Journal of invertebrate pathology, 1992, 59: 197~200
    [4.] Cheng T C. The role of Lysosimales in molluscan cellar response to immunologic challeng. Comparative pathology, 1978, 4: 59~71
    [5.] De Witte P, Lemli J. Excretion and distribution of [14C]rhein and [14C]rhein anthrone in rat. J Pharm Pharmacol, 1988, 40(9): 652~655
    [6.] Didier Jans, Philippe Dubois, Michel Jangoux. Defensive mechanisms of holothuroids (Echinodermata): Formation, role, and fate of intracoelomic brown bodies in the sea cucumber Holothuria tubulosa. Cell and tissue fesearch, 1996, 283(1): 99~106
    [7.] Dohke K. Studies on prephenoloxidase-activating enzyme from cuticle of the silkworm Bombyx mori. I. Activation reaction by the enzyme. Archives of biochemistry and biophysics, 1973, 157: 203~209
    [8.] Eliseikina M G, Magarlamov T Y. Coelomocyte Morphology in the Holothurians Apostichopus japonicus (Aspidochirota: Stichopodidae) and Ccumaria japonica (Dendrochirota: Cucumariidae). Russian Journal of Marine Biology, 2002, 28(3): 197~202
    [9.] Eric D.Park, Donald V. Lightner, Nicholas Milner, Michael Mayersohn, Douglas L. Park, James M. Gifford, Thomas A. Bell. Exploratory bioavailability and pharmacokinetic studies of sulphadimethoxine and ormetoprim in the penaeid shrimp, Penaeus vannamei. Aquaculture, 1995, 130: 113~118
    [10.] F. Regoli, C. Cerrano, E. Chierici, M. C. Chiantore, G.. Bavestrello, Seasonal variability of prooxidant pressure and antioxidant adaptation to symbiosis in the Mediterranean demosponge Petrosia ficiformis. Marine ecology-progress series, 2004, 275: 129~137
    [11.] Fontaine AR and Lambert P. The fine structure of the leukocytes of the holothurian, Cucumaria miniata. Canadian Journal of Zoology, 1977, 55(9): 1530~1544
    [12.] Fridovich et al. Superoxide dismutases: An adaptation to a parmagnetic gas. Journal of biology chemistry, 1989, 264: 7761~7764
    [13.] Grinde B,Lie O, Poppe. Species and individual variation in lysozyme activity in fish of interest in aquaculture. Aquaculture, 1988, 68: 299~304
