基于电子式互感器的智能行波测距系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字化变电站是智能电网的关键节点,电子式互感器则是数字化变电站的基础性设备。目前,现有电子式互感器的数据同步方法无法满足实际需求,针对电子式互感器暂态行波信号传变方面的研究也没有取得关键进展。输电网故障的快速、可靠检测是实现智能电网安全可靠运行的主要功能之一,基于暂态信息的行波测距技术具有测距误差小、适用性强的优点,因此在输电线路故障测距方面应用广泛。传统行波测距算法存在不足之处,而且传统行波测距装置接收模拟信号,无法满足数字化变电站的需求。数字化变电站通用标准IEC61850对基于暂态行波信息的行波测距装置无具体描述,缺乏对其进行处理的逻辑节点和设备模型。
     本文研究了基于电子式互感器的智能行波测距系统,主要工作和贡献如下:
     针对电子式互感器数据同步的不同要求,研究了基于三次样条插值理论、高速冗余采样过程层数据混合和基于IEEE1588精确时钟协议的三种电子式互感器数据同步方式,试验验证了三种数据同步方法的正确性;目前获得广泛应用的是基于Rogowski线圈的电子式电流互感器(简称ECT),以其为研究对象,深入研究了影响ECT行波信号传变的因素,分析了ECT的暂态特性及其对行波信号的响应,针对IEC61850下行波采样值的传输问题进行了分析,系统设计了适于行波传变的ECT,并对其进行了试验验证;提出了最小二乘支持向量机与希尔伯特-黄相结合的行波测距算法,由算法求得行波波头到达时刻,然后根据双端测距原理(或者单端)实现故障测距:设计了数字化行波测距装置,装置可以直接接收符合IEC61850标准的行波采样值,并能自动上传子站和调度符合标准的故障报文,满足数字化变电站对故障测距系统的要求;研究了数字化行波测距装置的服务器模型和逻辑设备模型,对实际应用中的服务映射进行了具体分析。数字化行波测距系统信息模型的建立,使其与其它智能电子设备(IED)之间的互操作和无缝集成成为可能,同时解决了IEC61850标准下缺乏数字化行波测距装置信息模型的问题。
Digital substation is a key node of the smart grid, and electronic transformer is the basic equipment of the digital substation. The existing electronic transformer's data synchronization method cannot meet the practical demand, key progress has not obtained about the research of transient traveling wave signals'transmission and conversion for the electronic transformers.One of the main functions of the reliable and security operation of smart grid is the rapid and reliable detection of the failure of the transmission grid. The traveling wave ranging technology based on transient information is being perfected, coupled with its inherent ranging error is small and its applicability, making it more and more widely used in locating transmission line fault. Traditional traveling wave fault location algorithms have different inadequacies, and traditional traveling wave fault location devices only receive the analog signal, unable to meet the demand of digital substation, the digital substation standard IEC61850has no detailed description about the device based on transient traveling wave, no logical node and equipment device to process the device.
     This paper studies the smart traveling wave fault location system based on the electronic transformer, main research work and contribution as follows:
     According to the different requirements for electronic transformer's data synchronization, three electronic transformer data synchronization ways are studied: the first method is based on the cubic spline interpolation theory, the second method is based on the high-speed redundant sampling process layer data mix and the third is based on the IEEE1588precision clock protocol, the experimental results verified the validity of the three data synchronization methods;Recently electronic current transformer (ECT) based on the Rogowski Coil is widely used, this study take that into research, deeply studied the factors that affecting the traveling wave signal's transmission and conversion of the Electronic Current Transformer, analysis the transient characteristics and the response to the traveling wave signal of the electronic current transformers, aiming at the analysis of the traveling wave sampled values under IEC61850, The system of ECT which is suitable for Traveling Wave Transfer is designed and its experimental results verified its validity;Traveling wave fault location algorithm for Least Squares Support Vector Machine (LS-SVM) Combined with HHT is proposed, and the traveling wave head's arrival time is obtained by the algorithm, according to the double-ended ranging principle (or the single ended) to accomplish fault location;The digital traveling wave fault location device is designed.This device can directly receive the traveling wave sampling values that satisfied the IEC61850standard, and could automatically uploaded to the substation and scheduling the fault message which is standards-compliant. The device could fully meet the requirements of the digital substation for fault location system.The server model and logic device model of the digital traveling wave fault location device is studied, the service mapping in the practical application is detailed analyzed. The establishment of the digital traveling wave fault location's information model making it possible to interoperability and seamless integration among other intelligent electronic devices (IED), at the meantime, the problem of the general statute of IEC61850of digital substation lacks the digital traveling wave fault location's information model is solved.