    [14.] Guanghong Wu, Yong Meng, Xiaohua Zhu, Cheng Huang. Pharmacokinetics and tissue distribution of enrofloxacin and its metabolite ciprofloxacin in the Chinese mitten-handed crab, Eriocheir sinensis. Analytical biochemistry, 2006, 358(1): 25~30
    [15.] Haug T, Kjuul A K, Styrvold O B et al. Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens(Asteroidea). J Invertebr pathol, 2002(81): 94~102
    [16.] HE Chi-yang, LONG Yuan-yuan, PAN Jun-lan, et al. Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples. Journal of Biochemical and Biophysical Methods, 2007, 70 (2): 133~150
    [17.] Hikima S, Hikima J, Rojtinnakorn J et al. Characterization and function of kuruma shrimp lysozyme possessing lytic activity against vibrio species. Gene, 2003, 316: 187~195
    [18.] Hongsheng Yang, Xiutang Yuan, Yi Zhou, Yuze Mao, Tao Zhang, Ying Ling. Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation. Aquaculture Research, 2005, 36: 1085~1092
    [19.] Hua Han, Yang Hua Yi, Ling Li, Xi Hua Wang, Bao Shu Liu et al. A new triterpene glycoside from sea cucumber Holothuria leucospilota. Chinese chemical letters, 2007, 18: 161~164
    [20.] Je—Hyun Lee, Jong Moon Kim, Chungsook Kim. Pharmacokinetic analysis of rhein in Rheum undulatum L.. Journal of Ethnopharmacology, 2003, 84: 5~9
    [21.] Jollès P, JollèJ. What’s new in lysozyme research? Always a model system, today and yesterday. Molecular and cell biochemistry, 1984, 63: 165~189
    [22.] Kazuaki Uno, Takahiko Aoki, Ryuji Ueno, Iwao Meada. Pharmacokinetics and metabolism of sulphamonomethoxine in rainbow trout (Oncorhynchus mykiss) and yellowtail (Seriola quinqueradiata) following bolus intravascular administration. Aquaculture, 1997, 153: 1~8
    [23.] Kazuaki Uno, Takahiko Aoki, Walai Kleechaya, Varin Tanasomwang, Lila Ruangpan. Pharmacokinetics of oxytetracycline in black tiger shrimp, Penaeus monodon, and the effect of cooking on the residues. Aquaculture, 2006, 254: 24~31
    [24.] Kazuaki Uno. Pharmacokinetics of oxolinic acid and oxytetracycline in kuruma shrimp, Penaeus japonicus. Aquaculture, 2004, 230:1~11
    [25.] Langston A L, Hoare R. The effect of temperature on nonspecific defence parameters of three strains of juvenile Atlantic halibut (Hippoglossus hippoglossus L.). Fish&shellfish immunology, 2002, 12(1): 61~76
    [26.] Lenonard L.A., Strandberg J.D., Winkelstein J.A.. Complement-like activity in the sea star, Asterias forbesi. Developmental and comparative immunology, 1990, 14(1): 19~30
    [27.] Liang J.W., Hsiu S.L., Wu P.P., Chao P.D.. Emodin pharmacokinetics in rabbits. Planta Med, 1995, 61(5): 406~408
    [28.] Lou Ann Reed, Thomas C. Siewicki, Jaymin C. Shah. Pharmacokinetics of oxyetracycline in the white shrimp, Litopenaeus setiferus. Aquaculture, 2004, 232: 11~28
    [29.] Matranga V. Molecular aspects of immune reactions in Echinodermata. Invertebrate immunology, 1996, 15: 235~247
    [30.] Mohney L L, Lightner D V, Willans R R. Bioencapsulation of therapeutic quantities of the anibacterial romet-30 in nauplii of the brine shrimp Artemia and in the nematode Panagrellus redivivus. Journal of the world aquaculture soci y, 1990, 21: 186~191
    [31.] Moon J H, Ryu H S, Yang H S. Antimutagenic and anticancer effect of glycoprotein and chondroitin sulfates from sea cucumber. The Korean society of food science and nutrition, 1998, 27(2): 350~358
    [32.] Muroga Kiyokuni. Viral and bacterial of marine fish and shellfish in Japanese hatcheries. Aquaculture, 2001, 202(1-2): 23~44
    [33.] Nigrelli, RF. The effects of holothurin on fish and mice with Sarcoma l80. Zoologica, 1952, 37: 89~90
    [34.] Okamura Nobuyuki, Abo Naomi, Aono Mio et al. Simultaneous Determination of Principal Ingredients in Kampo Medicines by High-Performance Liquid Chromatography. Nat Med, 2002, 56(1): 1~6
    [35.] Peng Ying, Sun Jian-Guo, Wang Guang-ji. Pharmacokinetic study of rhein and itscarboxyl-esterification derivatives in rats. Chinese journal of nature medicines, 2009, 7(3): 228~233
    [36.] Peter T. Gallagher, Terry A. Hicks, Andrew P. Lightfoot, W.Martin Owton. A new synthesis of rhein. Tetrahedron Letters, 1994, 35(2): 289~292
    [37.] Plytycz B and Seljelid R. Bacterial clearance by the sea urchin, Strongylocentrotus droebachiensis. Developmental&Comparative Immunology, 1993, 17(3): 283~289