引文
[1]肖世杰.构建中国智能电网技术思考[J].电力系统自动化,2009,33(9):1-4.
    [2]谢开,刘永奇,朱治中,等.面向未来的智能电网[J].中国电力,2008.
    [3]余贻鑫,栾文鹏.智能电网述评[J].中国电机工程学报,2009,39(24):1-8.
    [4]IEC60044-8, Instrument transformers Part8:Electronic Current Transformers[S]. IEC,2002.
    [5]IEC61850-5, Communication networks and systems in substations Part 5: Communication requirements for functions and device model[S]. IEC,2003.
    [6]IEC61850-6, Communication networks and systems in substations Part 6: Associated with the substation IED configuration description language of communication[S]. IEC,2003.
    [7]IEC61850-7-1, Communication networks and systems in substations Part 7-1: Basic communication structure for substation and feeder equipment-Principles and models[S]. IEC,2003.
    [8]IEC61850-7-2, Communication networks and systems in substations Part 7-2: Basic communication structure for substation and feeder equipment-Abstract communication service interface (ACSI)[S].IEC,2003.
    [9]IEC61850-7-3, Communication networks and systems in substations Part 7-3: Basic communication structure for substation and feeder equipment-Common Data Classes[S]. IEC,2003.
    [10]IEC61850-7-4, Communication networks and systems in substations Part 7-4: Basic communication structure for substation and feeder equipment-Compatible logical node classes and data classes[S]. IEC,2003.
    [11]IEC61850-8-1, Communication networks and systems in substations Part 8-1: Specific communication service mapping (SCSM)-Mappings to MMS (ISO/IEC9506-1 and ISO/IEC 9506-2) and to ISO/IEC 8802-3[S]. IEC, 2003.
    [12]IEC61850-9-2, Communication networks and systems in substations Part 9-2: Specific Communication Service Mapping (SCSM) sampled values over ISO/IEC 8802-3[S]. IEC,2003.
    [13]IEC61850-10, Communication networks and systems in substations Part 10: Conformance testing[S]. IEC,2003.
    [14]Q/GDW_396-2009,IEC61850工程继电保护应用模型[S].国家电网公司,2010.
    [15]曹团结,尹项根,张哲,等.电子式互感器数据同步的研究[J].电力系统及其自动化学报,2007,19(2):108-113.
    [16]徐雁,向柯,肖霞.一种基于FPGA&DSP的电子式互感器数字接口实现方案[J].高电压,2006,42(3):208-210.
    [17]乔洪新,黄少锋,刘勇.基于二次插值理论的电子式互感器数据同步的研究[J].电力系统保护与控制,2009,37(15):48-52.
    [18]廖京生,郭晓华,朱明均,等.用于小电流测量的Rogowski线圈电流互感器[J].电力系统自动化,2003,27(2):56-59.
    [19]樊陈,倪益民,沈健,等.IEEE 1588在基于IEC61850-9-2标准的合并单元中的应用[J].电力系统自动化,2011,35(6):55-59.
    [20]殷志良,刘万顺,杨奇逊,秦应力.基于IEEE1588实现变电站过程总线采样值同步新技术[J].电力系统自动化,2005,29(13):60-63.
    [21]刘建成,方鹏,何宗应.IEEE1588时钟同步在PTN网中的实现[J].电子设计工程,2012,20(9):99-101.
    [22]庾智兰,李智.精确时钟同步协议最佳主时钟算法[J].电力自动化设备,2009,29(11):74-77.
    [23]John C. Eidson.Measurement Control and Communication Using IEEE1588 [M]. Springer London Ltd,2006.