    [38.] Qinghui Ai, Kangshen Mai, Lu Zhang, Beiping Tan, Wenbing Zhang, Wei Xu, Huitao Li. Effects of dietaryβ-1,3 glucan on in innate immune response of large yellow croaker, Pseudosciaena crocea. Fish&shellfish immunology, 2007, 22(4): 394~402
    [39.] S. Abedini, R. Namdari, F.C.P.Law. Comparative pharmacokinetics and bioavailability of oxytetracycline in rainbow trout and chinook salmon. Aquaculture, 1998, 162: (23~32)
    [40.] Smith L.C., Chang L., Britten R.J.. Sea urchin genes expressed in activated coelomocytes are identified by expressed sequence tags. Complement homologues and other putative immune response genes suggest immune system homology within the deuterostomes. The journal of immunology, 1996, 156(2): 593~602
    [41.] Steven M.Plakas, Kathleen R.El Said, Steven M. Musser. Pharmacokinetics, tissue distribution, and metabolism of flumequine in channel catfish (Ictalurus punctatus). Aquaculture, 2000, 187: 1~14
    [42.] Tomomitsu Hatakeyama, Haruna Nagatomo, Nobuyuki Yamasaki. Interaction of the Hemolytic Lectin CEL-Ⅲfrom the marine Invertebrate Cucumaria echinata with the Erythrocyte Menmbrane. The journal of biological chemistry, 1995, 270(8): 3560~3564
    [43.] Tort B, Rotllant J, Liarte C et al.. Effects of temperature decrease on feeding rates, immune indicators and histopathological changes of gilthead seabream Sparusaurata fed with an experimental diet. Aquaculture, 2004, 229: 55~65
    [44.] U. Scholz, G. Garcia Diaz, D. Ricque, L.E. Cruz Suarez, F. Vargas Albores, J. Latchford. Enhancement of vibriosis resistance in juvenile Penaeus vannmei by supplementation of diets with different yeast products. Aquaculture, 1999, 176(3-4): 271~283
    [45.] Zhang R Q, Chen Q X, Zheng W Z. Inhibition kinetics of green crab (Scylla serrata) alkaline phosphatase activity by dithiothreitol or 2-mercptoethanol. International journal of biochemistry and cell biol, 2000, 32(8): 865~872
    [46.] Zhen Meng, Jianzhong Shao, Lixin Xiang. CpG oligodeoxynucleotides activate grass carp (Ctenopharyngodon idellus) macrophage. Dev comp immunol, 2003, 27(4): 313~321
    [47.]蔡中华,陈成勋,邢克智,郭永军.四种中药对鲤鱼非特异性免疫功能的影响.天津家学院学报,1998,5(2):31~34
    [48.]曹立民,李健,刘淇,王群.凡纳滨对虾摄食诺氟沙星强化卤虫的药代动力学研究.海洋科学,2006,30(5):45~51
    [49.]曹云丽,黄强,班春兰,蒋元力,石清湘.碱性溶液萃取大黄蒽醌类产品动力学的研究. 化工时刊,2007,21(7):22~23
    [50.]曹云丽,黄强,班春兰,蒋元力.对中药大黄中蒽醌类物质的提取分离方法的研究.云南中医中药杂志,2005,26(1):36~38
    [51.]陈楠.对虾生物学.青岛:青岛海洋大学出版社,1992,31~35
    [52.]陈清西,陈素丽,石艳.长毛对虾碱性磷酸酶性质.厦门大学学报:自然科学版,1996,35(2):257~261
    [53.]陈孝煊,吴志新,殷居易,李莉.大黄、穿心莲、板蓝根和金银花对异育银鲫免疫机能的影响.中国水产科学,2003,10(1):36~40
    [54.]陈孝煊,吴志新,张厚梅.大黄与黄连对二种淡水虾血细胞吞噬活性的影响.水生生物学报,2002,26(2):201~204
    [55.]陈忻,周建平,李玉红.大黄等中药抗自由基损伤研究.北京中医,1995,5:48~49
    [56.]陈新,梅以成.一种大黄酸和双醋瑞因的合成方法.中国专利,1789229,2006-06-21
    [57.]陈学宏,李英伦.中药大黄在草鱼体内的药动学研究:[硕士学位论文].四川:四川农业大学,2006
    [58.]陈妍.大黄蒽醌提取物与黄霉素对罗氏沼虾生长及抗病力的影响.科学养鱼,2010,5:45~46
    [59.]陈玉露.甲砜霉素和氟甲砜霉素在凡纳滨对虾体内的药代动力学和对药酶影响的研究:[硕士学位论文].四川:四川农业大学,2009
    [60.]崔颖,李灵芝,朱江. HPLC法测定小鼠骨中大黄酸浓度.中国新药杂志,2008,17(13):1154~1156
    [61.]戴万生,赵荣华.发酵法对大黄蒽醌类成分含量的影响.云南中医中药杂志,2005,26(1):38~39
    [62.]丁春林,李文全.大菱鲆肠炎病的中草药防治.科学养殖,2010,7:57
    [63.]段玉清,张海晖,徐菲菲,闫永胜,李金凤,梁凯.分子印迹-固相萃取法选择性分离大黄酸的研究.林产化学与工业, 2009,29(5):35~40
    [64.]樊永平,周勇,严宣左.大黄水煎液对小鼠免疫功能的影响.中国中医药科技,1995,2(2):24-25
    [65.]范克俭,王群,李健,战文斌.磺胺甲基异噁唑在中国明对虾体内的药代动力学研究.齐鲁渔业,2005,22(8):1~5
    [66.]范克俭.土霉素和新诺明在中国对虾体内的药代动力学研究:[硕士学位论文].青岛:中国海洋大学,2005
    [67.]房文红,邵锦华,施兆鸿,杨宪时.斑节对虾血淋巴中诺氟沙星含量测定及药代动力学.水生生物学报,2003,27(1):13~17
    [68.]房文红,郑国兴.肌注和药饵给药下诺氟沙星在南美白对虾血淋巴中的药代动力学.水生生物学报,2006,30(5):541~546
    [69.]古家齐.中草药防治鱼病.农家科技,2002,10:21
    [70.]桂蜀华,祝晨晨,梁远园,林吉,叶其馨.不同工艺大黄提取物在大鼠体内的药动学研究.中草药,2005,36(5):687~689
    [71.]郭丹,陈娜娜,杨西晓,侯连兵.高效毛细管电泳法测定生发灵酊中阿魏酸和大黄酸的含量.中成药,2005,27(4):402~404
    [72.]郭美姿,徐海荣,李孝生.大黄酸药理作用的研究进展.国外医学中医中药分册,2002,24(3):139-143
    [73.]韩刚,康欣,翟冠钰,范颖,王彦雪,刘莉,喇万英.甘草与大黄配伍对大黄酸在大鼠体内药动学的影响.中国实验方剂学杂志,2010,16(9):72~74
    [74.]韩华,易杨华,李玲,潘敏翔,孙鹏.糙海参中具有细胞毒活性的三萜皂苷.中国药物化学杂志,2010,20(4):290~297
    [75.]金纯,鲍银童,刘长宝,金定国.金氏痔疮膏中大黄酚的药代动力学实验研究.温州医学院学报,2005,35(5):421~422
    [76.]金鑫,李灵芝,唐存贵.大黄酸-雌酮对大鼠成骨细胞增殖和分化的作用.武警医学院学报,2008,17(6):481~484
    [77.]居晓伟,侯晓华,范桂平,白淑芳,张静泽,安茜,陈虹.大黄酸-N-β-羟乙基替加氟酯的合成及其骨亲和性.武警医学院学报,2008,17(5):375~377
    [78.]柯浩,王江勇,彭绪运,石和荣,黄郁葱,陈毕生.复议中草药对杂色鲍幼鲍血淋巴中几种酶活力的影响.海洋水产研究,2004,25(5):74~79