    [24]IEEE STD 1558-2008. IEEE Standard for a precision clock synchronization protocol for networked measurement and control systems[S]. IEEE,2008.
    [25]孙军平,盛万兴,王孙安.新一代变电站自动化网络通信系统研究[J].中国电机工程学报,2003,23(3):16-19.
    [26]任雁铭,秦立军,杨奇逊.IEC61850通信协议体系介绍和分析[J].电力 系统自动化,2000,24(4):62-64.
    [27]刘慧源,郝后堂,李延新,等.数字化变电站同步方案分析[J].电力系统自动化,2009,33(3):55-58.
    [28]黄小耘.NTP在电力自动化设备时钟同步中的应用探讨[J].电力系统自动化,2005,29(15):93-95.
    [29]潘宏伟.应用IEEE1588协议的电力系统对时技术[D].硕士学位论文,山东大学,2011.
    [30]王少荣.电力系统分布式广域同步并行处理平台研究[D].博士学位论文,华中科技大学,2004.
    [31]李伟.电子式电流互感器及数字化站新技术研究[D].博士学位论文,华中科技大学,2011.
    [32]贺家李,宋从矩.电力系统继电保护原理(增订板)[M].中国电力出版社,2004.
    [33]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1996.
    [34]季涛.基于暂态行波的配电线路故障测距研究[D].博士学位论文,山东大学,2006.
    [35]陈平.输电线路现代行波故障测距及其应用研究[D].博士学位论文,西安交通大学,2003.
    [36]陈平,葛耀中,索南加乐,等.基于故障开断暂态行波信息的输电线路故障测距研究[J].中国电机工程学报,2000,20(8):56-60.
    [37]董新洲,葛耀中,徐丙垠,等.利用GPS的输电线路行波故障测距研究[J].电力系统自动化,1996,20(12):37-40.
    [38]陈平,葛耀中.输电线路故障开断暂态行波的传播特性研究[J].中国电机工程学报,2000,20(7):75-78.
    [39]徐丙垠,李京,陈平,等.现代行波测距技术及其应用[J].电力系统自动化,2001,23:62-65.
    [40]覃剑,陈祥训,郑健超.不同故障类型情况下行波传播特点的研究[J].电网技术,1999,23(1):54-58.
    [41]肖霞,业妙元,陈金玲,等.光学电压互感器的设计与实验[J].电网技术, 2003,27(6):45-47.
    [42]刘琨,周有庆,彭红海,等.电子式互感器合并单元(MU)的研究与设计[J].电力自动化设备,2006,26(4):67-71.
    [43]殷志良,刘万顺,秦应力,等.一种基于FPGA技术的电子式互感器接口实现新方法[J].电力系统自动化,2004,28(14):93-99.
    [44]张霖,吕艳萍.光电式电流互感器传感特性仿真分析[J].电力自动化设备,2008,28(9):68-71.
    [45]罗苏南,田朝勃,赵希才.空心线圈电流互感器性能分析[J].中国电机工程学报,2004,24(3):108-113.
    [46]Fiber Optic Sensors Working Group. Optical current transducers for power systems:a review[J]. IEEE Transactions On power Delivery,1994, 9(4):1778-1788.
    [47]Ward D F, Exon J L T.Using Rogowski coils for transient current measurements [J]. Engineering Science and Education Jouml,1993, 2(3):105-113.
    [48]胡国,唐成红,徐子安,等.数字化变电站新型合并单元的研制[J].电力系统自动化,2010,34(24):51-54.
    [49]朱超,黄灿,梅军,等.基于FPGA与ARM的智能合并单元设计[J].电网技术,2011,35(6):10-14.
    [50]贾清泉,杨以涵,宋家骅.光学电流传感器用于配电网单相接地故障电流检测[J].电力系统自动化,2001,25(11):41-44.
    [51]YU S L, GU J C. Removal of decaying DC in current and voltage signals using a modified Fourier filter algorithm[J]. IEEE Transactions on Power Delivery,2001,16(3):372-379.
    [52]李书领,陈平,孙学茜,等.Rogowski线圈的行波传感特性[J].山东理工大学学报(自然科学版),2011,25(5):94-97.