    [79.]黎巧临.中草药在渔业生产中的应用.科学养鱼,2002,7:47
    [80.]李丹,韩永龙,孟祥乐,孙习鹏,余奇,郭澄.大黄酸对大鼠肝细胞色素P450 3A酶活性的抑制.药物研究,2010,29(3):282~285
    [81.]李静云,李健,王群,战文斌.氟苯尼考3种不同给药方式在中国明对虾体内的药代动力学.海洋科学,2006,30(7):64~68
    [82.]李静云,李健,王群,战文斌.磺胺间甲氧嘧啶在中国对虾体内的药代动力学研究.海洋水产研究,2006,27(4):6~11
    [83.]李兰芳,张勤增,解丽君,杨凤旭,张建新.通脉活血灵胶囊中大黄素在大鼠血浆中的浓度及药代动力学研究.河北医药,2006,28(11):1020~1022
    [84.]李兰芳,张勤增,解丽君,杨凤旭.通脉活血灵胶囊中大黄酚在大鼠血浆中的浓度及药代动力学研究.河北医药,2006,12(12):1207~1209
    [85.]李兰生,王勇强.氯霉素在对虾体内的动力学研究.色谱,1997,15(5):431~434
    [86.]李莉,陈孝煊.投喂板蓝根、大黄对草鱼肠内细菌的影响.内陆水产,2002,8:35~37
    [87.]李娜,李健,王群.米诺沙星在中国对虾体内的代谢动力学及在养殖系统中的消除.安徽农业科学,2008,36(24):10480~10483
    [88.]李素莹,周歧存.大黄对凡纳滨对虾生长和非特异性免疫指标的影响.广东海洋大学学报,2009,29(6):36~41
    [89.]李秀才.大黄的研究进展.中国药学杂志,1998,33(10):581~584
    [90.]李自林.线性扫描极谱法测定大黄酸.重庆师范学院学报,1998,15(3):36~39
    [91.]林道.大黄可防治草鱼多种疾病.特种经济动植物,2003,6:44
    [92.]刘波,葛鹏彪,周群兰,苏永腾,何义进,殷国俊,谢骏,徐跑.大黄蒽醌提取物对饲养建鲤生长的影响.动物学杂志,2007,42(5):141~148
    [93.]刘凯,郑海生,李应东.大黄酸的药理作用研究述略.中医药学刊,2004,22(9):1732~1734.
    [94.]刘树青,江晓路,牟海津、王慧谧,管华诗.免疫多糖对中国对虾溶菌酶、磷酸酶和过氧化物酶的作用.海洋与湖沼,1999,30(3):278~283
    [95.]刘晓云,包振民,范瑞青,谭金山,高澜.刺参呼吸树的超微结构观察与研究.海洋科学,2005,29(12):25~30
    [96.]刘勇,杨季芳,陈昌福.免疫增强剂对河鲫鱼血清白细胞吞噬和溶菌酶活性的影响.河北渔业,2007,2:11~15
    [97.]刘钊,杨占秋,肖红,文利.中药大黄抗柯萨奇病毒作用的实验研究.中南民族大学学报,2005,24(4):34~37
    [98.]吕惠子,朴光春,郑光浩.反相高效液相色谱法测定朝鲜大黄中大黄酸的含量.延边大学医学学报,2009,32(1):34~36
    [99.]吕廷婷.大黄酚和大黄素甲醚的分离以及微波辅助合成大黄酸:[硕士学位论文].重庆:重庆大学,2010
    [100.]马迪,唐阁.大黄免疫功能的研究进展.中医药学刊,2006,24(8):1505~1507
    [101.]马燕如,赵肖玉,徐正.大黄酚和大黄酸的合成.合成化学,2007,15(2):244~246
    [102.]马越鸣,赵阳,谢华,王天明,朱世敏,吴耀平,张宁.大鼠体内桃核承气汤蒽醌类药代动力学研究.中国药理学通报,2005,21(10):1267~1270
    [103.]毛芝娟,卓华龙.锯缘青蟹细菌性传染病的病原菌研究.水产科学,2001,20(1):8~11
    [104.]聂月美.饲料维生素C对中华鳖免疫、抗应激和体组成的影响:[硕士学位论文].杭州:浙江大学,2006
    [105.]潘莹,江海燕,黄拓,张林丽.虎杖不同酒制品大黄素及大黄酸含量比较.时珍国医国药,2007,18(10):2375~2376
    [106.]齐君,杨秋芳.外用大黄治疗难愈性外伤及皮肤溃疡.现代中医药,2003,5:59
    [107.]任燕怡,龚翰林,唐文富,万美华,黄熙.雷尼替丁在健康大鼠体内对大承气汤中大黄酸药代动力学的影响.中西医结合学报,2009,7(9):868~872
    [108.]沈鸣.海参的化学成分和药理研究进展.中成药,2001,23(10):758~761
    [109.]宋盛宪.南美白对虾无公害健康养殖.北京:中国农业出版社,2004. 2~8
    [110.]宋维彦,苏永全,潘滢,曾凡荣,游欣欣.磺胺甲基噁唑和恩诺沙星在日本囊对虾体内的药代动力学研究.海洋科学,2010,34(7):22~27
    [111.]苏永腾.大黄蒽醌提取物对罗氏沼虾生长、免疫及抗应激的影响:[硕士学位论文].南京:南京农业大学,2007
    [112.]孙丽霞,任金荣,单保恩,李元振,何兰欣,艾军.大黄制剂对小鼠的急性毒性和自然免疫调节作用.癌变.畸变.突变,2006,18(1):35~37
    [113.]孙奕,陈騳.刺参体内外微生物组成及其生理特性的研究.海洋与湖沼,1989,20(4):300~307
    [114.]孙颖民,孙振兴,李秉钧,话修明,刘立明.海水养殖实用技术手册.北京:中国农业出版社,2000,307~309
    [115.]谭力,袁倚盛,杨俊伟,裘奇.高效液相色谱法测定人血浆中大黄酸含量及药动学研究.金陵医院学报,1998,11(2):112~115
    [116.]谭晓红,张丹参,张力,安芳,姜华,王书华.大黄酚在兔体内药动学的研究.中国医院药学杂志,2006,26(8):947~949
    [117.]童胜强,盛柳青,颜继忠,王石磊. pH梯度洗脱高速逆流色谱制备性分离决明子中的橙黄决明素和大黄酸.中国现代应用药学杂志,2009,26(5):391~394
    [118.]万宗明,陈虹,曹波,王莹,牟洪军.大黄酸鬼臼毒素酯对人骨肉瘤细胞作用机制的研究.中草药,2008,39(1):67~71
    [119.]万宗明,陈虹,谢文利,王莹,晋玉章.大黄酸衍生物RH-01抑制骨肉瘤生长作用研究.武警医学院学报, 2008,17(6):469~472
    [120.]王春林.大黄治疗草鱼赤皮病初试.江西水产科技,2010,4:40
    [121.]王慧春,张成总.唐古特大黄蒽醌衍生物的提取与分离.青海师范大学学报(自然科学版),2006,4:88~90
    [122.]王新宏,范广平,安睿,王智华.大鼠血浆中大黄蒽醌甙元的HPLC分析方法学研究.中成药,1997,19(1):37-39
    [123.]王亚军.大黄在水产动物疾病上的应用.渔业致富指南,2008,8:31
    [124.]王印庚,方波,张春云,荣小军.养殖刺参保苗期重大疾病“腐皮综合征”病原及其感染源分析.中国水产科学,2006,13(4):610~616
    [125.]王芸,李健,刘淇,王群. 5种中草药对凡纳滨对虾生长及非特异性免疫功能的影响. 安徽农业科学,2007,35(26):8236~8239
    [126.]王志谦,王咏和.鱼类寄生虫病的中草药防治.渔业致富指南,2003,19:49
    [127.]王志谦,项仁龙.草鱼出血病中草药疗法.齐鲁渔业,2004,21(4):42
    [128.]韦恺丽,韦波.南美白对虾淡水养殖试验.广西水产科技,2003,35~37
    [129.]魏凤玲,常明,原国强.大黄中结合蒽醌的致泻作用及药动学研究.中国实验方剂学杂志,1999,5(6):53~55
    [130.]魏良兵,孟楣,夏伦祝.薄层色谱扫描法测定黄枳胶囊中大黄酚、大黄素和大黄酸的含量.中国中医药信息杂志,2009,16(10):47~48
    [131.]吴江,赵景丽. RP-HPLC法同时测定唐古特大黄中大黄酸、大黄素、大黄素甲醚含量.青海科技,2006,5:33~34
    [132.]夏敏,尹起范,夏士月,上官荣昌.高效液相色谱法测定大黄酸的含量.理化检验-化学分册,2006,42:832~835
    [133.]肖崇厚,杨松松,洪筱坤等.中药化学.上海:上海科学技术出版社,2002,218~219
    [134.]谢华,马越鸣,王天明,叶福媛.桃核承气汤及单味大黄中大黄酸在家兔体内的药代动力学.中国药理与临床,2005,21(2):1~3
    [135.]谢麟,长青.论动物用中草药剂的新药开发.兽药与饲料添加剂,2002,7:24~26
    [136.]谢忠明,隋锡林,高绪生.海参海胆培养殖技术.北京:金盾出版社,2007,10
    [137.]辛颖,耿慧春,张嵩,刘照振,马英丽.三黄泻心汤及大黄中大黄酸在大鼠体内的药代动力学.中国实验方剂学杂志,2009,15(3):56~59
    [138.]熊川男,李伟,白雪芳,杜昱光.凝集素作为海参免疫增强剂在人工养殖海参中的应用.饲料工业,2005,26(18):30~32
    [139.]胥楠,陈晓理,芦灵军,次仁桑珠.大黄对小鼠肠道免疫分泌物的影响.中国中药杂志,2005,30(18):1441~1443
    [140.]徐维海,林黎明,朱校斌,王新亭,黄新苹,康兴伦.恩诺沙星及其代谢产物在吉富罗非鱼、中国对虾体内的残留规律研究.水产科学,2004,23(7):5~8
    [141.]闫世俊.合理确定给药间隔时间.医学导报,2000,19(3):279~280
    [142.]严志红,黎拒难,唐睿.碳糊电极吸附催化伏安法测定大黄酸.药物分析杂志,2010,30(2):329~331
    [143.]杨宏博,冯平,李宝才.大黄抗病毒作用的研究进展.华西药学杂志,2009,24(4):428~430