    [53]宋军强,周彪,杨熠普.新型光学电压互感器及其信号处理的原理与算法[J].电力系统自动化,2002,26(3):52-55.
    [54]邱红辉,段雄英,邹积岩.基于LPCT的激光功能电子式电流互感器[J].电工技术学报,2008,23(4):66-72.
    [55]邹建龙,刘晔,王采堂,等.电力系统适用光学电压互感器的研究新进展[J].电力系统自动化,2001,5:64-67.
    [56]林辛,张雄金.空芯线圈分布电容测试的研究[J].电测与仪表,1997,34(7):25-27.
    [57]刘晔,王采堂,苏彦民,等.电力系统适用光学电流互感器的研究新进展[J].电力系统自动化,2000,24(17):60-64.
    [58]邱红辉.电子式互感器的关键技术及其相关理论研究[D].博士学位论文,大连理工大学,2008.
    [59]王志华.IEC61850标准在变电站自动化系统的应用[D].硕士学位论文,天津理工大学,2007.
    [60]徐跃良.数值分析[M].四川:西南交通大学出版社,2005.
    [61]全玉生,杨敏中,王晓蓉,等.高压架空输电线路的故障测距方法[J].电网技术,2000,24(4):27-33.
    [62]黄雄,王志华,尹项根,等.高压输电线路行波测距的行波波速确定方法[J].电网技术,2004,28(19):34-37.
    [63]徐丙垠,李胜详,陈宗军.通信电缆线路障碍测试技术[M].北京:北京邮电大学出版社,2000.
    [64]束洪春,程春和,赵文渊,等.形态学与HHT检测相结合的行波波头准确标定方法[J].电力自动化设备,2009,29(7):1-7.
    [65]任建文,孙文武,周明,等.基于数学形态学的配电网单相接地故障暂态选线算法[J].电力系统自动化,2008,32(1):70-74.
    [66]林湘宁,刘沛,高艳.基于故障暂态和数学形态学的超高速线路方向保护[J].中国电机工程学报,2005,25(4):13-18.
    [67]束洪春,王超,张杰,等.基于形态学的HVDC线路故障识别与定位方法研究[J].电力自动化设备,2007,27(4):6-9,18.
    [68]张杰.基于形态学的故障行波测距方法研究[D].硕士学位论文,昆明理工大学,2005.
    [69]吴军基,吴伊昂.数学形态学在行波滤波中的应用[J].继电器,2005,33(17):21-25.
    [70]覃剑,吴成琦.利用小波变换的双端行波测距新方法[J].中国电机工程 学报,2000,20(8):6-10.
    [71]白嘉,徐玉琴,王增平.基于形态学-小波综合算法的超高压输电线路单端行波保护新原理[J].电网技术,2006,30(2):66-69.
    [72]程春和.电力工程信号处理应用[D].硕士学位论文,昆明理工大学,2008.
    [73]崔锦泰著,程正兴译.小波分析导论[M].西安:西安交通大学出版社,1994.
    [74]王耀南,霍百林,王辉,等.基于小波包的小电流接地系统故障选线的新判据[J].中国电机工程学报,2004,24(6):54-58.
    [75]陈皓.小波变换原理识别电力系统故障及振荡中短路的研究[J].电力自动化设备,2000,20(5):18-20.
    [76]HUANG NE,SHEN Z,LONG S R,et al.The empirical mode decomposition and Hilbert spectrum for nonlinear and non-sta-tionary time series analysis [J]. Proc Roy Sec London.A,1998,454:903-995.
    [77]HUANG NE, SHEN Z, LONG S R.A new view of nonlinear water waves: the hilbert spectrum [J]. Annu Rev Fluid Mech,1999,31:417-454.
    [78]Wu Z, HUANG NE.A studay of the characteristics of white noise using the empirical mode decomposition method[J]. Proc.R.Soc.London. A,2004, 460:1597-1611.
    [79]黄大吉,赵进平,苏纪兰.希尔伯特-黄变换的端点拓延[J].海洋学报,2003,25(1):1-11.
    [80]贾嵘,王小宇,蔡振华,等.基于最小二乘支持向量机回归的HHT在水轮发电机故障诊断中的应用[J].中国电机工程学报,2006,26(22):128-133.