    [144.]杨嘉龙,周丽,绳秀珍,邢婧,战文斌.养殖刺参溃疡病病原菌RH2的鉴定及其生物学特性分析.水产学报,2007,31(4):504~511
    [145.]杨晶晶,张苏阳,韩泳平.正交法优化大黄中大黄酸的提取工艺的研究.西南民族大学学报·自然科学版,2010,36(3):418~420
    [146.]杨莉莉,郭红,李达,张艳,吴军.大黄在皮肤病治疗中的应用.四川中医,2008,26(5):32~33
    [147.]杨立,范玉峰,张庆,袁新.中草药治疗草鱼出血病效果观察.中国水产,2005,9:56~57
    [148.]杨先乐等.水产养殖用药处方大全.北京:化学工业出版社,2009,294~340
    [149.]姚树坤,蒋晔,郝晓花,刘红菊,姜少灏,刘伟娜.虎杖及其复方中大黄素在大鼠体内的药代学研究.中国中药杂志,2005,30(6):463~465
    [150.]尹永芹,陈丽君,沈志滨.大黄总葸醌苷元提取条件的筛选.广东药学院学报,2008,24(2):135~136
    [151.]游浩,李英伦,陈学宏.新三黄液在黄鱼体内的药动学研究.淡水渔业,2007,37(5):26~31
    [152.]于军. pH梯度沉降法分离提取大黄中的蒽醌甙元.青海师专学报,2005,6:34~35
    [153.]袁海龙,柳正良,张纯,郭澄,李仙逸.超临界流体萃取-HPLC法测定何首乌中大黄酸、大黄素及大黄素甲醚的含量.中草药,1999,30(4):258~260
    [154.]张春云,王印庚,荣小军.养殖刺参腐皮综合征病原菌的分离与鉴定.水产学报,2006,30(1):118~123
    [155.]张峰,王海峰,宫晶,常少杰.仿刺参体腔液补体类似物化学发光免疫检测.核农学报,2007,21(4):413~416
    [156.]张凤翔,周日东,毕靖红.南美白对虾淡水养殖中常见病害及防治.齐鲁渔业,2008,25(9):19~21
    [157.]张海琪,丁雪燕,薛辉利,姚高华.呋喃唑酮在凡纳滨对虾组织中代谢动力学研究.宁波大学学报,2009,22(4):472~476
    [158.]张海珍,李健,王群,刘淇,周一兵.麻保沙星在中国对虾体内药代动力学及残留研究.中国农业科技导报,2008,10(2):88~93
    [159.]张锦雯,王广基,孙建国,王玮,许美娟,王睿,吕天. HPLC-荧光检测法测定大鼠血浆中大黄酸的浓度及其药代动力学.中国天然药物,2005,3(4):238~241
    [160.]张静.《伤寒杂病论》中大黄性能与效用的关系探讨.光明中医,2003,18(108):7~8
    [161.]张明,王建华,赵毅,王高学. 20味中药对鳗弧菌的药敏试验.动物医学进展,2005,26(8):77~79
    [162.]张群乐,刘永宏.海参海胆养殖技术.青岛:青岛海洋大学出版社,1998,1~3
    [163.]赵海军,欧安,欧安,简纪常,彭树锋.恩诺沙星在凡纳滨对虾体内的代谢和残留消除规律.广东海洋大学学报,2010,30(6):31~34
    [164.]赵永军,刘延鑫,徐文彦.南美白对虾淡水养殖常见细菌性病害及防制技术.郑州牧业工程高等专科学校学报,2006,26(1):37~38
    [165.]郑清梅,吴锐全,叶星.水生动物溶菌酶的研究进展.上海水产大学学报,2006,15(4):483~487
    [166.]郑天伦,王国良,金珊.网箱养殖大黄鱼弧菌病的中草药防治.水产科学,2005,24(2):24~25
    [167.]郑重莺,丁雪燕,张海琪,薛辉利,姚高华,何丰.氟苯尼考在南美白对虾体内药物代谢及残留消除规律.宁波大学学报,2007,20(1):23~26
    [168.]周彩虹,姚永中,张毕奎,裴奇,贾素洁.三黄片及大黄中大黄素大鼠体内药动学研究.实用预防医学,2010,17(6):1193~1195
    [169.]周群兰,郑小平,刘波,谢骏,徐跑.大黄提取物对嗜水气单胞菌的抑菌效果.江苏农业科学,2007,2:64~66
    [170.]朱伟,阮新民,陈可冀.性别差异对大黄酸在人体内药动学过程的影响.中国临床药理学与治疗学,2006,11(2) :223~226
    [171.]朱伟,阮新民,吴焕林,陈可冀.大黄酸在寒、热证人体内的药动学过程.中华中医药杂志,2006,21(10):630~632
    [172.]朱伟,张莉,王学美,王保秀,李晓晔.健康志愿者口服大黄制剂后大黄酸在人体内的药代学研究.中国中药杂志,2005,30(18):1458~1461
    [173.]邹峥嵘,易杨华,张淑瑜,周大铮,汤海峰.海参皂苷研究进展.中国海洋药物,2004,1:46~53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700