    [81]杨金芳,翟永杰,王东风,等.基于支持向量机回归的时间序列预测[J].中国电机工程学报,2005,25(17):110-114.
    [82]于德介,陈淼峰,程军圣,等.一种基于经验模式分解与支持向量机的转子故障诊断方法[J].中国电机工程学报,2006,26(16):162-167.
    [83]李方方,赵英凯,颜昕.基于Matlab的最小二乘支持向量机的工具箱及其应用[J].计算机应用,2006,26(z2):358-360.
    [84]克里斯特安尼等著,李国正等译.支持向量机导论[M].北京:电子工业出版社,2004.
    [85]施围.电力系统过电压计算[M].西安:西安交通大学出版社,1988.
    [86]李光琦.电力系统暂态分析[M].北京:中国电力出版社,2007.
    [87]Lou van der Sluis著,王一宇等译.电力系统暂态[M].北京:中国电力出版社,2003.
    [88]胡广书.数字信号处理理论、算法与实现[M].北京:清华大学出版社,2006,156-163.
    [89]Matti L, Tapio H. Neutral earthing and power system protection [M]. ABB Transmit Oy Publication, Vaasa, Finland,1996.
    [90]Ranjbar A M, Shirani A R, Fathi A F.A new approach for fault location problem on power lines [J]. IEEE Transactions On Power Delivery,1992, 7(1):146-151.
    [91]Zhang D L, Zhang D S, Zhang J,et al. Data Sampling System with High Speed and High Timing Synchronization Precision for Power Line Fault Position Detection Based on Dual Ports Traveling Wave Distance Measurement Method[C].2005 IEEE/PES Transmission and Distribution Conference & Exhibition:Asia and Pacific Dalian, China,2005.
    [92]陈羽,刘东,徐丙垠.基于IEC61850的行波测距装置建模[J].电力系统自动化,2013,37(2):86-90.
    [93]郭宁明,覃剑,汤飞,等.智能电网行波故障测距系统应用方案[J].电力系统自动化,2012,36(14):72-76.
    [94]施慎行,任立,刘泽宇,等.符合IEC61850标准的行波电流选线装置研制[J].电力自动化设备,2011,31(3):131-134.
    [95]周裕龙,辛建波,蔡文.新型行波故障测距装置在智能变电站中的应用[J].江西电力,2011,35(5):15-18.
    [96]吴在军,胡敏强.基于IEC61850标准的变电站自动化系统研究[J].电网技术,2003,27(10):61-65.
    [97]向珉江,高厚磊,史先好,等.基于IEC61850标准的线路保护功能建模[J].电力系统保护与控制,2011,39(3):127-131.
    [98]王晓芳,周有庆,袁旭龙,等.符合IEC61850标准的数字化线路保护研究[J].电力系统保护与控制,2009,37(4):73-78.
    [99]张结.IEC61850的结构化模型分析[J].电力系统自动化,2004,28(18):90-93.
    [100]窦晓波,吴再军,胡敏强,等.IEC61850下合并单元信息模型与映射实现[J].电网技术,2006,30(2):80-86.
    [101]王凤祥,罗彦.基于IEC61850标准的FH3000型故障录波器建模[J].技术与应用,2011,3:29-36.
    [102]王玲,崔琪,负保记,等.基于IEC61850的高压线路间隔的建模研究[J].继电器,2007,35(24):33-35.
    [103]廖泽友,孙莉,贺岑,等.1ED遵循IEC61850标准的数据建模[J].继电器,2006,34(20):40-43.
    [104]高湛军,潘贞存,卞鹏,等.基于IEC61850标准的微机保护数据通信建模[J].电力系统自动化,2003,27(18):43-46.
    [105]韩国政,徐丙垠.基于IEC61850标准的智能配电终端建模[J].电力自动化设备,2011,31(2):104-107.
    [106]孙一民,陈远生.母线保护装置的IEC61850信息模型[J].电力系统自动化,2007,21(2):51-54.
    [107]王俊生,吴林平,王振曦,等.高压直流保护系统IEC61850建模[J].电力系统自动化,2009,33(1):41-44.
    [108]徐宁,朱永利,邸剑,等.基于IEC61850标准的变电站自动化建模[J].电力自动化设备,2006,26(3):85-89.
    [109]陆岩,胡道徐,马文龙.IEC61850信息建模的反思与变通[J].电力自动化设备,2008,28(10):68-70.
    [110]李兰欣,苗培青,王俊芳.基于IEC61850的数字化变电站系统解决方案的研究[J].电网技术,2006,30(S1):321-324.
    [111]张沛超,高翔.数字化变电站系统结构[J].电网技术,2006,30(24):73-77.
    [112]Loureio,Correia C F M. Innovative high-speed data acquisition architecture[C]. Nuclear Science Symposium Conference,Lyon,France,2000.
    [113]Lee H,Mousa A M. GPS Travelling Wave Fault Locator Systems: Investigation into the Anomalous Measurements Related to Lightning Strikes [J]. IEEE Transactions on Power Delivery,1996,11(3):1214-1223.
    [114]Bo Z Q,Weller G,Lomas T,et al. Positional Protection of Transmission Systems Using Global Positioning System [J]. IEEE Transactions on Power Delivery,2000,15(1):1163-1168.
    [115]张朝晖.检测技术及应用[M].北京:中国计量出版社,2005.
    [116]徐雁,朱明均,郭晓华,等.空心线圈作为保护用电流互感器的理论分析和试验[J].电力系统自动化,2002,26(16):52-55.
    [117]郭志忠.电子式电流互感器综述[J].继电器,2005,33(14):11-14,22.
    [118]陈金玲,肖霞,张庆,等.用DSP提高光学电压互感器的性能[J].电测与仪表,2002,39(440):48-50.
    [119]ATPDRAW version 3, user manual [Z]. TR A4389, EFI, Norway,1996.
    [120]ATP-EMTP Rule Book, Canadian-American EMTP Users Group,1997.
    [121]Wang Chunjie, Ji Shengchang, Nie Jiyu,et al. Design and performance of a novel pancake rogowski coil for measuring pulse currents[J]. Plasma Science and Technology,2011,13(6):751-756.
    [122]FAIFER M,OTTOBONI R. An electronic current transformer based on Rogowski coil[C]. Proceedings of the International Instrumentation and Measurement Technolegy Conference,12-15 May 2008,Victoria,Canada: 1554-1559.
    [123]Krzysztof G,Kowalik R,Rasolomampionona D,et al. Traveling wave fault location in power transmission systems:An overview[J]. Journal of Electrical Systems,2011,7(3):287-296.
    [124]Ngu E E,Ramar K. A combined impedance and traveling wave based fault location method for multi-terminal transmission lines[J]. International Journal of Electrical Power and Energy Systems,2011,33(10):1767-1775.
    [125]Niazy Ismail,Sadeh Javad. A new single ended fault location algorithm for combined transmission line considering fault clearing transients without using line parameters[J]. International Journal of Electrical Power and Energy Systems,2013,44(1):816-823.
    [126]Bernadic Alenl,Leonowicz Zbigniew. Fault location in power networks with mixed feeders using the complex space-phasor and Hilbert-Huang transform [J]. International Journal of Electrical Power and Energy Systems,2012, 42(1):208-209.
    [127]Deshpande Anuradha S,Shah Grishma S. Transmission line protection based on travelling waves[J]. WSEAS Transactions on Circuits and Systems,2011, 10(12):423-441.
    [128]Liu Yi,Lin Fuchang,Zhang Qin,et al. Design and construction of a Rogowski Coil for measuring wide pulsed current[J]. IEEE Sensors Journal,2011, 11(1):123-130.
    [129]Draxler Karell,Styblikova Renata,Hlavacek Jan,et al.Calibration of Rogowski coils with an integrator at high currents[J]. IEEE Transactions on Instrumentation and Measurement,2011,60(7):2434-2438.
    [130]Luo Yan,Duan Xiongying,Zhang Minzhi,et al. Research on the electronic transformer applied in IEC 61850-9-2 process bus[J]. International Journal of Advancements in Computing Technology,2012,4(13):217-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700